As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods ge...As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes.展开更多
Irrigated agriculture in Cameroon is practiced on a large scale by large private firms and parastatals, and on a small scale by individual producers in different production areas of the country. Although small-scale i...Irrigated agriculture in Cameroon is practiced on a large scale by large private firms and parastatals, and on a small scale by individual producers in different production areas of the country. Although small-scale irrigation can supply local and sub-regional markets with food in the off-season, it has received little research and its challenges are therefore rarely addressed. In order to contribute to the knowledge of these small-scale irrigation systems, with a view to improving their structure and the management of irrigation water and energy, an assessment of small-scale irrigation in the southern slopes of the Bamboutos Mountains has been done. After direct observations, field measurements, surveys of 100 irrigators with questionnaires and interviews with administrative managers, analyses were carried out using Xlstat software. It was found out that about 226 small-scale irrigation systems designed and managed by producers have been installed on this slope between the end of December 2022 and mid-March 2023. Intended for market garden crops, 84.96% of these irrigation systems use sprinklers and 15.04% surface irrigation (furrow irrigation). Surface or underground water is mobilized using gravity (50%), fossil fuels (34.51%), electricity (14.6%) or solar energy (0.9%). Sprinkler irrigation is mainly carried out using locally manufactured hydraulic turnstiles. There is a lack of formal associations of irrigators in an environment marked by conflicts between water users, when there is not allocation for water withdrawal. Apart from the high cost of pumping energy ($1.32 per liter of fuel), the main constraint identified, which has become more acute over the years, is the lack of irrigation water during the water shortage period (from mid-January to mid-March). These constraints have led to a transition from surface irrigation to sprinkler irrigation, and the adoption of new energy supply and water mobilization technologies. The construction of collective surface and groundwater catchment structures with solar-powered pumping systems, the setting up of formal irrigators’ associations and an irrigation support service, could improve the availability of water throughout the irrigation season, thereby helping to improve the income generated by irrigated market-garden farming on the southern slopes of the Bamboutos Mountains.展开更多
In recent years,the southwestern region of China has experienced a surge in significant mountain collapses,predominantly linked to underground mining operations.This investigation targets the Jiguanling area in Wulong...In recent years,the southwestern region of China has experienced a surge in significant mountain collapses,predominantly linked to underground mining operations.This investigation targets the Jiguanling area in Wulong,Chongqing,employing the UDEC numerical simulation technique to meticulously examine the deformation and failure characteristics,rock mass movement patterns,fracture evolution processes,and stress transmission mechanisms of anti-dip rock slopes composed of stratified rocks.These slopes are inherently susceptible to bending and tilting due to their own weight.Our findings elucidate that the predominant failure mode of anti-dip rock karst slopes is the inclined sliding(shear)type,which mirrors the fracture evolution mechanism as they extend in a quadrilateral pattern from the top and bottom plates of the mining area to the critical blocks at the rear and front edges of the slope.The disaster mechanism can be encapsulated as the"initial roof movement phase,direct roof collapse and crack propagation phase,critical block locking and sliding resistance phase,and deterioration phase".The four distinct stages of development and transformation encompass critical block slip(shear)and slope instability phases.An increase in coal seam thickness enlarges the deformation space in the lower part,while the dip angle of the coal seam influences the length and displacement range of rock fracture development.The mining sequence alters the stress failure mode of the underlying critical blocks,and the vertical height of the mining step distance modifies the potential sliding surface and failure mode of the underlying critical blocks.Ultimately,the distance between the goaf and the surface,along with the height of the mining impact,impacts the stability of the reverse slope.The results demonstrate that mining activities are the primary factor inducing the collapse of anti-dip rock slopes,with natural factors playing a secondary role.展开更多
Vegetation plays a major role in soil protection against erosion effects,and studies have also highlighted its importance in retaining sediments from roadside slopes.Yet,hydro-sedimentological studies under natural pr...Vegetation plays a major role in soil protection against erosion effects,and studies have also highlighted its importance in retaining sediments from roadside slopes.Yet,hydro-sedimentological studies under natural precipitation conditions are still scarce in semi-arid areas due to difficulties in monitoring the few and very concentrated precipitation events.Quantifying sediment connectivity and yield at watershed scale,often highly impacted by the erosion of unpaved roads,is necessary for management plans.This study aims to evaluate the efficiency of native vegetation on roadside slope segments in Caatinga biome in retaining sediments and conserving the soil in a semi-arid area of Brazil.Surface runoff,sediment concentration,and yield measurements were measured from 34 natural precipitation events in four years on two slopes with and without vegetation.The runoff coefficients of the plot with no vegetation varied from 3.0%to 58.0%,while in the vegetated plot,they showed variation from 1.0%to 21.0%.The annual specific sediment yield ranged from 4.6 to 138.7 kg/(hm^(2)•a)for the vegetated plot and from 34.9 to 608.5 kg/(hm^(2)•a)for the unvegetated one.These results indicate a 4 to 12 times higher soil loss on the unvegetated slope in relation to the vegetated one and demonstrate that natural Caatinga vegetation acts as an effective barrier against surface-transported sediments.Moreover,natural Caatinga vegetation present on the slope plays an important role in breaking connectivity between sediment flows from unpaved roads and the watershed drainage system.These findings indicate that investments in unpaved road and roadside slope restoration,not only enhance road infrastructure but also promote environmental gains by reducing the impact of erosion.展开更多
