The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmenta...The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm.展开更多
The essential tool in image processing,computer vision and machine vision is edge detection,especially in the fields of feature extraction and feature detection.Entropy is a basic area in information theory.The entrop...The essential tool in image processing,computer vision and machine vision is edge detection,especially in the fields of feature extraction and feature detection.Entropy is a basic area in information theory.The entropy,in image processing field has a role associated with image settings.As an initial step in image processing,the entropy is always used the image’s segmentation to determine the regions of image which is used to separate the background and objects in image.Image segmentation known as the process which divides the image into multiple regions or sets of pixels.Many applications have been development to enhance the image processing.This paper utilizes the Shannon entropy to achieve edge detection process and segmentation of the image.It introduces a new method of edge detection for 2-D histogram and Shannon entropy based on multilevel threshold.The method utilizes the gray value and the average gray value of the pixels to achieve the two dimensional histogram.The current method has apriority in comparison to some upper classical methods.The experimental results exhibited that the proposed method could capture a moderate quality and execution time better than other comparative methods,particularly in the largest images size.The proposed method offers good results when applied with images of different sizes from the civilization of ancient Egyptians.展开更多
As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods ge...As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes.展开更多
Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely us...Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely used for artificial spiking synapses due to their relatively poor memrisitve performance.Here,for the first time,we present an organic memristor based on an electropolymerized dopamine-based memristive layer.This polydopamine-based memristor demonstrates the improve-ments in key performance,including a low threshold voltage of 0.3 V,a thin thickness of 16 nm,and a high parasitic capaci-tance of about 1μF·mm^(-2).By leveraging these properties in combination with its stable threshold switching behavior,we con-struct a capacitor-free and low-power artificial spiking neuron capable of outputting the oscillation voltage,whose spiking fre-quency increases with the increase of current stimulation analogous to a biological neuron.The experimental results indicate that our artificial spiking neuron holds potential for applications in neuromorphic computing and systems.展开更多
With the increasing popularity of blockchain applications, the security of data sources on the blockchain is gradually receiving attention. Providing reliable data for the blockchain safely and efficiently has become ...With the increasing popularity of blockchain applications, the security of data sources on the blockchain is gradually receiving attention. Providing reliable data for the blockchain safely and efficiently has become a research hotspot, and the security of the oracle responsible for providing reliable data has attracted much attention. The most widely used centralized oracles in blockchain, such as Provable and Town Crier, all rely on a single oracle to obtain data, which suffers from a single point of failure and limits the large-scale development of blockchain. To this end, the distributed oracle scheme is put forward, but the existing distributed oracle schemes such as Chainlink and Augur generally have low execution efficiency and high communication overhead, which leads to their poor applicability. To solve the above problems, this paper proposes a trusted distributed oracle scheme based on a share recovery threshold signature. First, a data verification method of distributed oracles is designed based on threshold signature. By aggregating the signatures of oracles, data from different data sources can be mutually verified, leading to a more efficient data verification and aggregation process. Then, a credibility-based cluster head election algorithm is designed, which reduces the communication overhead by clarifying the function distribution and building a hierarchical structure. Considering the good performance of the BLS threshold signature in large-scale applications, this paper combines it with distributed oracle technology and proposes a BLS threshold signature algorithm that supports share recovery in distributed oracles. The share recovery mechanism enables the proposed scheme to solve the key loss issue, and the setting of the threshold value enables the proposed scheme to complete signature aggregation with only a threshold number of oracles, making the scheme more robust. Finally, experimental results indicate that, by using the threshold signature technology and the cluster head election algorithm, our scheme effectively improves the execution efficiency of oracles and solves the problem of a single point of failure, leading to higher scalability and robustness.展开更多
Objective: To study the relationship between cortical auditory evoked potential (CAEP) thresholds and behavioral thresholds in pediatric populations with sensorineural hearing loss (SNHL). Methods: Fifteen children (m...Objective: To study the relationship between cortical auditory evoked potential (CAEP) thresholds and behavioral thresholds in pediatric populations with sensorineural hearing loss (SNHL). Methods: Fifteen children (mean age 6.8 years) with bilateral SNHL underwent behavioral pure-tone audiometry and CAEP testing at 0.5, 1, 2, and 4 kHz. CAEP thresholds were determined using tone bursts, and correlations between CAEP and pure-tone thresholds were analyzed using Pearson correlation and t-tests. Results: A strong positive correlation was observed between P1 thresholds and behavioral thresholds across all test frequencies: 0.5 kHz (r = 0.765, p Conclusion: The strong correlation between P1 and behavioral thresholds demonstrates the reliability of CAEP testing for estimating auditory thresholds in children. These findings support the use of CAEP testing as a reliable objective tool for threshold estimation, particularly in cases where behavioral responses cannot be reliably obtained. When adjusted with frequency-specific correction values, CAEP testing provides a reliable method for assessing hearing thresholds in pediatric populations.展开更多
Accurate prediction of landslide displacement is crucial for effective early warning of landslide disasters.While most existing prediction methods focus on time-series forecasting for individual monitoring points,ther...Accurate prediction of landslide displacement is crucial for effective early warning of landslide disasters.While most existing prediction methods focus on time-series forecasting for individual monitoring points,there is limited research on the spatiotemporal characteristics of landslide deformation.This paper proposes a novel Multi-Relation Spatiotemporal Graph Residual Network with Multi-Level Feature Attention(MFA-MRSTGRN)that effectively improves the prediction performance of landslide displacement through spatiotemporal fusion.This model integrates internal seepage factors as data feature enhancements with external triggering factors,allowing for accurate capture of the complex spatiotemporal characteristics of landslide displacement and the construction of a multi-source heterogeneous dataset.The MFA-MRSTGRN model incorporates dynamic graph theory and four key modules:multilevel feature attention,temporal-residual decomposition,spatial multi-relational graph convolution,and spatiotemporal fusion prediction.This comprehensive approach enables the efficient analyses of multi-source heterogeneous datasets,facilitating adaptive exploration of the evolving multi-relational,multi-dimensional spatiotemporal complexities in landslides.When applying this model to predict the displacement of the Liangshuijing landslide,we demonstrate that the MFA-MRSTGRN model surpasses traditional models,such as random forest(RF),long short-term memory(LSTM),and spatial temporal graph convolutional networks(ST-GCN)models in terms of various evaluation metrics including mean absolute error(MAE=1.27 mm),root mean square error(RMSE=1.49 mm),mean absolute percentage error(MAPE=0.026),and R-squared(R^(2)=0.88).Furthermore,feature ablation experiments indicate that incorporating internal seepage factors improves the predictive performance of landslide displacement models.This research provides an advanced and reliable method for landslide displacement prediction.展开更多
