期刊文献+
共找到360篇文章
< 1 2 18 >
每页显示 20 50 100
Automated Classification of Lung Diseases in Computed Tomography Images Using a Wavelet Based Convolutional Neural Network 被引量:2
1
作者 Eri Matsuyama Du-Yih Tsai 《Journal of Biomedical Science and Engineering》 2018年第10期263-274,共12页
Recently, convolutional neural networks (CNNs) have been utilized in medical imaging research field and have successfully shown their ability in image classification and detection. In this paper we used a CNN combined... Recently, convolutional neural networks (CNNs) have been utilized in medical imaging research field and have successfully shown their ability in image classification and detection. In this paper we used a CNN combined with a wavelet transform approach for classifying a dataset of 448 lung CT images into 4 categories, e.g. lung adenocarcinoma, lung squamous cell carcinoma, metastatic lung cancer, and normal. The key difference between the commonly-used CNNs and the presented method is that in this method, we adopt the use of redundant wavelet coefficients at level 1 as inputs to the CNN, instead of using original images. One of the main advantages of the proposed method is that it is not necessary to extract regions of interest from original images. The wavelet coefficients of the entire image are used as inputs to the CNN. We compare the classification performance of the proposed method to that of an existing CNN classifier and a CNN-based support vector machine classifier. The experimental results show that the proposed method outperforms the other two methods and achieve the highest overall accuracy of 91.9%. It demonstrates the potential for use in classification of lung diseases in CT images. 展开更多
关键词 convolutional neural networks wavelet Transforms Classification LUNG DISEASES CT Imaging
暂未订购
A Novel Lung Cancer Detection Method Using Wavelet Decomposition and Convolutional Neural Network
2
作者 Ahmad M. Sarhan 《Journal of Biomedical Science and Engineering》 2020年第5期81-92,共12页
Computerized tomography (CT) scan is the only screening test recommended by doctors to look for lung cancer. Convolutional neural networks (CNNs) have recently proven their ability to successfully classify medical ima... Computerized tomography (CT) scan is the only screening test recommended by doctors to look for lung cancer. Convolutional neural networks (CNNs) have recently proven their ability to successfully classify medical images. Due to its strong compactness property, the Discrete Wavelet transform (DWT) has been commonly used in image feature extraction applications. This paper presents a novel technique for the classification of Lung cancer in Computerized Tomography (CT) scans using Wavelets to find discriminative features in the CT images and CNN to classify the extracted features. Experimental results prove that the proposed approach outperforms other commonly used methods and gives an overall accuracy of 99.5%. 展开更多
关键词 convolutional neural network CNN) wavelet TRANSFORM Image Classification LUNG Cancer COMPUTERIZED TOMOGRAPHY (CT)
在线阅读 下载PDF
Deep Spatiotemporal Convolutional-Neural-Network-Based Remaining Useful Life Estimation of Bearings 被引量:9
3
作者 Xu Wang Tianyang Wang +4 位作者 Anbo Ming Qinkai Han Fulei Chu Wei Zhang Aihua Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期115-129,共15页
The remaining useful life(RUL)estimation of bearings is critical for ensuring the reliability of mechanical systems.Owing to the rapid development of deep learning methods,a multitude of data-driven RUL estimation app... The remaining useful life(RUL)estimation of bearings is critical for ensuring the reliability of mechanical systems.Owing to the rapid development of deep learning methods,a multitude of data-driven RUL estimation approaches have been proposed recently.However,the following problems remain in existing methods:1)Most network models use raw data or statistical features as input,which renders it difficult to extract complex