Rock slopes with large intersection angles between the strikes of strata and surface(RS-LISS)represent a unique type of layered rock slope.These slopes are usually considered to be well stabilized and less prone to la...Rock slopes with large intersection angles between the strikes of strata and surface(RS-LISS)represent a unique type of layered rock slope.These slopes are usually considered to be well stabilized and less prone to landslides.However,when such slopes contain a significant number of discontinuities,their stability is greatly weakened.This study provided innovative insights into the stability of RS-LISS and conducted an in-depth investigation of their step-path failure mechanisms.The Riyi landslide on the eastern margin of the Qinghai-Tibet Plateau,China,was taken as a typical case and detailed investigations of geological structure and deformation characteristics of the slope were conducted by means of slope mapping,core drilling,and exploratory adits.A large number of steep-dip and gentle-dip joints were discovered in the slope,along with several critical discontinuities such as faults.Analysis shows that the tectonic stresses and river downcutting over geological time played significant roles in the formation of these discontinuities.Based on the investigation results,a numerical model of DFN for the Riyi landslide was developed.The simulation results indicated that the slope could develop a sliding surface characterized by a steep back and a gentle base,formed through the stepped interconnection of various discontinuities.Additionally,the deformation of the rock mass mainly originated from the major fault,progressively extending downward.The sliding mass may slide suddenly as a whole along the stepped bottom surface,with the compressional fracture zones as lateral boundaries,presenting a"drawer-like"movement towards the free surface.展开更多
The instability and failure of high rock slopes have a significant impact on the safe mining operations.Therefore,revealing the instability mechanism of high rock slopes is of great research significance.This paper ai...The instability and failure of high rock slopes have a significant impact on the safe mining operations.Therefore,revealing the instability mechanism of high rock slopes is of great research significance.This paper aims to reveal the instability mechanism of high rock slopes through physical model tests and numerical simulations.Taking the slope failure on the west side of Pit 1 of Husab Uranium Mine in Namibia in 2021 as the research background,a physical model of the high rock slope of Husab Uranium Mine was established by combining with on-site geological data.The experimental system was monitored by a GoPro camera,a CCD camera,and strain sensors.The damage evolution process of the high rock slope model was analyzed,and numerical simulation verification was carried out using Flac 3D software.Thus,the instability mechanism of the slope failure in this open-pit mine was revealed from multiple perspectives.The results show that the instability mechanism of the high rock slope was determined through the evolution of the displacement field and strain field during the model excavation process,as well as the deformation characteristics of the images at the time of instability and failure.The slope deformation process can be divided into four stages:the initial inter-layer dislocation stage,the crack generation stage,the crack propagation stage,and the crack penetration and failure stage.The results of the model experiment and numerical simulation confirm the consistency between the failure mode of the model slope and the actual slope failure on-site,providing guidance for the prevention and control projects of similar types of mine failures.展开更多
Volcanic terrains exhibit a complex structure of pyroclastic deposits interspersed with sedimentary processes,resulting in irregular lithological sequences that lack lateral continuity and distinct stratigraphic patte...Volcanic terrains exhibit a complex structure of pyroclastic deposits interspersed with sedimentary processes,resulting in irregular lithological sequences that lack lateral continuity and distinct stratigraphic patterns.This complexity poses significant challenges for slope stability analysis,requiring the development of specialized techniques to address these issues.This research presents a numerical methodology that incorporates spatial variability,nonlinear material characterization,and probabilistic analysis using a Monte Carlo framework to address this issue.The heterogeneous structure is represented by randomly assigning different lithotypes across the slope,while maintaining predefined global proportions.This contrasts with the more common approach of applying probabilistic variability to mechanical parameters within a homogeneous slope model.The material behavior is defined using complex nonlinear failure criteria,such as the Hoek-Brown model and a parabolic model with collapse,both implemented through linearization techniques.The Discontinuity Layout Optimization(DLO)method,a novel numerical approach based on limit analysis,is employed to efficiently incorporate these advances and compute the factor of safety of the slope.Within this framework,the Monte Carlo procedure is used to assess slope stability by conducting a large number of simulations,each with a different lithotype distribution.Based on the results,a hybrid method is proposed that combines probabilistic modeling with deterministic design principles for the slope stability assessment.As a case study,the methodology is applied to a 20-m-high vertical slope composed of three lithotypes(altered scoria,welded scoria,and basalt)randomly distributed in proportions of 15%,60%,and 25%,respectively.The results show convergence of mean values after approximately 400 simulations and highlight the significant influence of spatial heterogeneity,with variations of the factor of safety between 5 and 12 in 85%of cases.They also reveal non-circular and mid-slope failure wedges not captured by traditional stability methods.Finally,an equivalent normal probability distribution is proposed as a reliable approximation of the factor of safety for use in risk analysis and engineering decision-making.展开更多
Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump mate...Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1.展开更多
Real-time assessment of slope reinforcements to diagnose their state in all stages of service life is imperative for prompt evaluation of slope stability and establishing an efficient early warning(EW)system.Many poin...Real-time assessment of slope reinforcements to diagnose their state in all stages of service life is imperative for prompt evaluation of slope stability and establishing an efficient early warning(EW)system.Many point-based monitoring instruments have been used in the last few decades.However,these sensors suffer from a particular risk of detection failures and practical limitations.Fibre-optic sensing(FOS)technologies have been developed,tested,and validated across various geoengineering applications,including slope monitoring,as they offer exceptional advantages,such as high data-carrying capacity,precise mapping of physical parameters,durability,and immunity to electromagnetic interference.The deformation of rock/soil causes the deformation and fracture of reinforcement materials,which are subsequently transferred to the encapsulated fibre-optic(FO)sensors,providing valuable information on reinforcements'safety state and performance for early failure detection.This paper is devoted to critically analysing the application of cutting-edge FOS technologies for slope reinforcement monitoring.Firstly,a concise overview of the fundamental principles underlying discrete and distributed FOS methods is provided.The key considerations for selecting FO cables and the appropriate packaging techniques necessary to withstand the challenges posed by complex geological environments are also summarised.We delve into the details of three distinct cable installation techniques within slope reinforcement components:surface bonding,slot embedment,and clamping.The recent advancements in FOS methods for monitoring slope reinforcements such as rock bolts,soil nails,anti-slide piles,geosynthetics,and retaining walls are extensively reviewed.The paper addresses this novel sensing technique's challenges and comprehensively explores its prospects.This review is anticipated to be a valuable resource for geoengineers and researchers involved in slope monitoring through FOS technology,offering insightful perspectives and guidance.展开更多
Accurate prediction of landslide displacement is crucial for effective early warning of landslide disasters.While most existing prediction methods focus on time-series forecasting for individual monitoring points,ther...Accurate prediction of landslide displacement is crucial for effective early warning of landslide disasters.While most existing prediction methods focus on time-series forecasting for individual monitoring points,there is limited research on the spatiotemporal characteristics of landslide deformation.This paper proposes a novel Multi-Relation Spatiotemporal Graph Residual Network with Multi-Level Feature Attention(MFA-MRSTGRN)that effectively improves the prediction performance of landslide displacement through spatiotemporal fusion.This model integrates internal seepage factors as data feature enhancements with external triggering factors,allowing for accurate capture of the complex spatiotemporal characteristics of landslide displacement and the construction of a multi-source heterogeneous dataset.The MFA-MRSTGRN model incorporates dynamic graph theory and four key modules:multilevel feature attention,temporal-residual decomposition,spatial multi-relational graph convolution,and spatiotemporal fusion prediction.This comprehensive approach enables the efficient analyses of multi-source heterogeneous datasets,facilitating adaptive exploration of the evolving multi-relational,multi-dimensional spatiotemporal complexities in landslides.When applying this model to predict the displacement of the Liangshuijing landslide,we demonstrate that the MFA-MRSTGRN model surpasses traditional models,such as random forest(RF),long short-term memory(LSTM),and spatial temporal graph convolutional networks(ST-GCN)models in terms of various evaluation metrics including mean absolute error(MAE=1.27 mm),root mean square error(RMSE=1.49 mm),mean absolute percentage error(MAPE=0.026),and R-squared(R^(2)=0.88).Furthermore,feature ablation experiments indicate that incorporating internal seepage factors improves the predictive performance of landslide displacement models.This research provides an advanced and reliable method for landslide displacement prediction.展开更多
Eco-geotechnical engineering plays a pivotal role in enhancing global sustainability and upholding the perfor-mance of earthen structures.The utilization of vegetation to stabilise geotechnical infrastructures is wide...Eco-geotechnical engineering plays a pivotal role in enhancing global sustainability and upholding the perfor-mance of earthen structures.The utilization of vegetation to stabilise geotechnical infrastructures is widely recognized and embraced for its environmentally friendly attributes.The spectre of climate change further in-tensifies the focus on the effects of temperature and humidity on vegetated soil.Consequently,there is a pressing need for research exploring the influence of changing climates on vegetated infrastructures.Such research de-mands a holistic and interdisciplinary approach,bridging fields such as soil mechanics,botany,and atmospheric science.This review underscores key facets crucial to vegetated geotechnical infrastructures,encompassing climate projections,centrifuge modelling,field monitoring,and numerical methodologies.展开更多