As we look ahead to future lunar exploration missions, such as crewed lunar exploration and establishing lunar scientific research stations, the lunar rovers will need to cover vast distances. These distances could ra...As we look ahead to future lunar exploration missions, such as crewed lunar exploration and establishing lunar scientific research stations, the lunar rovers will need to cover vast distances. These distances could range from kilometers to tens of kilometers, and even hundreds and thousands of kilometers. Therefore, it is crucial to develop effective long-range path planning for lunar rovers to meet the demands of lunar patrol exploration. This paper presents a hierarchical map model path planning method that utilizes the existing high-resolution images, digital elevation models and mineral abundance maps. The objective is to address the issue of the construction of lunar rover travel costs in the absence of large-scale, high-resolution digital elevation models. This method models the reference and semantic layers using the middle- and low-resolution remote sensing data. The multi-scale obstacles on the lunar surface are extracted by combining the deep learning algorithm on the high-resolution image, and the obstacle avoidance layer is modeled. A two-stage exploratory path planning decision is employed for long-distance driving path planning on a global–local scale. The proposed method analyzes the long-distance accessibility of various areas of scientific significance, such as Rima Bode. A high-precision digital elevation model is created using stereo images to validate the method. Based on the findings, it can be observed that the entire route spans a distance of 930.32 km. The route demonstrates an impressive ability to avoid meter-level impact craters and linear structures while maintaining an average slope of less than 8°. This paper explores scientific research by traversing at least seven basalt units, uncovering the secrets of lunar volcanic activities, and establishing ‘golden spike’ reference points for lunar stratigraphy. The final result of path planning can serve as a valuable reference for the design, mission demonstration, and subsequent project implementation of the new manned lunar rover.展开更多
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and treatment.However,achieving precise segmentation remains a challenge due to vari...Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and treatment.However,achieving precise segmentation remains a challenge due to various factors,including scattering noise,low contrast,and limited resolution in ultrasound images.Although existing segmentation models have made progress,they still suffer from several limitations,such as high error rates,low generalizability,overfitting,limited feature learning capability,etc.To address these challenges,this paper proposes a Multi-level Relation Transformer-based U-Net(MLRT-UNet)to improve thyroid nodule segmentation.The MLRTUNet leverages a novel Relation Transformer,which processes images at multiple scales,overcoming the limitations of traditional encoding methods.This transformer integrates both local and global features effectively through selfattention and cross-attention units,capturing intricate relationships within the data.The approach also introduces a Co-operative Transformer Fusion(CTF)module to combine multi-scale features from different encoding layers,enhancing the model’s ability to capture complex patterns in the data.Furthermore,the Relation Transformer block enhances long-distance dependencies during the decoding process,improving segmentation accuracy.Experimental results showthat the MLRT-UNet achieves high segmentation accuracy,reaching 98.2% on the Digital Database Thyroid Image(DDT)dataset,97.8% on the Thyroid Nodule 3493(TG3K)dataset,and 98.2% on the Thyroid Nodule3K(TN3K)dataset.These findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule segmentation,addressing the limitations of existing models.展开更多
Radio environment plays an important role in radio astronomy observations.Further analysis is needed on the time and intensity distributions of interference signals for long-term radio environment monitoring.Sample va...Radio environment plays an important role in radio astronomy observations.Further analysis is needed on the time and intensity distributions of interference signals for long-term radio environment monitoring.Sample variance is an important estimate of the interference signal decision threshold.Here,we propose an improved algorithm for calculating data sample variance relying on four established statistical methods:the variance of the trimmed data,winsorized sample variance,median absolute deviation,and median of the trimmed data pairwise averaged squares method.The variance and decision threshold in the protected section of the radio astronomy L-band are calculated.Among the four methods,the improved median of the trimmed data pairwise averaged squares algorithm has higher accuracy,but in a comparison of overall experimental results,the cleanliness rate of all algorithms is above 96%.In a comparison between the improved algorithm and the four methods,the cleanliness rate of the improved algorithm is above 98%,verifying its feasibility.The time-intensity interference distribution in the radio protection band is also obtained.Finally,we use comprehensive monitoring data of radio astronomy protection bands,radio interference bands,and interfered frequency bands to establish a comprehensive evaluation system for radio observatory sites,including the observable time proportion in the radio astronomy protection band,the occasional time-intensity distribution in the radio interference frequency band,and the intensity distribution of the interfered frequency band.展开更多
Atmospheric aerosols are the primary contributors to environmental pollution.As such aerosols are micro-to nanosized particles invisible to the naked eye,it is necessary to utilize LiDAR technology for their detection...Atmospheric aerosols are the primary contributors to environmental pollution.As such aerosols are micro-to nanosized particles invisible to the naked eye,it is necessary to utilize LiDAR technology for their detection.The laser radar echo signal is vulnerable to background light and electronic thermal noise.While single-photon LiDAR can effectively reduce background light interference,electronic thermal noise remains a significant challenge,especially at long distances and in environments with a low signal-to-noise ratio(SNR).However,conventional denoising methods cannot achieve satisfactory results in this case.In this paper,a novel adaptive continuous threshold wavelet denoising algorithm is proposed to filter out the noise.The algorithm features an adaptive threshold and a continuous threshold function.The adaptive threshold is dynamically adjusted according to the wavelet decomposition level,and the continuous threshold function ensures continuity with lower constant error,thus optimizing the denoising process.Simulation results show that the proposed algorithm has excellent performance in improving SNR and reducing root mean square error(RMSE)compared with other algorithms.Experimental results show that denoising of an actual LiDAR echo signal results in a 4.37 dB improvement in SNR and a 39.5%reduction in RMSE.The proposed method significantly enhances the ability of single-photon LiDAR to detect weak signals.展开更多