fault-related information hidden in signals;2)for current observations,the dependence between current states is emphasized,but their complex dependence on previous states is often disregarded;3)the output of neural networks is directly used as the estimated RUL in most studies,resulting in extremely volatile prediction results that lack robustness.Hence,a novel prognostics approach is proposed based on a time-frequency representation(TFR)subsequence,three-dimensional convolutional neural network(3DCNN),and Gaussian process regression(GPR).The approach primarily comprises two aspects:construction of a health indicator(HI)using the TFR-subsequence-3DCNN model,and RUL estimation based on the GPR model.The raw signals of the bearings are converted into TFR-subsequences by continuous wavelet transform and a dislocated overlapping strategy.Subsequently,the 3DCNN is applied to extract the hidden spatiotemporal features from the TFR-subsequences and construct HIs.Finally,the RUL of the bearings is estimated using the GPR model,which can also define the probability distribution of the potential function and prediction confidence.Experiments on the PRONOSTIA platform demonstrate the superiority of the proposed TFR-subsequence-3DCNN-GPR approach.The use of degradation-related spatiotemporal features in signals is proposed herein to achieve a highly accurate bearing RUL prediction with uncertainty quantification. 展开更多
关键词 BEARING Remaining useful life Continuous wavelet transform convolution neural network Gaussian process regression
在线阅读 下载PDF
Underwater Acoustic Signal Noise Reduction Based on a Fully Convolutional Encoder-Decoder Neural Network
4
作者 SONG Yongqiang CHU Qian +2 位作者 LIU Feng WANG Tao SHEN Tongsheng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1487-1496,共10页
Noise reduction analysis of signals is essential for modern underwater acoustic detection systems.The traditional noise reduction techniques gradually lose efficacy because the target signal is masked by biological an... Noise reduction analysis of signals is essential for modern underwater acoustic detection systems.The traditional noise reduction techniques gradually lose efficacy because the target signal is masked by biological and natural noise in the marine environ-ment.The feature extraction method combining time-frequency spectrograms and deep learning can effectively achieve the separation of noise and target signals.A fully convolutional encoder-decoder neural network(FCEDN)is proposed to address the issue of noise reduc-tion in underwater acoustic signals.The time-domain waveform map of underwater acoustic signals is converted into a wavelet low-frequency analysis recording spectrogram during the denoising process to preserve as many underwater acoustic signal characteristics as possible.The FCEDN is built to learn the spectrogram mapping between noise and target signals that can be learned at each time level.The transposed convolution transforms are introduced,which can transform the spectrogram features of the signals into listenable audio files.After evaluating the systems on the ShipsEar Dataset,the proposed method can increase SNR and SI-SNR by 10.02 and 9.5dB,re-spectively. 展开更多
关键词 deep learning convolutional encoder-decoder neural network wavelet low-frequency analysis recording spectrogram
在线阅读 下载PDF
Low-Light Image Enhancement Based on Wavelet Local and Global Feature Fusion Network
5
作者 Shun Song Xiangqian Jiang Dawei Zhao 《Journal of Contemporary Educational Research》 2025年第11期209-214,共6页