Different slope geohazards have different causal mechanisms.This study aims to propose a method to investigate the decision-making mechanisms for the susceptibility of different slope geohazards.The study includes a g...Different slope geohazards have different causal mechanisms.This study aims to propose a method to investigate the decision-making mechanisms for the susceptibility of different slope geohazards.The study includes a geospatial dataset consisting of 1203 historical slope geohazard units,including slope creeps,shallow slides,rockfalls and debris flows,and 584 non-geohazard units,and 22 initial condition factors.Following a 7:3 ratio,the data were randomly divided into a test set and a training set,and an ensemble SMOTE-RF-SHAP model was constructed.The performance and generalization ability of the model were evaluated by confusion matrix and the receiver operating characteristic(ROC)for the four types of geohazards.The decision-making mechanism of different geohazards was then identified and investigated using the Shapley additive explanations(SHAP)model.The results show that the hybrid optimization improves the overall accuracy of the model from 0.486 to 0.831,with significant improvements in the prediction accuracy for all four types of slope geohazards,as well as reductions in misclassification and omission rates.Furthermore,this study reveals that the main influencing factors and spatiotemporal distribution of different slope geohazards exhibit high similarity,while the impacts of individual factors and different factor values on different slope geohazards demonstrate significant differences.For example,prolonged continuous rainfall can erode rock masses and lead to slope creep,increased rainfall may trigger shallow mountain landslides,and sudden surface runoff can even cause debris flows.These findings have important practical implications for slope geohazards risk management.展开更多
The particle size distribution plays a crucial role in the transportation and deposition of eroded sediments.Gaining insights into the related sorting mechanism can significantly enhance our understanding of such proc...The particle size distribution plays a crucial role in the transportation and deposition of eroded sediments.Gaining insights into the related sorting mechanism can significantly enhance our understanding of such processes.In this study,sand-covered slopes were examined.A controlled indoor rainfall simulation was conducted on loess slopes with a 12°incline and a rainfall intensity of 1.5 mm/min.These slopes were then covered with sand layers of varying thicknesses—0.5,1.0,and 1.5 cm—to observe their effects.The findings have revealed that as the thickness of the sand cover increases,the content of sediment particles smaller than 0.054 mm decreases.In contrast,the content of particles larger than 0.054 mm increases after the sixth minute of runoff.The eroded sediment was predominantly composed of silt.During the inter-rill erosion stage,runoff primarily transported particles larger than 0.054 mm.However,in the subsequent rill erosion and combined rill and inter-rill erosion stages,the runoff predominantly carried finer particles,smaller than 0.054 mm.Moreover,the presence of the sand layer significantly influenced the size and form of the eroded sediment particles.Initially,during the first 10 min of runoff,the eroded particles were predominantly larger than 0.054 mm.After this period,however,the particle size shifted,with the majority of particles being smaller than 0.054 mm.This study highlights the intricate relationship between sediment sorting,the thickness of sand covers,and the dynamics of sediment transport under rainfall-induced erosion.展开更多
Recurring Slope Lineae(RSL)are seasonally observed dark streaks on the Martian surface that exhibit distinct spatial and temporal distribution characteristics.Exploring their formation mechanisms can deepen our unders...Recurring Slope Lineae(RSL)are seasonally observed dark streaks on the Martian surface that exhibit distinct spatial and temporal distribution characteristics.Exploring their formation mechanisms can deepen our understanding of surface activity on Mars and provide scientific basis for future Mars exploration.This study aims to gain a comprehensive understanding of the spatial and temporal distribution characteristics and formation mechanisms of RSL by reviewing relevant literature and synthesizing various viewpoints and experimental results.RSL typically appear during warm seasons,disappear during cold seasons,and repeat over multiple Martian years.The formation mechanisms can be broadly categorized into three types:dry mode,wet mode,and mixed mode.However,a definitive explanation for the formation of RSL is still lacking,and both the dry and wet models have their respective limitations.It is likely that the formation of RSL is the result of the combined action of multiple mechanisms.The next step should be to search for terrestrial analogs of RSL and conduct research at high spatial and temporal resolutions to understand the forming processes of RSL.展开更多
As we look ahead to future lunar exploration missions, such as crewed lunar exploration and establishing lunar scientific research stations, the lunar rovers will need to cover vast distances. These distances could ra...As we look ahead to future lunar exploration missions, such as crewed lunar exploration and establishing lunar scientific research stations, the lunar rovers will need to cover vast distances. These distances could range from kilometers to tens of kilometers, and even hundreds and thousands of kilometers. Therefore, it is crucial to develop effective long-range path planning for lunar rovers to meet the demands of lunar patrol exploration. This paper presents a hierarchical map model path planning method that utilizes the existing high-resolution images, digital elevation models and mineral abundance maps. The objective is to address the issue of the construction of lunar rover travel costs in the absence of large-scale, high-resolution digital elevation models. This method models the reference and semantic layers using the middle- and low-resolution remote sensing data. The multi-scale obstacles on the lunar surface