In clinical research,subgroup analysis can help identify patient groups that respond better or worse to specific treatments,improve therapeutic effect and safety,and is of great significance in precision medicine.This...In clinical research,subgroup analysis can help identify patient groups that respond better or worse to specific treatments,improve therapeutic effect and safety,and is of great significance in precision medicine.This article considers subgroup analysis methods for longitudinal data containing multiple covariates and biomarkers.We divide subgroups based on whether a linear combination of these biomarkers exceeds a predetermined threshold,and assess the heterogeneity of treatment effects across subgroups using the interaction between subgroups and exposure variables.Quantile regression is used to better characterize the global distribution of the response variable and sparsity penalties are imposed to achieve variable selection of covariates and biomarkers.The effectiveness of our proposed methodology for both variable selection and parameter estimation is verified through random simulations.Finally,we demonstrate the application of this method by analyzing data from the PA.3 trial,further illustrating the practicality of the method proposed in this paper.展开更多
BackgroundIt's crucial to study the effect of changes in thresholds(T)and most comfortable levels(M)on behavioral measurements in young children using cochlear implants.This would help the clinician with the optim...BackgroundIt's crucial to study the effect of changes in thresholds(T)and most comfortable levels(M)on behavioral measurements in young children using cochlear implants.This would help the clinician with the optimization and validation of programming parameters.ObjectiveThe study has attempted to describe the changes in behavioral responses with modification of T and M levels.MethodsTwenty-five participants in the age range 5 to 12 years using HR90K/HiFocus1J or HR90KAdvantage/HiFocus1J with Harmony speech processors participated in the study.A decrease in T levels,a rise in T levels,or a decrease in M levels in the everyday program were used to create experimental programs.Sound field thresholds and speech perception were measured at 50 dBHL for three experimental and everyday programs.ConclusionThe results indicated that only reductions of M levels resulted in significantly(p<0.01)poor aided thresholds and speech perception.On the other hand,variation in T levels did not have significant changes in either sound field thresholds or speech perception.The results highlight that M levels must be correctly established in order to prevent decreased speech perception and audibility.展开更多
The oilseed crop Camelina sativa exhibits salinity tolerance,but the effects on early growth stages across a range of different salts and in combination with salicylic acid(SA)have not been thoroughly evaluated.In thi...The oilseed crop Camelina sativa exhibits salinity tolerance,but the effects on early growth stages across a range of different salts and in combination with salicylic acid(SA)have not been thoroughly evaluated.In this study,seeds were germinated in varying concentrations of six salts(NaCl,CaCl_(2),ZnCl_(2),KCl,MgSO_(4),and Na2SO_(4))with or without 0.5 mM SA.Using the halotime model,we estimated salt thresholds for germination and parameters of seedling growth.Germination and seedling growth parameters of camelina significantly decreased with increasing salt concentration across all salt types.Salts containing Zn and SO_(4) were most detrimental to germination and seedling growth.Except for KCl,0.5 mM SA generally reduced the salinity tolerance threshold(Saltb(50))of camelina.Specifically,Saltb(50)was 21.5%higher for KCl and 16.1%,25.0%,54.9%,21.0%,and 5.6%lower for CaCl_(2),NaCl,MgSO_(4),Na2SO_(4),and ZnCl_(2),respectively,when 0.5 mM SA was compared to 0 mM SA.Furthermore,camelina seedling growth was consistently more sensitive than germination across all salt types.SA did not significantly enhance germination or seedling growth and was harmful when combined with certain salts or at the germination stage.It can be concluded that both the type of salt and the concentration of SA are as critical as the salt concentration in saline irrigation water.展开更多
The flow behaviors of gas and water in hydrate-bearing sediments(HBS)are significantly affected by the threshold pressure gradient(TPG).During long-term natural gas hydrates(NGHs)mining,there exists creep deformation ...The flow behaviors of gas and water in hydrate-bearing sediments(HBS)are significantly affected by the threshold pressure gradient(TPG).During long-term natural gas hydrates(NGHs)mining,there exists creep deformation in HBS,which significantly alters pore structures,makes the flow path of fluid more complex,and leads to changes in TPG.Thus,clarifying the evolution of TPG in HBS during creep is essential for NGH production,but it also confronts enormous challenges.In this study,based on the nonlinear creep constitutive model,a novel theoretical TPG model of HBS during creep is proposed that considers pore structures and hydrate pore morphology.The established model is validated against experimental data,demonstrating its ability to capture the evolution of TPG and permeability in HBS during creep.Additionally,the relationship between initial hydrate saturation and TPG of HBS during creep is revealed by sensitivity analysis.The creep strain increases with the decrease in initial hydrate saturation,leading to a greater TPG and a lower permeability.The evolution of TPG at the stable creep stage and the accelerated creep stage is primarily controlled by the Kelvin element and visco-plastic element,respectively.This novel proposed model provides a mechanistic understanding of TPG evolution in HBS during creep,and it is of great significance to optimize the exploitation of NGHs.展开更多
The fatigue resistance of casting polyurethane(CPU)is crucial in various sectors,such as construction,healthcare,and the automotive industry.Despite its importance,no studies have reported on the fatigue threshold of ...The fatigue resistance of casting polyurethane(CPU)is crucial in various sectors,such as construction,healthcare,and the automotive industry.Despite its importance,no studies have reported on the fatigue threshold of CPU.This study employed an advanced Intrinsic Strength Analyzer(ISA)to evaluate the fatigue threshold of CPUs,systematically exploring the effects of three types of isocyanates(PPDI,NDI,TDI)that contribute to hard segment structures based on the cutting method.Employing multiple advanced characterization techniques(XRD,TEM,DSC,AFM),the results indicate that PPDI-based polyurethane exhibits the highest fatigue threshold(182.89 J/m^(2))due to a highest phase separation and a densely packed spherulitic structure,although the hydrogen bonding degree is the lowest(48.3%).Conversely,NDI-based polyurethane,despite having the high hydrogen bonding degree(53.6%),exhibits moderate fatigue performance(122.52 J/m^(2)),likely due to a more scattered microstructure.TDI-based polyurethane,with the highest hydrogen bonding degree(59.1%)but absence of spherulitic structure,shows the lowest fatigue threshold(46.43 J/m^(2)).Compared to common rubbers(NR,NBR,EPDM,BR),the superior fatigue performance of CPU is attributed to its well-organized microstructure,polyurethane possesses a higher fatigue threshold due to its high phase separation degree and orderly and dense spherulitic structure which enhances energy dissipation and reduces crack propagation.展开更多