A wavelet-based local and global feature fusion network(LAGN)is proposed for low-light image enhancement,aiming to enhance image details and restore colors in dark areas.This study focuses on addressing three key issu... A wavelet-based local and global feature fusion network(LAGN)is proposed for low-light image enhancement,aiming to enhance image details and restore colors in dark areas.This study focuses on addressing three key issues in low-light image enhancement:Enhancing low-light images using LAGN to preserve image details and colors;extracting image edge information via wavelet transform to enhance image details;and extracting local and global features of images through convolutional neural networks and Transformer to improve image contrast.Comparisons with state-of-the-art methods on two datasets verify that LAGN achieves the best performance in terms of details,brightness,and contrast. 展开更多
关键词 Image enhancement Feature fusion wavelet transform convolutional neural network(CNN) TRANSFORMER
在线阅读 下载PDF
Channel attention based wavelet cascaded network for image super-resolution
6
作者 CHEN Jian HUANG Detian HUANG Weiqin 《High Technology Letters》 EI CAS 2022年第2期197-207,共11页
Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details o... Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details of reconstructed images.To address this issue,a channel attention based wavelet cascaded network for image super-resolution(CWSR) is proposed.Specifically,a second-order channel attention(SOCA) mechanism is incorporated into the network,and the covariance matrix normalization is utilized to explore interdependencies between channel-wise features.Then,to boost the quality of residual features,the non-local module is adopted to further improve the global information integration ability of the network.Finally,taking the image loss in the spatial and wavelet domains into account,a dual-constrained loss function is proposed to optimize the network.Experimental results illustrate that CWSR outperforms several state-of-the-art methods in terms of both visual quality and quantitative metrics. 展开更多
关键词 image super-resolution(SR) wavelet transform convolutional neural network(CNN) second-order channel attention(SOCA) non-local self-similarity
在线阅读 下载PDF
A Deep Learning Approach for Fault Diagnosis in Centrifugal Pumps through Wavelet Coherent Analysis and S-Transform Scalograms with CNN-KAN
7
作者 Muhammad Farooq Siddique Saif Ullah Jong-Myon Kim 《Computers, Materials & Continua》 2025年第8期3577-3603,共27页
Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces ... Centrifugal Pumps(CPs)are critical machine components in many industries,and their efficient operation and reliable Fault Diagnosis(FD)are essential for minimizing downtime and maintenance costs.This paper introduces a novel FD method to improve both the accuracy and reliability of detecting potential faults in such pumps.Theproposed method combinesWaveletCoherent Analysis(WCA)and Stockwell Transform(S-transform)scalograms with Sobel and non-local means filters,effectively capturing complex fault signatures from vibration signals.Using Convolutional Neural Network(CNN)for feature extraction,the method transforms these scalograms into image inputs,enabling the recognition of patterns that span both time and frequency domains.The CNN extracts essential discriminative features,which are then merged and passed into a Kolmogorov-Arnold Network(KAN)classifier,ensuring precise fault identification.The proposed approach was experimentally validated on diverse datasets collected under varying conditions,demonstrating its robustness and generalizability.Achieving classification accuracy of 100%,99.86%,and 99.92%across the datasets,this method significantly outperforms traditional fault detection approaches.These results underscore the potential to enhance CP FD,providing an effective solution for predictive maintenance and improving overall system reliability. 展开更多
关键词 Fault diagnosis centrifugal pump wavelet coherent analysis stockwell transform convolutional neural network Kolmogorov-Arnold network
在线阅读 下载PDF
基于Wavelet-CNN网络的人类活动识别技术 被引量:6
8
作者 张琳 易卿武 +1 位作者 黄璐 于乃文 《无线电工程》 北大核心 2022年第4期590-597,共8页