are extracted by combining the deep learning algorithm on the high-resolution image, and the obstacle avoidance layer is modeled. A two-stage exploratory path planning decision is employed for long-distance driving path planning on a global–local scale. The proposed method analyzes the long-distance accessibility of various areas of scientific significance, such as Rima Bode. A high-precision digital elevation model is created using stereo images to validate the method. Based on the findings, it can be observed that the entire route spans a distance of 930.32 km. The route demonstrates an impressive ability to avoid meter-level impact craters and linear structures while maintaining an average slope of less than 8°. This paper explores scientific research by traversing at least seven basalt units, uncovering the secrets of lunar volcanic activities, and establishing ‘golden spike’ reference points for lunar stratigraphy. The final result of path planning can serve as a valuable reference for the design, mission demonstration, and subsequent project implementation of the new manned lunar rover.展开更多
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and treatment.However,achieving precise segmentation remains a challenge due to vari...Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and treatment.However,achieving precise segmentation remains a challenge due to various factors,including scattering noise,low contrast,and limited resolution in ultrasound images.Although existing segmentation models have made progress,they still suffer from several limitations,such as high error rates,low generalizability,overfitting,limited feature learning capability,etc.To address these challenges,this paper proposes a Multi-level Relation Transformer-based U-Net(MLRT-UNet)to improve thyroid nodule segmentation.The MLRTUNet leverages a novel Relation Transformer,which processes images at multiple scales,overcoming the limitations of traditional encoding methods.This transformer integrates both local and global features effectively through selfattention and cross-attention units,capturing intricate relationships within the data.The approach also introduces a Co-operative Transformer Fusion(CTF)module to combine multi-scale features from different encoding layers,enhancing the model’s ability to capture complex patterns in the data.Furthermore,the Relation Transformer block enhances long-distance dependencies during the decoding process,improving segmentation accuracy.Experimental results showthat the MLRT-UNet achieves high segmentation accuracy,reaching 98.2% on the Digital Database Thyroid Image(DDT)dataset,97.8% on the Thyroid Nodule 3493(TG3K)dataset,and 98.2% on the Thyroid Nodule3K(TN3K)dataset.These findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule segmentation,addressing the limitations of existing models.展开更多
A method combining finite difference method(FDM)and k-means clustering algorithm which can determine the threshold of rock bridge generation is proposed.Jointed slope models with different joint coalescence coefficien...A method combining finite difference method(FDM)and k-means clustering algorithm which can determine the threshold of rock bridge generation is proposed.Jointed slope models with different joint coalescence coefficients(k)are constructed based on FDM.The rock bridge area was divided through k-means algorithm and the optimal number of clusters was determined by sum of squared errors(SSE)and elbow method.The influence of maximum principal stress and stress change rate as clustering indexes on the clustering results of rock bridges was compared by using Euclidean distance.The results show that using stress change rate as clustering index is more effective.When the joint coalescence coefficient is less than 0.6,there is no significant stress concentration in the middle area of adjacent joints,that is,no generation of rock bridge.In addition,the range of rock bridge is affected by the coalescence coefficient(k),the relative position of joints and the parameters of weak interlayer.展开更多
In existing studies, most slope stability analyses concentrate on conditions with constant temperature, assuming the slope is intact, and employ the Mohr-Coulomb (M-C) failure criterion for saturated soil to character...In existing studies, most slope stability analyses concentrate on conditions with constant temperature, assuming the slope is intact, and employ the Mohr-Coulomb (M-C) failure criterion for saturated soil to characterize the strength of the backfill. However, the actual working temperature of slopes varies, and natural phenomena such as rainfall and groundwater infiltration commonly result in unsaturated soil conditions, with cracks typically present in cohesive slopes. This study introduces a novel approach for assessing the stability of unsaturated soil stepped slopes under varying temperatures, incorporating the effects of open and vertical cracks. Utilizing the kinematic approach and gravity increase method, we developed a three-dimensional (3D) rotational wedge failure mechanism to simulate slope collapse, enhancing the traditional two-dimensional analyses. We integrated temperature-dependent functions and nonlinear shear strength equations to evaluate the impact of temperature on four typical unsaturated soil types. A particle swarm optimization algorithm was employed to calculate the safety factor, ensuring our method’s accuracy by comparing it with existing studies. The results indicate that considering 3D effects yields a higher safety factor, while cracks reduce slope stability. Each unsaturated soil exhibits a distinctive temperature response curve, highlighting the importance of understanding soil types in the design phase.展开更多