With the increasing adoption of intelligent operation and maintenance technologies in urban rail transit,most maintenance systems have been equipped with fault diagnosis modules targeting key components of metro vehic...With the increasing adoption of intelligent operation and maintenance technologies in urban rail transit,most maintenance systems have been equipped with fault diagnosis modules targeting key components of metro vehicles.However,the integration between engineering-level diagnostic algorithms and advanced academic research remains limited.Two major challenges hinder vibration-based fault diagnosis under real-world operating conditions:the complex noise and interference caused by wheel-rail coupling and the typically weak expression of fault features.Considering the widespread application of wavelet transform in noise reduction and the maturity of ensemble empirical mode decomposition(EEMD)in handling nonlinear and non-stationary signals without parameter tuning,this study proposes a diagnostic method that combines wavelet threshold denoising with EEMD.The method was applied to bearing vibration signals collected from an operational subway line.The diagnostic results were consistent with actual disassembly findings,demonstrating the effectiveness and practical value of the proposed approach.展开更多
The geostress and rock blasting in underground engineering may greatly affect the stress thresholds of surrounding rock.In this study,pre-damage impact tests were first conducted on granite under varying confining pre...The geostress and rock blasting in underground engineering may greatly affect the stress thresholds of surrounding rock.In this study,pre-damage impact tests were first conducted on granite under varying confining pressures(5,10 and 15 MPa)and numbers of impacts(1,5,10 and 15 impacts).Then,uniaxial compression tests were undertaken on the pre-damaged granite to study the evolution of stress thresholds using the crack volume strain method and acoustic emission method.The crack damage stresses determined by the two methods were compared.Additionally,based on the rise time amplitude and average frequency,the evolution law of microcracks inside rock specimens was revealed,and an improved acoustic emission method was proposed.The results indicated that as the number of impacts increased,the crack closure stress,crack damage stress,and peak stress of granite specimens initially rose and then declined,while they continuously increased with the confining pressure.The proportion of shear cracks first declined and then rose with greater number of impacts and decreased with higher confining pressure,and that of tensile cracks showed the opposite trend.The improved acoustic emission method was more accurate in identifying the crack damage stress.展开更多
To eliminate distortion caused by vertical drift and illusory slopes in atomic force microscopy(AFM)imaging,a lifting-wavelet-based iterative thresholding correction method is proposed in this paper.This method achiev...To eliminate distortion caused by vertical drift and illusory slopes in atomic force microscopy(AFM)imaging,a lifting-wavelet-based iterative thresholding correction method is proposed in this paper.This method achieves high-quality AFM imaging via line-by-line corrections for each distorted profile along the fast axis.The key to this line-by-line correction is to accurately simulate the profile distortion of each scanning row.Therefore,a data preprocessing approach is first developed to roughly filter out most of the height data that impairs the accuracy of distortion modeling.This process is implemented through an internal double-screening mechanism.A line-fitting method is adopted to preliminarily screen out the obvious specimens.Lifting wavelet analysis is then carried out to identify the base parts that are mistakenly filtered out as specimens so as to preserve most of the base profiles and provide a good basis for further distortion modeling.Next,an iterative thresholding algorithm is developed to precisely simulate the profile distortion.By utilizing the roughly screened base profile,the optimal threshold,which is used to screen out the pure bases suitable for distortion modeling,is determined through iteration with a specified error rule.On this basis,the profile distortion is accurately modeled through line fitting on the finely screened base data,and the correction is implemented by subtracting the modeling result from the distorted profile.Finally,the effectiveness of the proposed method is verified through experiments and applications.展开更多
Data reconstruction is a crucial step in seismic data preprocessing.To improve reconstruction speed and save memory,the commonly used three-dimensional(3D)seismic data reconstruction method divides the missing data in...Data reconstruction is a crucial step in seismic data preprocessing.To improve reconstruction speed and save memory,the commonly used three-dimensional(3D)seismic data reconstruction method divides the missing data into a series of time slices and independently reconstructs each time slice.However,when this strategy is employed,the potential correlations between two adjacent time slices are ignored,which degrades reconstruction performance.Therefore,this study proposes the use of a two-dimensional curvelet transform and the fast iterative shrinkage thresholding algorithm for data reconstruction.Based on the significant overlapping characteristics between the curvelet coefficient support sets of two adjacent time slices,a weighted operator is constructed in the curvelet domain using the prior support set provided by the previous reconstructed time slice to delineate the main energy distribution range,eff ectively providing prior information for reconstructing adjacent slices.Consequently,the resulting weighted fast iterative shrinkage thresholding algorithm can be used to reconstruct 3D seismic data.The processing of synthetic and field data shows that the proposed method has higher reconstruction accuracy and faster computational speed than the conventional fast iterative shrinkage thresholding algorithm for handling missing 3D seismic data.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42077232 and 42077235)the Key Research and Development Plan of Jiangsu Province(Grant No.BE2022156).
文摘The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm.
文摘The essential tool in image processing,computer vision and machine vision is edge detection,especially in the fields of feature extraction and feature detection.Entropy is a basic area in information theory.The entropy,in image processing field has a role associated with image settings.As an initial step in image processing,the entropy is always used the image’s segmentation to determine the regions of image which is used to separate the background and objects in image.Image segmentation known as the process which divides the image into multiple regions or sets of pixels.Many applications have been development to enhance the image processing.This paper utilizes the Shannon entropy to achieve edge detection process and segmentation of the image.It introduces a new method of edge detection for 2-D histogram and Shannon entropy based on multilevel threshold.The method utilizes the gray value and the average gray value of the pixels to achieve the two dimensional histogram.The current method has apriority in comparison to some upper classical methods.The experimental results exhibited that the proposed method could capture a moderate quality and execution time better than other comparative methods,particularly in the largest images size.The proposed method offers good results when applied with images of different sizes from the civilization of ancient Egyptians.