针对传统的识别方法不能满足人类活动识别(Human Activity Recognition,HAR)技术研究需求的现状,提出了一种基于小波变换和卷积神经网络(Convolutional Neural Networks,CNN)相结合的深度学习模型。将多通道传感器的波形数据通过小波变... 针对传统的识别方法不能满足人类活动识别(Human Activity Recognition,HAR)技术研究需求的现状,提出了一种基于小波变换和卷积神经网络(Convolutional Neural Networks,CNN)相结合的深度学习模型。将多通道传感器的波形数据通过小波变换分解并重组作为输入。利用不同卷积核的CNN高效提取多维特征,使用最大池化层对人体无意识抖动引起的干扰噪声进行滤波操作。经过全连接层输出分类,实现对人体活动状态的准确识别。实验分别从模型收敛速度、损耗和精度三方面评估了模型性能,并在OPPORTUNITY公共数据集上与较先进的识别模型进行了对比。实验结果表明,提出的小波变化卷积网络Wavelet-CNN实现了91.65%的F1分数,具有更高的活动识别能力。 展开更多
关键词 人类活动识别 小波变换 卷积神经网络 传感器
在线阅读 下载PDF
Crack Segmentation Based on Fusing Multi-Scale Wavelet and Spatial-Channel Attention
9
作者 Peng Geng Ji Lu +1 位作者 Hongtao Ma Guiyi Yang 《Structural Durability & Health Monitoring》 EI 2023年第1期1-22,共22页
Accurate and reliable crack segmentation is a challenge and meaningful task.In this article,aiming at the characteristics of cracks on the concrete images,the intensity frequency information of source images which is ... Accurate and reliable crack segmentation is a challenge and meaningful task.In this article,aiming at the characteristics of cracks on the concrete images,the intensity frequency information of source images which is obtained by Discrete Wavelet Transform(DWT)is fed into deep learning-based networks to enhance the ability of network on crack segmentation.To well integrate frequency information into network an effective and novel DWTA module based on the DWT and scSE attention mechanism is proposed.The semantic information of cracks is enhanced and the irrelevant information is suppressed by DWTA module.And the gap between frequency information and convolution information from network is balanced by DWTA module which can well fuse wavelet information into image segmentation network.The Unet-DWTA is proposed to preserved the information of crack boundary and thin crack in intermediate feature maps by adding DWTA module in the encoderdecoder structures.In decoder,diverse level feature maps are fused to capture the information of crack boundary and the abstract semantic information which is beneficial to crack pixel classification.The proposed method is verified on three classic datasets including CrackDataset,CrackForest,and DeepCrack datasets.Compared with the other crack methods,the proposed Unet-DWTA shows better performance based on the evaluation of the subjective analysis and objective metrics about image semantic segmentation. 展开更多
关键词 Attention mechanism crack segmentation convolutional neural networks discrete wavelet transform
在线阅读 下载PDF
Efficient Authentication System Using Wavelet Embeddings of Otoacoustic Emission Signals
10
作者 V.Harshini T.Dhanwin +2 位作者 A.Shahina N.Safiyyah A.Nayeemulla Khan 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1851-1867,共17页
Biometrics,which has become integrated with our daily lives,could fall prey to falsification attacks,leading to security concerns.In our paper,we use Transient Evoked Otoacoustic Emissions(TEOAE)that are generated by ... Biometrics,which has become integrated with our daily lives,could fall prey to falsification attacks,leading to security concerns.In our paper,we use Transient Evoked Otoacoustic Emissions(TEOAE)that are generated by the human cochlea in response to an external sound stimulus,as a biometric modality.TEOAE are robust to falsification attacks,as the uniqueness of an individual’s inner ear cannot be impersonated.In this study,we use both the raw 1D TEOAE signals,as well as the 2D time-frequency representation of the signal using Continuous Wavelet Transform(CWT).We use 1D and 2D Convolutional Neural Networks(CNN)for the former and latter,respectively,to derive the feature maps.The corresponding lower-dimensional feature maps are obtained using principal component analysis,which is then used as features to build classifiers using machine learning techniques for the task of person identification.T-SNE plots of these feature maps show that they discriminate well among the subjects.Among the various architectures explored,we achieve a best-performing accuracy of 98.95%and 100%using the feature maps of the 1D-CNN and 2D-CNN,respectively,with the latter performance being an improvement over all the earlier works.This performance makes the TEOAE based person identification systems deployable in real-world situations,along with the added advantage of robustness to falsification attacks. 展开更多