With climate change,high-altitude areas have been frequently observed with rising temperature and humidity levels,causing an increased likelihood of collapse of ice-rich slopes and threatening downstream human settlem...With climate change,high-altitude areas have been frequently observed with rising temperature and humidity levels,causing an increased likelihood of collapse of ice-rich slopes and threatening downstream human settlements and infrastructural assets.For example,two giant glaciers collapsed in 2016 in the Aru Range,Xizang,China,killing nine herders.Thus,developing numerical methodologies for stability analysis and reproducing the collapse and subsequent movement of landslide debris is imperative for proactively managing disaster risks.This study focuses on the two collapse events within the Aru Range,to numerically analyze the pre-collapse stability of the slopes and their movement processes after collapse.Compared with previous research,this study considers the impact of various environmental factors on the temperature and stability of the two Aru glaciers,especially the heat flux caused by subglacial seepage and geothermal activity.In addition to proving similar stability between the two slopes before the collapse and simulating the positions of headwalls after collapse,this study demonstrates the need of selecting the slope region for simulation,and clarifies the influence of subglacial water flow on the positions of headwalls.Finally,this study reproduces the transport distance of the sliding body and simulates the tsunami caused by the Aru glacial debris rushing into Aru Co Lake.An effective friction coefficient of 0.10-0.11 between the glacier debris and the terrain is proposed.This provides a reference for stability analyses and collapse consequence predictions of ice-rich slopes,aiding in developing strategies for hazard mitigation.展开更多
基金National Natural Science Foundation of China(Nos.42301473,42271424,42171397)Chinese Postdoctoral Innovation Talents Support Program(No.BX20230299)+2 种基金China Postdoctoral Science Foundation(No.2023M742884)Natural Science Foundation of Sichuan Province(Nos.24NSFSC2264,2025ZNSFSC0322)Key Research and Development Project of Sichuan Province(No.24ZDYF0633).
文摘As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes.
文摘Irrigated agriculture in Cameroon is practiced on a large scale by large private firms and parastatals, and on a small scale by individual producers in different production areas of the country. Although small-scale irrigation can supply local and sub-regional markets with food in the off-season, it has received little research and its challenges are therefore rarely addressed. In order to contribute to the knowledge of these small-scale irrigation systems, with a view to improving their structure and the management of irrigation water and energy, an assessment of small-scale irrigation in the southern slopes of the Bamboutos Mountains has been done. After direct observations, field measurements, surveys of 100 irrigators with questionnaires and interviews with administrative managers, analyses were carried out using Xlstat software. It was found out that about 226 small-scale irrigation systems designed and managed by producers have been installed on this slope between the end of December 2022 and mid-March 2023. Intended for market garden crops, 84.96% of these irrigation systems use sprinklers and 15.04% surface irrigation (furrow irrigation). Surface or underground water is mobilized using gravity (50%), fossil fuels (34.51%), electricity (14.6%) or solar energy (0.9%). Sprinkler irrigation is mainly carried out using locally manufactured hydraulic turnstiles. There is a lack of formal associations of irrigators in an environment marked by conflicts between water users, when there is not allocation for water withdrawal. Apart from the high cost of pumping energy ($1.32 per liter of fuel), the main constraint identified, which has become more acute over the years, is the lack of irrigation water during the water shortage period (from mid-January to mid-March). These constraints have led to a transition from surface irrigation to sprinkler irrigation, and the adoption of new energy supply and water mobilization technologies. The construction of collective surface and groundwater catchment structures with solar-powered pumping systems, the setting up of formal irrigators’ associations and an irrigation support service, could improve the availability of water throughout the irrigation season, thereby helping to improve the income generated by irrigated market-garden farming on the southern slopes of the Bamboutos Mountains.
基金supported by the National Natural Science Foundation of China(No.52474092,52074042)National Key Research and Development Program of China(No.2018YFC1504802)。
文摘In recent years,the southwestern region of China has experienced a surge in significant mountain collapses,predominantly linked to underground mining operations.This investigation targets the Jiguanling area in Wulong,Chongqing,employing the UDEC numerical simulation technique to meticulously examine the deformation and failure characteristics,rock mass movement patterns,fracture evolution processes,and stress transmission mechanisms of anti-dip rock slopes composed of stratified rocks.These slopes are inherently susceptible to bending and tilting due to their own weight.Our findings elucidate that the predominant failure mode of anti-dip rock karst slopes is the inclined sliding(shear)type,which mirrors the fracture evolution mechanism as they extend in a quadrilateral pattern from the top and bottom plates of the mining area to the critical blocks at the rear and front edges of the slope.The disaster mechanism can be encapsulated as the"initial roof movement phase,direct roof collapse and crack propagation phase,critical block locking and sliding resistance phase,and deterioration phase".The four distinct stages of development and transformation encompass critical block slip(shear)and slope instability phases.An increase in coal seam thickness enlarges the deformation space in the lower part,while the dip angle of the coal seam influences the length and displacement range of rock fracture development.The mining sequence alters the stress failure mode of the underlying critical blocks,and the vertical height of the mining step distance modifies the potential sliding surface and failure mode of the underlying critical blocks.Ultimately,the distance between the goaf and the surface,along with the height of the mining impact,impacts the stability of the reverse slope.The results demonstrate that mining activities are the primary factor inducing the collapse of anti-dip rock slopes,with natural factors playing a secondary role.