基金National Natural Science Foundation of China(Nos.42301473,42271424,42171397)Chinese Postdoctoral Innovation Talents Support Program(No.BX20230299)+2 种基金China Postdoctoral Science Foundation(No.2023M742884)Natural Science Foundation of Sichuan Province(Nos.24NSFSC2264,2025ZNSFSC0322)Key Research and Development Project of Sichuan Province(No.24ZDYF0633).
文摘As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes.
基金support from the Beijing Natural Science Foundation-Xiaomi Innovation Joint Fund(No.L233009)National Natural Science Foundation of China(NSFC Nos.62422409,62174152,and 62374159)from the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2020115).
文摘Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely used for artificial spiking synapses due to their relatively poor memrisitve performance.Here,for the first time,we present an organic memristor based on an electropolymerized dopamine-based memristive layer.This polydopamine-based memristor demonstrates the improve-ments in key performance,including a low threshold voltage of 0.3 V,a thin thickness of 16 nm,and a high parasitic capaci-tance of about 1μF·mm^(-2).By leveraging these properties in combination with its stable threshold switching behavior,we con-struct a capacitor-free and low-power artificial spiking neuron capable of outputting the oscillation voltage,whose spiking fre-quency increases with the increase of current stimulation analogous to a biological neuron.The experimental results indicate that our artificial spiking neuron holds potential for applications in neuromorphic computing and systems.
基金supported by the National Natural Science Foundation of China(Grant No.62102449)the Central Plains Talent Program under Grant No.224200510003.
文摘With the increasing popularity of blockchain applications, the security of data sources on the blockchain is gradually receiving attention. Providing reliable data for the blockchain safely and efficiently has become a research hotspot, and the security of the oracle responsible for providing reliable data has attracted much attention. The most widely used centralized oracles in blockchain, such as Provable and Town Crier, all rely on a single oracle to obtain data, which suffers from a single point of failure and limits the large-scale development of blockchain. To this end, the distributed oracle scheme is put forward, but the existing distributed oracle schemes such as Chainlink and Augur generally have low execution efficiency and high communication overhead, which leads to their poor applicability. To solve the above problems, this paper proposes a trusted distributed oracle scheme based on a share recovery threshold signature. First, a data verification method of distributed oracles is designed based on threshold signature. By aggregating the signatures of oracles, data from different data sources can be mutually verified, leading to a more efficient data verification and aggregation process. Then, a credibility-based cluster head election algorithm is designed, which reduces the communication overhead by clarifying the function distribution and building a hierarchical structure. Considering the good performance of the BLS threshold signature in large-scale applications, this paper combines it with distributed oracle technology and proposes a BLS threshold signature algorithm that supports share recovery in distributed oracles. The share recovery mechanism enables the proposed scheme to solve the key loss issue, and the setting of the threshold value enables the proposed scheme to complete signature aggregation with only a threshold number of oracles, making the scheme more robust. Finally, experimental results indicate that, by using the threshold signature technology and the cluster head election algorithm, our scheme effectively improves the execution efficiency of oracles and solves the problem of a single point of failure, leading to higher scalability and robustness.
文摘Objective: To study the relationship between cortical auditory evoked potential (CAEP) thresholds and behavioral thresholds in pediatric populations with sensorineural hearing loss (SNHL). Methods: Fifteen children (mean age 6.8 years) with bilateral SNHL underwent behavioral pure-tone audiometry and CAEP testing at 0.5, 1, 2, and 4 kHz. CAEP thresholds were determined using tone bursts, and correlations between CAEP and pure-tone thresholds were analyzed using Pearson correlation and t-tests. Results: A strong positive correlation was observed between P1 thresholds and behavioral thresholds across all test frequencies: 0.5 kHz (r = 0.765, p Conclusion: The strong correlation between P1 and behavioral thresholds demonstrates the reliability of CAEP testing for estimating auditory thresholds in children. These findings support the use of CAEP testing as a reliable objective tool for threshold estimation, particularly in cases where behavioral responses cannot be reliably obtained. When adjusted with frequency-specific correction values, CAEP testing provides a reliable method for assessing hearing thresholds in pediatric populations.
基金the funding support from the National Natural Science Foundation of China(Grant No.52308340)Chongqing Talent Innovation and Entrepreneurship Demonstration Team Project(Grant No.cstc2024ycjh-bgzxm0012)the Science and Technology Projects supported by China Coal Technology and Engineering Chongqing Design and Research Institute(Group)Co.,Ltd.(Grant No.H20230317).
文摘Accurate prediction of landslide displacement is crucial for effective early warning of landslide disasters.While most existing prediction methods focus on time-series forecasting for individual monitoring points,there is limited research on the spatiotemporal characteristics of landslide deformation.This paper proposes a novel Multi-Relation Spatiotemporal Graph Residual Network with Multi-Level Feature Attention(MFA-MRSTGRN)that effectively improves the prediction performance of landslide displacement through spatiotemporal fusion.This model integrates internal seepage factors as data feature enhancements with external triggering factors,allowing for accurate capture of the complex spatiotemporal characteristics of landslide displacement and the construction of a multi-source heterogeneous dataset.The MFA-MRSTGRN model incorporates dynamic graph theory and four key modules:multilevel feature attention,temporal-residual decomposition,spatial multi-relational graph convolution,and spatiotemporal fusion prediction.This comprehensive approach enables the efficient analyses of multi-source heterogeneous datasets,facilitating adaptive exploration of the evolving multi-relational,multi-dimensional spatiotemporal complexities in landslides.When applying this model to predict the displacement of the Liangshuijing landslide,we demonstrate that the MFA-MRSTGRN model surpasses traditional models,such as random forest(RF),long short-term memory(LSTM),and spatial temporal graph convolutional networks(ST-GCN)models in terms of various evaluation metrics including mean absolute error(MAE=1.27 mm),root mean square error(RMSE=1.49 mm),mean absolute percentage error(MAPE=0.026),and R-squared(R^(2)=0.88).Furthermore,feature ablation experiments indicate that incorporating internal seepage factors improves the predictive performance of landslide displacement models.This research provides an advanced and reliable method for landslide displacement prediction.