关键词 Person identification system cochlea:transient evoked otoacoustic emission wavelet transform convolutional neural network
在线阅读 下载PDF
Brain Tumor Classification in Magnetic Resonance Images Using Deep Learning and Wavelet Transform
11
作者 Ahmad M. Sarhan 《Journal of Biomedical Science and Engineering》 2020年第6期102-112,共11页
A brain tumor is a mass of abnormal cells in the brain. Brain tumors can be benign (noncancerous) or malignant (cancerous). Conventional diagnosis of a brain tumor by the radiologist is done by examining a set of imag... A brain tumor is a mass of abnormal cells in the brain. Brain tumors can be benign (noncancerous) or malignant (cancerous). Conventional diagnosis of a brain tumor by the radiologist is done by examining a set of images produced by magnetic resonance imaging (MRI). Many computer-aided detection (CAD) systems have been developed in order to help the radiologists reach their goal of correctly classifying the MRI image. Convolutional neural networks (CNNs) have been widely used in the classification of medical images. This paper presents a novel CAD technique for the classification of brain tumors in MRI images. The proposed system extracts features from the brain MRI images by utilizing the strong energy compactness property exhibited by the Discrete Wavelet Transform (DWT). The Wavelet features are then applied to a CNN to classify the input MRI image. Experimental results indicate that the proposed approach outperforms other commonly used methods and gives an overall accuracy of 99.3%. 展开更多
关键词 convolutional neural network CNN) wavelet Transform Image Classification Brain Cancer Magnetic Resonance Imaging (MRI)
暂未订购
一种小样本滚动轴承故障诊断算法 被引量:3
12
作者 宋存利 王子卓 时维国 《中国惯性技术学报》 北大核心 2025年第1期96-106,共11页
针对卷积神经网络在处理滚动轴承时域信号时难以充分提取特征、故障样本稀少及模型泛化性能不足的问题,提出一种基于注意力机制的增强卷积神经网络小样本故障诊断方法。首先,使用连续小波变换将轴承振动信号转化为二维时频图像,以便可... 针对卷积神经网络在处理滚动轴承时域信号时难以充分提取特征、故障样本稀少及模型泛化性能不足的问题,提出一种基于注意力机制的增强卷积神经网络小样本故障诊断方法。首先,使用连续小波变换将轴承振动信号转化为二维时频图像,以便可视化其特征。然后,通过数据增强扩充样本数据,提升模型在小样本情况下的泛化性。为提高特征提取和模型泛化能力,使用MixConv将ConvNeXt V2模型的7×7卷积层重构为不同大小的并行卷积核,增强多尺度特征提取效果;引入卷积注意力机制模块(CBAM)提升关键特征识别能力。该模型在凯斯西储大学、东南大学和渥太华大学的故障数据集上进行实验验证。实验结果表明,所提模型对不同故障的识别率均为100%,与目前常用的7个模型相比,在相同条件下故障识别准确率最高,具有较强的泛化性能。 展开更多
关键词 滚动轴承 故障诊断 注意力机制 连续小波变换 卷积神经网络
在线阅读 下载PDF
Fluorescence microscopy image denoising via a wavelet-enhanced transformer based on DnCNN network
13
作者 Shuhao Shen Mingxuan Cao +2 位作者 Weikai Tan E Du Xueli Chen 《Advanced Photonics Nexus》 2025年第6期1-11,共11页
Fluorescence microscopy is indispensable in life science research,yet denoising remains challenging due to varied biological samples and imaging conditions.We introduce a wavelet-enhanced transformer based on DnCNN th... Fluorescence microscopy is indispensable in life science research,yet denoising remains challenging due to varied biological samples and imaging conditions.We introduce a wavelet-enhanced transformer based on DnCNN that fuses wavelet preprocessing with a dual-branch transformer-convolutional neural network(CNN)architecture.Wavelet decomposition separates highand low-frequency components for targeted noise reduction;the CNN branch restores local details,whereas the transformer branch captures global context;and an adaptive loss balances quantitative fidelity with perceptual quality.On the fluorescence microscopy denoising benchmark,our method surpasses leading CNNand transformer-based approaches,improving peak signal-to-noise ratio by 2.34%and 0.88%and structural similarity index measure by 0.53%and 1.07%,respectively.This framework offers enhanced generalization and practical gains for fluorescence image denoising. 展开更多
关键词 fluorescence microscopy denoising deep learning wavelet transform vision transformer convolutional neural network.