基金the National Council for Scientific and Technological Development (CNPq) for funding the field studies and for the research productivity fellowship (CNPq/PQ) awarded to Pedro Henrique Augusto MEDEIROS and José Carlos de ARAúJOthe Coordination for the Improvement of Higher Education Personnel (CAPES) for the doctoral scholarship awarded to Teresa Raquel Lima FARIAS (2117/13-4)the Foundation for the Support of Scientific and Technological Development in the State of Ceará (FUNCAP) for the master scholarship awarded to Maria Thereza Rocha CHAVES。
文摘Vegetation plays a major role in soil protection against erosion effects,and studies have also highlighted its importance in retaining sediments from roadside slopes.Yet,hydro-sedimentological studies under natural precipitation conditions are still scarce in semi-arid areas due to difficulties in monitoring the few and very concentrated precipitation events.Quantifying sediment connectivity and yield at watershed scale,often highly impacted by the erosion of unpaved roads,is necessary for management plans.This study aims to evaluate the efficiency of native vegetation on roadside slope segments in Caatinga biome in retaining sediments and conserving the soil in a semi-arid area of Brazil.Surface runoff,sediment concentration,and yield measurements were measured from 34 natural precipitation events in four years on two slopes with and without vegetation.The runoff coefficients of the plot with no vegetation varied from 3.0%to 58.0%,while in the vegetated plot,they showed variation from 1.0%to 21.0%.The annual specific sediment yield ranged from 4.6 to 138.7 kg/(hm^(2)•a)for the vegetated plot and from 34.9 to 608.5 kg/(hm^(2)•a)for the unvegetated one.These results indicate a 4 to 12 times higher soil loss on the unvegetated slope in relation to the vegetated one and demonstrate that natural Caatinga vegetation acts as an effective barrier against surface-transported sediments.Moreover,natural Caatinga vegetation present on the slope plays an important role in breaking connectivity between sediment flows from unpaved roads and the watershed drainage system.These findings indicate that investments in unpaved road and roadside slope restoration,not only enhance road infrastructure but also promote environmental gains by reducing the impact of erosion.
基金supported by the National Natural Science Foundation of China(No.U23A2047,No.42277187,No.42307248)Natural Science Foundation of Hebei Province(No.D2022202005)。
文摘Rock slopes with large intersection angles between the strikes of strata and surface(RS-LISS)represent a unique type of layered rock slope.These slopes are usually considered to be well stabilized and less prone to landslides.However,when such slopes contain a significant number of discontinuities,their stability is greatly weakened.This study provided innovative insights into the stability of RS-LISS and conducted an in-depth investigation of their step-path failure mechanisms.The Riyi landslide on the eastern margin of the Qinghai-Tibet Plateau,China,was taken as a typical case and detailed investigations of geological structure and deformation characteristics of the slope were conducted by means of slope mapping,core drilling,and exploratory adits.A large number of steep-dip and gentle-dip joints were discovered in the slope,along with several critical discontinuities such as faults.Analysis shows that the tectonic stresses and river downcutting over geological time played significant roles in the formation of these discontinuities.Based on the investigation results,a numerical model of DFN for the Riyi landslide was developed.The simulation results indicated that the slope could develop a sliding surface characterized by a steep back and a gentle base,formed through the stepped interconnection of various discontinuities.Additionally,the deformation of the rock mass mainly originated from the major fault,progressively extending downward.The sliding mass may slide suddenly as a whole along the stepped bottom surface,with the compressional fracture zones as lateral boundaries,presenting a"drawer-like"movement towards the free surface.
文摘The instability and failure of high rock slopes have a significant impact on the safe mining operations.Therefore,revealing the instability mechanism of high rock slopes is of great research significance.This paper aims to reveal the instability mechanism of high rock slopes through physical model tests and numerical simulations.Taking the slope failure on the west side of Pit 1 of Husab Uranium Mine in Namibia in 2021 as the research background,a physical model of the high rock slope of Husab Uranium Mine was established by combining with on-site geological data.The experimental system was monitored by a GoPro camera,a CCD camera,and strain sensors.The damage evolution process of the high rock slope model was analyzed,and numerical simulation verification was carried out using Flac 3D software.Thus,the instability mechanism of the slope failure in this open-pit mine was revealed from multiple perspectives.The results show that the instability mechanism of the high rock slope was determined through the evolution of the displacement field and strain field during the model excavation process,as well as the deformation characteristics of the images at the time of instability and failure.The slope deformation process can be divided into four stages:the initial inter-layer dislocation stage,the crack generation stage,the crack propagation stage,and the crack penetration and failure stage.The results of the model experiment and numerical simulation confirm the consistency between the failure mode of the model slope and the actual slope failure on-site,providing guidance for the prevention and control projects of similar types of mine failures.