基金co-supported by the National Key Research and Development Program of China(No.2022YFF0503100)the Youth Innovation Project of Pandeng Program of National Space Science Center,Chinese Academy of Sciences(No.E3PD40012S).
文摘As we look ahead to future lunar exploration missions, such as crewed lunar exploration and establishing lunar scientific research stations, the lunar rovers will need to cover vast distances. These distances could range from kilometers to tens of kilometers, and even hundreds and thousands of kilometers. Therefore, it is crucial to develop effective long-range path planning for lunar rovers to meet the demands of lunar patrol exploration. This paper presents a hierarchical map model path planning method that utilizes the existing high-resolution images, digital elevation models and mineral abundance maps. The objective is to address the issue of the construction of lunar rover travel costs in the absence of large-scale, high-resolution digital elevation models. This method models the reference and semantic layers using the middle- and low-resolution remote sensing data. The multi-scale obstacles on the lunar surface are extracted by combining the deep learning algorithm on the high-resolution image, and the obstacle avoidance layer is modeled. A two-stage exploratory path planning decision is employed for long-distance driving path planning on a global–local scale. The proposed method analyzes the long-distance accessibility of various areas of scientific significance, such as Rima Bode. A high-precision digital elevation model is created using stereo images to validate the method. Based on the findings, it can be observed that the entire route spans a distance of 930.32 km. The route demonstrates an impressive ability to avoid meter-level impact craters and linear structures while maintaining an average slope of less than 8°. This paper explores scientific research by traversing at least seven basalt units, uncovering the secrets of lunar volcanic activities, and establishing ‘golden spike’ reference points for lunar stratigraphy. The final result of path planning can serve as a valuable reference for the design, mission demonstration, and subsequent project implementation of the new manned lunar rover.
文摘Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and treatment.However,achieving precise segmentation remains a challenge due to various factors,including scattering noise,low contrast,and limited resolution in ultrasound images.Although existing segmentation models have made progress,they still suffer from several limitations,such as high error rates,low generalizability,overfitting,limited feature learning capability,etc.To address these challenges,this paper proposes a Multi-level Relation Transformer-based U-Net(MLRT-UNet)to improve thyroid nodule segmentation.The MLRTUNet leverages a novel Relation Transformer,which processes images at multiple scales,overcoming the limitations of traditional encoding methods.This transformer integrates both local and global features effectively through selfattention and cross-attention units,capturing intricate relationships within the data.The approach also introduces a Co-operative Transformer Fusion(CTF)module to combine multi-scale features from different encoding layers,enhancing the model’s ability to capture complex patterns in the data.Furthermore,the Relation Transformer block enhances long-distance dependencies during the decoding process,improving segmentation accuracy.Experimental results showthat the MLRT-UNet achieves high segmentation accuracy,reaching 98.2% on the Digital Database Thyroid Image(DDT)dataset,97.8% on the Thyroid Nodule 3493(TG3K)dataset,and 98.2% on the Thyroid Nodule3K(TN3K)dataset.These findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule segmentation,addressing the limitations of existing models.
基金supported by the Ministry of Science and Technology SKA Special Project(2020SKA0110202)the Special Project on Building a Science and Technology Innovation Center for South and Southeast Asia-International Joint Innovation Platform in Yunnan Province:“Yunnan Sino-Malaysian International Joint Laboratory of HF-VHF Advanced Radio Astronomy Technology”(202303AP140003)+4 种基金the National Natural Science Foundation of China(NSFC)Joint Fund for Astronomy(JFA)incubator program(U2031133)the International Partnership Program Project of the International Cooperation Bureau of the Chinese Academy of Sciences:“Belt and Road”Cooperation(114A11KYSB20200001)the Kunming Foreign(International)Cooperation Base Program:“Yunnan Observatory of the Chinese Academy of Sciences-University of Malaya Joint R&D Cooperation Base for Advanced Radio Astronomy Technology”(GHJD-2021022)the China-Malaysia Collaborative Research on Space Remote Sensing and Radio Astronomy Observation of Space Weather at Low and Middle Latitudes under the Key Special Project of the State Key R&D Program of the Ministry of Science and Technol ogy for International Cooperation in Science,Technology and Innovation among Governments(2022YFE0140000)the High-precision calibration method for low-frequency radio interferometric arrays for the SKA project of the Ministry of Science and Technology(2020SKA0110300).
文摘Radio environment plays an important role in radio astronomy observations.Further analysis is needed on the time and intensity distributions of interference signals for long-term radio environment monitoring.Sample variance is an important estimate of the interference signal decision threshold.Here,we propose an improved algorithm for calculating data sample variance relying on four established statistical methods:the variance of the trimmed data,winsorized sample variance,median absolute deviation,and median of the trimmed data pairwise averaged squares method.The variance and decision threshold in the protected section of the radio astronomy L-band are calculated.Among the four methods,the improved median of the trimmed data pairwise averaged squares algorithm has higher accuracy,but in a comparison of overall experimental results,the cleanliness rate of all algorithms is above 96%.In a comparison between the improved algorithm and the four methods,the cleanliness rate of the improved algorithm is above 98%,verifying its feasibility.The time-intensity interference distribution in the radio protection band is also obtained.Finally,we use comprehensive monitoring data of radio astronomy protection bands,radio interference bands,and interfered frequency bands to establish a comprehensive evaluation system for radio observatory sites,including the observable time proportion in the radio astronomy protection band,the occasional time-intensity distribution in the radio interference frequency band,and the intensity distribution of the interfered frequency band.
基金funded by the National Key R&D Program of China(Grant No.2022YFC3300705)the National Natural Science Foundation of China(Grant Nos.62203056,12202048,and 62201056).