在线阅读 下载PDF
基于Wavelet-CNN的电磁炮过靶信号识别方法
14
作者 田霖浩 杨俊 郭昊琰 《计算机测量与控制》 2023年第4期161-166,共6页
电磁炮测试中,炮口产生强烈的火光信号以及振动等噪声,会严重干扰电枢特征信号的识别处理;为了提升对电枢信号的自动识别率,提出了一种基于小波变换和卷积神经网络(CNN)相结合的电枢信号识别方法;利用小波变换对过靶信号进行小波阈值去... 电磁炮测试中,炮口产生强烈的火光信号以及振动等噪声,会严重干扰电枢特征信号的识别处理;为了提升对电枢信号的自动识别率,提出了一种基于小波变换和卷积神经网络(CNN)相结合的电枢信号识别方法;利用小波变换对过靶信号进行小波阈值去噪,进而重构信号,然后利用CNN提取信号的深层次特征,通过CNN的全连接层输出信号的分类结果;当输入信号为电枢信号时,对其作最大值检测获取电枢信号的特征点;实验结果表明,所提方法对比传统小波阈值滤波法在特征点自动拾取准确率上提升了5.88%;该算法对电磁炮电枢过靶信号的滤波、识别具有一定的参考意义。 展开更多
关键词 小波变换 小波阈值 卷积神经网络 电磁炮 光幕靶
在线阅读 下载PDF
降水空间信息的处理策略对径流预测的影响 被引量:1
15
作者 高玉芳 何川 +1 位作者 彭涛 高勇 《水科学进展》 北大核心 2025年第1期143-154,共12页
降水空间信息的精确提取对径流预测的精度至关重要。本文以赣江流域为研究对象,基于长短期记忆网络(Long Short-Term Memory,LSTM)模型,设计原始图像、小波分解、统计特征、面平均值、区域划分5种降水空间信息提取方案,研究降水空间信... 降水空间信息的精确提取对径流预测的精度至关重要。本文以赣江流域为研究对象,基于长短期记忆网络(Long Short-Term Memory,LSTM)模型,设计原始图像、小波分解、统计特征、面平均值、区域划分5种降水空间信息提取方案,研究降水空间信息不同处理策略对基于LSTM模型的径流预测性能的影响。结果表明:相较于直接使用原始图像的方案,综合运用小波分解和统计特征提取的处理方法测试期纳什效率系数分别提升了11.5%和17.9%,同时也增强了模型的稳定性和解释性;不同的区域划分方法能结合土地利用、土壤类型等下垫面因素,反映降水响应的空间差异性,展现了对各流量等级的适应能力,相较于以流域平均值作为输入的方式,能明显提高捕捉高流量和低流量特征的能力。研究表明在基于LSTM模型的降雨—径流预测模型中引入降水空间信息,可以有效改善预测效果。 展开更多
关键词 径流预测 长短期记忆网络 卷积神经网络 小波变换
在线阅读 下载PDF
A Wavelet-Based Deep Learning Framework for Predicting Peak Intensity of Hurricanes in the Atlantic Ocean
16
作者 Jiahe Liu Xiaodi Wang 《Atmospheric and Climate Sciences》 2023年第4期587-606,共20页
Every year, hurricanes pose a serious threat to coastal communities, and forecasting their maximum intensities has been a crucial task for scientists. Computational methods have been used to forecast the intensities o... Every year, hurricanes pose a serious threat to coastal communities, and forecasting their maximum intensities has been a crucial task for scientists. Computational methods have been used to forecast the intensities of hurricanes across varying time horizons. However, as climate change has increased the volatility of the intensities of recent hurricanes, newer and adaptable methods must be devised. In this study, a framework is proposed to estimate the maximum intensity of tropical cyclones (TCs) in the Atlantic Ocean using a multi-input convolutional neural network (CNN). From the Atlantic hurricane seasons of 2000 through 2021, over 100 TCs that reached hurricane-level wind speeds are used. Novel algorithms are used to collect and preprocess both satellite image data and non-image data for these TCs. Namely, Discrete Wavelet Transforms (DWTs) are used to