文摘Atmospheric aerosols are the primary contributors to environmental pollution.As such aerosols are micro-to nanosized particles invisible to the naked eye,it is necessary to utilize LiDAR technology for their detection.The laser radar echo signal is vulnerable to background light and electronic thermal noise.While single-photon LiDAR can effectively reduce background light interference,electronic thermal noise remains a significant challenge,especially at long distances and in environments with a low signal-to-noise ratio(SNR).However,conventional denoising methods cannot achieve satisfactory results in this case.In this paper,a novel adaptive continuous threshold wavelet denoising algorithm is proposed to filter out the noise.The algorithm features an adaptive threshold and a continuous threshold function.The adaptive threshold is dynamically adjusted according to the wavelet decomposition level,and the continuous threshold function ensures continuity with lower constant error,thus optimizing the denoising process.Simulation results show that the proposed algorithm has excellent performance in improving SNR and reducing root mean square error(RMSE)compared with other algorithms.Experimental results show that denoising of an actual LiDAR echo signal results in a 4.37 dB improvement in SNR and a 39.5%reduction in RMSE.The proposed method significantly enhances the ability of single-photon LiDAR to detect weak signals.
基金Supported by the Natural Science Foundation of Fujian Province(2022J011177,2024J01903)the Key Project of Fujian Provincial Education Department(JZ230054)。
文摘In clinical research,subgroup analysis can help identify patient groups that respond better or worse to specific treatments,improve therapeutic effect and safety,and is of great significance in precision medicine.This article considers subgroup analysis methods for longitudinal data containing multiple covariates and biomarkers.We divide subgroups based on whether a linear combination of these biomarkers exceeds a predetermined threshold,and assess the heterogeneity of treatment effects across subgroups using the interaction between subgroups and exposure variables.Quantile regression is used to better characterize the global distribution of the response variable and sparsity penalties are imposed to achieve variable selection of covariates and biomarkers.The effectiveness of our proposed methodology for both variable selection and parameter estimation is verified through random simulations.Finally,we demonstrate the application of this method by analyzing data from the PA.3 trial,further illustrating the practicality of the method proposed in this paper.
文摘BackgroundIt's crucial to study the effect of changes in thresholds(T)and most comfortable levels(M)on behavioral measurements in young children using cochlear implants.This would help the clinician with the optimization and validation of programming parameters.ObjectiveThe study has attempted to describe the changes in behavioral responses with modification of T and M levels.MethodsTwenty-five participants in the age range 5 to 12 years using HR90K/HiFocus1J or HR90KAdvantage/HiFocus1J with Harmony speech processors participated in the study.A decrease in T levels,a rise in T levels,or a decrease in M levels in the everyday program were used to create experimental programs.Sound field thresholds and speech perception were measured at 50 dBHL for three experimental and everyday programs.ConclusionThe results indicated that only reductions of M levels resulted in significantly(p<0.01)poor aided thresholds and speech perception.On the other hand,variation in T levels did not have significant changes in either sound field thresholds or speech perception.The results highlight that M levels must be correctly established in order to prevent decreased speech perception and audibility.
基金the Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT) Sari Agricultural Sciences and Natural Resources University (SANRU) for the use of the services and financial supports of this research
文摘The oilseed crop Camelina sativa exhibits salinity tolerance,but the effects on early growth stages across a range of different salts and in combination with salicylic acid(SA)have not been thoroughly evaluated.In this study,seeds were germinated in varying concentrations of six salts(NaCl,CaCl_(2),ZnCl_(2),KCl,MgSO_(4),and Na2SO_(4))with or without 0.5 mM SA.Using the halotime model,we estimated salt thresholds for germination and parameters of seedling growth.Germination and seedling growth parameters of camelina significantly decreased with increasing salt concentration across all salt types.Salts containing Zn and SO_(4) were most detrimental to germination and seedling growth.Except for KCl,0.5 mM SA generally reduced the salinity tolerance threshold(Saltb(50))of camelina.Specifically,Saltb(50)was 21.5%higher for KCl and 16.1%,25.0%,54.9%,21.0%,and 5.6%lower for CaCl_(2),NaCl,MgSO_(4),Na2SO_(4),and ZnCl_(2),respectively,when 0.5 mM SA was compared to 0 mM SA.Furthermore,camelina seedling growth was consistently more sensitive than germination across all salt types.SA did not significantly enhance germination or seedling growth and was harmful when combined with certain salts or at the germination stage.It can be concluded that both the type of salt and the concentration of SA are as critical as the salt concentration in saline irrigation water.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515110376)the Open Research Fund of National Center for International Research on Deep Earth Drilling and Resource Development,Ministry of Science and Technology(Grant No.DEDRD-2023-04)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Grant No.107-G1323523046).
文摘The flow behaviors of gas and water in hydrate-bearing sediments(HBS)are significantly affected by the threshold pressure gradient(TPG).During long-term natural gas hydrates(NGHs)mining,there exists creep deformation in HBS,which significantly alters pore structures,makes the flow path of fluid more complex,and leads to changes in TPG.Thus,clarifying the evolution of TPG in HBS during creep is essential for NGH production,but it also confronts enormous challenges.In this study,based on the nonlinear creep constitutive model,a novel theoretical TPG model of HBS during creep is proposed that considers pore structures and hydrate pore morphology.The established model is validated against experimental data,demonstrating its ability to capture the evolution of TPG and permeability in HBS during creep.Additionally,the relationship between initial hydrate saturation and TPG of HBS during creep is revealed by sensitivity analysis.The creep strain increases with the decrease in initial hydrate saturation,leading to a greater TPG and a lower permeability.The evolution of TPG at the stable creep stage and the accelerated creep stage is primarily controlled by the Kelvin element and visco-plastic element,respectively.This novel proposed model provides a mechanistic understanding of TPG evolution in HBS during creep,and it is of great significance to optimize the exploitation of NGHs.
基金financially supported by the National Natural Science Foundation of China(No.52473228).
文摘The fatigue resistance of casting polyurethane(CPU)is crucial in various sectors,such as construction,healthcare,and the automotive industry.Despite its importance,no studies have reported on the fatigue threshold of CPU.This study employed an advanced Intrinsic Strength Analyzer(ISA)to evaluate the fatigue threshold of CPUs,systematically exploring the effects of three types of isocyanates(PPDI,NDI,TDI)that contribute to hard segment structures based on the cutting method.Employing multiple advanced characterization techniques(XRD,TEM,DSC,AFM),the results indicate that PPDI-based polyurethane exhibits the highest fatigue threshold(182.89 J/m^(2))due to a highest phase separation and a densely packed spherulitic structure,although the hydrogen bonding degree is the lowest(48.3%).Conversely,NDI-based polyurethane,despite having the high hydrogen bonding degree(53.6%),exhibits moderate fatigue performance(122.52 J/m^(2)),likely due to a more scattered microstructure.TDI-based polyurethane,with the highest hydrogen bonding degree(59.1%)but absence of spherulitic structure,shows the lowest fatigue threshold(46.43 J/m^(2)).Compared to common rubbers(NR,NBR,EPDM,BR),the superior fatigue performance of CPU is attributed to its well-organized microstructure,polyurethane possesses a higher fatigue threshold due to its high phase separation degree and orderly and dense spherulitic structure which enhances energy dissipation and reduces crack propagation.
文摘With the increasing adoption of intelligent operation and maintenance technologies in urban rail transit,most maintenance systems have been equipped with fault diagnosis modules targeting key components of metro vehicles.However,the integration between engineering-level diagnostic algorithms and advanced academic research remains limited.Two major challenges hinder vibration-based fault diagnosis under real-world operating conditions:the complex noise and interference caused by wheel-rail coupling and the typically weak expression of fault features.Considering the widespread application of wavelet transform in noise reduction and the maturity of ensemble empirical mode decomposition(EEMD)in handling nonlinear and non-stationary signals without parameter tuning,this study proposes a diagnostic method that combines wavelet threshold denoising with EEMD.The method was applied to bearing vibration signals collected from an operational subway line.The diagnostic results were consistent with actual disassembly findings,demonstrating the effectiveness and practical value of the proposed approach.
基金Project(2023YFC2907400)by the National Key Research and Development Program of China-2023 Key Special ProjectProject(51974043)supported by the National Natural Science Foundation of China+2 种基金Project(SKLCRKF1908)supported by the Open Fund of the State Key Laboratory of Coal Resources in Western China,Xi’an University of Science and Technology,ChinaProject(2023JJ10072)suupported by the Hunan Provincial Natural Science Foundation for Distinguished Young ScholarsProject(2022RC1173)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘The geostress and rock blasting in underground engineering may greatly affect the stress thresholds of surrounding rock.In this study,pre-damage impact tests were first conducted on granite under varying confining pressures(5,10 and 15 MPa)and numbers of impacts(1,5,10 and 15 impacts).Then,uniaxial compression tests were undertaken on the pre-damaged granite to study the evolution of stress thresholds using the crack volume strain method and acoustic emission method.The crack damage stresses determined by the two methods were compared.Additionally,based on the rise time amplitude and average frequency,the evolution law of microcracks inside rock specimens was revealed,and an improved acoustic emission method was proposed.The results indicated that as the number of impacts increased,the crack closure stress,crack damage stress,and peak stress of granite specimens initially rose and then declined,while they continuously increased with the confining pressure.The proportion of shear cracks first declined and then rose with greater number of impacts and decreased with higher confining pressure,and that of tensile cracks showed the opposite trend.The improved acoustic emission method was more accurate in identifying the crack damage stress.
基金supported by the National Natural Science Foundation of China under Grant No.21933006.
文摘To eliminate distortion caused by vertical drift and illusory slopes in atomic force microscopy(AFM)imaging,a lifting-wavelet-based iterative thresholding correction method is proposed in this paper.This method achieves high-quality AFM imaging via line-by-line corrections for each distorted profile along the fast axis.The key to this line-by-line correction is to accurately simulate the profile distortion of each scanning row.Therefore,a data preprocessing approach is first developed to roughly filter out most of the height data that impairs the accuracy of distortion modeling.This process is implemented through an internal double-screening mechanism.A line-fitting method is adopted to preliminarily screen out the obvious specimens.Lifting wavelet analysis is then carried out to identify the base parts that are mistakenly filtered out as specimens so as to preserve most of the base profiles and provide a good basis for further distortion modeling.Next,an iterative thresholding algorithm is developed to precisely simulate the profile distortion.By utilizing the roughly screened base profile,the optimal threshold,which is used to screen out the pure bases suitable for distortion modeling,is determined through iteration with a specified error rule.On this basis,the profile distortion is accurately modeled through line fitting on the finely screened base data,and the correction is implemented by subtracting the modeling result from the distorted profile.Finally,the effectiveness of the proposed method is verified through experiments and applications.
基金National Natural Science Foundation of China under Grant 42304145Jiangxi Provincial Natural Science Foundation under Grant 20242BAB26051,20242BAB25191 and 20232BAB213077+1 种基金Foundation of National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing under Grant 2024QZ-TD-13Open Fund(FW0399-0002)of SINOPEC Key Laboratory of Geophysics。
文摘Data reconstruction is a crucial step in seismic data preprocessing.To improve reconstruction speed and save memory,the commonly used three-dimensional(3D)seismic data reconstruction method divides the missing data into a series of time slices and independently reconstructs each time slice.However,when this strategy is employed,the potential correlations between two adjacent time slices are ignored,which degrades reconstruction performance.Therefore,this study proposes the use of a two-dimensional curvelet transform and the fast iterative shrinkage thresholding algorithm for data reconstruction.Based on the significant overlapping characteristics between the curvelet coefficient support sets of two adjacent time slices,a weighted operator is constructed in the curvelet domain using the prior support set provided by the previous reconstructed time slice to delineate the main energy distribution range,eff ectively providing prior information for reconstructing adjacent slices.Consequently,the resulting weighted fast iterative shrinkage thresholding algorithm can be used to reconstruct 3D seismic data.The processing of synthetic and field data shows that the proposed method has higher reconstruction accuracy and faster computational speed than the conventional fast iterative shrinkage thresholding algorithm for handling missing 3D seismic data.