decompose individual bands of satellite image data, eliminating noise and extracting hidden frequency details before training. Validation tests indicate that this framework can estimate the maximum wind speed of TCs with a root mean square error of 15 knots. This framework provides preliminary predictions that can supplement current computational methods that would otherwise not be able to account for climate change. Future work can be done by forecasting with time constraints, and to provide estimations for more metrics such as pressure and precipitation. 展开更多
关键词 Tropical Cyclone (TC) Hurricane Intensity convolutional neural network (CNN) Discrete wavelet Transform (DWT)
在线阅读 下载PDF
Wavelet Multiview-Based Hybrid Deep Learning Model for Forecasting El Niño-Southern Oscillation Cycles
17
作者 Winston Zhou Xiaodi Wang 《Atmospheric and Climate Sciences》 2024年第4期450-473,共24页
The El Niño-Southern Oscillation (ENSO) is a significant climate phenomenon with far-reaching impacts on global weather patterns, ecosystems, and economies. This study aims to enhance ENSO forecasting with the Ex... The El Niño-Southern Oscillation (ENSO) is a significant climate phenomenon with far-reaching impacts on global weather patterns, ecosystems, and economies. This study aims to enhance ENSO forecasting with the Extended Reconstruction Sea Surface Temperature v5 (ERSSTv5) climate model. The M-band discrete wavelet transforms (DWT) are utilized to capture multi-scale temporal and spatial features effectively. Long-short term memory (LSTM) autoencoders are also used to capture significant spatial and temporal patterns in sea surface temperature (SST) anomaly data. Deep learning techniques such as the convolutional neural networks (CNN) are used with non-image and image time series data. We also employ parallel computing in a various support vector regression (SVR) approximators to enhance accuracy. Preliminary results indicate that this hybrid model effectively identifies key precursors and patterns associated with El Niño events, surpassing traditional forecasting methods. Results of the hybrid model produce a correlation of 0.93 in 4-month lagged forecasting of the Oceanic Niño Index (ONI)—indicative of high success rate of the model. Future work will focus on evaluating the model’s performance using additional reanalysis datasets and other methods of deep learning to further refine its robustness and applicability. We propose wavelet-based deep learning models which have potential to shine a light on achieving United Nations’ 2030 Agenda for Sustainable Development’s goal 13: “Climate Action”, as an innovation with potential in improving time series image forecasting in all fields. 展开更多
关键词 El Niño-Southern Oscillation (ENSO) Autoencoders Discrete wavelet Transform (DWT) convolutional neural network (CNN) Support Vector Regression (SVR)
在线阅读 下载PDF
小样本下基于DWT和2D-CNN的齿轮故障诊断方法 被引量:1
18
作者 宋庭新 黄继承 +2 位作者 刘尚奇 杜敏 李子平 《计算机集成制造系统》 北大核心 2025年第6期2206-2214,共9页
针对齿轮设备运维过程中故障信号较少的情况,提出一种将离散小波变换(DWT)与二维卷积神经网络(2D-CNN)相结合的故障识别方法。该方法通过将少量信号经卷积神经网络得到的分类标签与信号的小波能量进行权值分配,实现对齿轮的故障识别。... 针对齿轮设备运维过程中故障信号较少的情况,提出一种将离散小波变换(DWT)与二维卷积神经网络(2D-CNN)相结合的故障识别方法。该方法通过将少量信号经卷积神经网络得到的分类标签与信号的小波能量进行权值分配,实现对齿轮的故障识别。为了充分获取小样本中的信息来训练神经网络,利用离散小波分解、图像变换和Markov变迁场方法对样本信号进行增量和转换。通过验证齿轮箱数据集得到96%的训练准确率和87.5%的分类准确率,同时通过消融实验和对比实验证明,该方法可以有效克服小样本数据中的噪声干扰,使数据得到增强,在齿轮故障识别中具有很好的现实意义。 展开更多
关键词 故障诊断 小样本 二维卷积神经网络 小波变换
在线阅读 下载PDF
红外光谱结合连续小波变换-卷积神经网络技术的粮食杂质识别 被引量:1
19
作者 谭英丽 胡锦平 《粮食与饲料工业》 2025年第3期125-130,共6页
以往粮食杂质识别时,由于杂质粒度、形状与粮食相似,无法有效获取结构差异信息,导致粮食杂质微细特征提取质量较差,难以准确区分粮食和杂质,造成杂质识别率较低。为应对这一问题,提出红外光谱结合连续小波变换-卷积神经网络技术的粮食... 以往粮食杂质识别时,由于杂质粒度、形状与粮食相似,无法有效获取结构差异信息,导致粮食杂质微细特征提取质量较差,难以准确区分粮食和杂质,造成杂质识别率较低。为应对这一问题,提出红外光谱结合连续小波变换-卷积神经网络技术的粮食杂质识别方法。通过近红外探测器捕捉粮食杂质的近红外光谱数据,并通过中心化处理与标准化处理等过程对所采集的粮食杂质光谱数据进行预处理,获取结构差异信息。经过预处理后的粮食杂质光谱数据通过USB总线传输到PC端;在PC端通过连续小波变换从光谱数据中提炼出粮食杂质的微细特征,以进一步放大差异,绘制出粮食杂质的小波时频图,将小波时频图作为卷积神经网络的输入数据,进行精确地分类识别,从而实现智能化的粮食杂质识别。实验结果显示,近红外光谱采集粮食杂质样品并进行预处理后光谱特征峰更加明显,将预处理后的光谱数据转换为小波时频图后,荞麦杂质样品图像展现出显著的特征信息,为后续粮食杂质识别工作提供可靠的基础;卷积神经网络在粮食杂质识别任务中最高杂质识别率达到100%,且杂质识别错误率最低为0,具有较强的杂质识别性能。 展开更多
关键词 近红外光谱 连续小波 卷积神经 粮食 杂质 识别
在线阅读 下载PDF
基于WPD-ISSA-CA-CNN模型的电厂碳排放预测
20
作者 池小波 续泽晋 +1 位作者 贾新春 张伟杰 《控制工程》 北大核心 2025年第8期1387-1394,共8页
碳排放的准确预测有利于制定合理的碳减排策略。目前,针对电厂碳排放的研究较少,且传统预测模型训练时间过长。基于此,提出一种分量增广输入的WPD-ISSA-CA-CNN碳排放量预测模型,该模型创新性地构建“分解-增广融合预测”策略。首先,利... 碳排放的准确预测有利于制定合理的碳减排策略。目前,针对电厂碳排放的研究较少,且传统预测模型训练时间过长。基于此,提出一种分量增广输入的WPD-ISSA-CA-CNN碳排放量预测模型,该模型创新性地构建“分解-增广融合预测”策略。首先,利用小波包分解(wavelet packet decomposition,WPD)算法将信号按频率特性分解为子序列,再将全部分量增广(component augmentation,CA)作为模型输入,以减少模型的训练时间。其次,考虑到该模型超参数选择困难,利用多策略融合的改进麻雀搜索算法(improved sparrow search algorithm,ISSA)对卷积神经网络(convolutional neural networks,CNNs)的超参数进行寻优。以山西某发电厂2×25 MW锅炉的历史数据为样本,利用5种评价指标将所提模型与BP、LSTM、CNN及其混合模型进行对比。结果表明,所提混合模型在预测火力发电碳排放中各指标均有最佳的准确度且模型训练速度明显提升。 展开更多
关键词 碳排放预测 小波包分解 改进麻雀搜索算法 卷积神经网络
原文传递
上一页 1 2 18 下一页 到第
使用帮助 返回顶部