基金the project PID2022-139202OB-I00Neural Networks and Optimization Techniques for the Design and Safe Maintenance of Transportation Infrastructures:Volcanic Rock Geotechnics and Slope Stability(IA-Pyroslope),funded by the Spanish State Research Agency of the Ministry of Science,Innovation and Universities of Spain and the European Regional Development Fund,MCIN/AEI/10.13039/501100011033/FEDER,EU。
文摘Volcanic terrains exhibit a complex structure of pyroclastic deposits interspersed with sedimentary processes,resulting in irregular lithological sequences that lack lateral continuity and distinct stratigraphic patterns.This complexity poses significant challenges for slope stability analysis,requiring the development of specialized techniques to address these issues.This research presents a numerical methodology that incorporates spatial variability,nonlinear material characterization,and probabilistic analysis using a Monte Carlo framework to address this issue.The heterogeneous structure is represented by randomly assigning different lithotypes across the slope,while maintaining predefined global proportions.This contrasts with the more common approach of applying probabilistic variability to mechanical parameters within a homogeneous slope model.The material behavior is defined using complex nonlinear failure criteria,such as the Hoek-Brown model and a parabolic model with collapse,both implemented through linearization techniques.The Discontinuity Layout Optimization(DLO)method,a novel numerical approach based on limit analysis,is employed to efficiently incorporate these advances and compute the factor of safety of the slope.Within this framework,the Monte Carlo procedure is used to assess slope stability by conducting a large number of simulations,each with a different lithotype distribution.Based on the results,a hybrid method is proposed that combines probabilistic modeling with deterministic design principles for the slope stability assessment.As a case study,the methodology is applied to a 20-m-high vertical slope composed of three lithotypes(altered scoria,welded scoria,and basalt)randomly distributed in proportions of 15%,60%,and 25%,respectively.The results show convergence of mean values after approximately 400 simulations and highlight the significant influence of spatial heterogeneity,with variations of the factor of safety between 5 and 12 in 85%of cases.They also reveal non-circular and mid-slope failure wedges not captured by traditional stability methods.Finally,an equivalent normal probability distribution is proposed as a reliable approximation of the factor of safety for use in risk analysis and engineering decision-making.
基金the financial support provided by MHRD,Govt.of IndiaCoal India Limited for providing financial assistance for the research(Project No.CIL/R&D/01/73/2021)the partial financial support provided by the Ministry of Education,Government of India,under SPARC project(Project No.P1207)。
文摘Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1.
基金funding support from JSPS KAKENHI(Grant Nos.21H01593 and 21K18794)through Tetsuya KogureThis work was also partially supported by the Sasakawa Scientific Research Grant(2023e2026)from the Japan Science Society(JSS)through Ashis Acharya.
文摘Real-time assessment of slope reinforcements to diagnose their state in all stages of service life is imperative for prompt evaluation of slope stability and establishing an efficient early warning(EW)system.Many point-based monitoring instruments have been used in the last few decades.However,these sensors suffer from a particular risk of detection failures and practical limitations.Fibre-optic sensing(FOS)technologies have been developed,tested,and validated across various geoengineering applications,including slope monitoring,as they offer exceptional advantages,such as high data-carrying capacity,precise mapping of physical parameters,durability,and immunity to electromagnetic interference.The deformation of rock/soil causes the deformation and fracture of reinforcement materials,which are subsequently transferred to the encapsulated fibre-optic(FO)sensors,providing valuable information on reinforcements'safety state and performance for early failure detection.This paper is devoted to critically analysing the application of cutting-edge FOS technologies for slope reinforcement monitoring.Firstly,a concise overview of the fundamental principles underlying discrete and distributed FOS methods is provided.The key considerations for selecting FO cables and the appropriate packaging techniques necessary to withstand the challenges posed by complex geological environments are also summarised.We delve into the details of three distinct cable installation techniques within slope reinforcement components:surface bonding,slot embedment,and clamping.The recent advancements in FOS methods for monitoring slope reinforcements such as rock bolts,soil nails,anti-slide piles,geosynthetics,and retaining walls are extensively reviewed.The paper addresses this novel sensing technique's challenges and comprehensively explores its prospects.This review is anticipated to be a valuable resource for geoengineers and researchers involved in slope monitoring through FOS technology,offering insightful perspectives and guidance.
基金the funding support from the National Natural Science Foundation of China(Grant No.52308340)Chongqing Talent Innovation and Entrepreneurship Demonstration Team Project(Grant No.cstc2024ycjh-bgzxm0012)the Science and Technology Projects supported by China Coal Technology and Engineering Chongqing Design and Research Institute(Group)Co.,Ltd.(Grant No.H20230317).
文摘Accurate prediction of landslide displacement is crucial for effective early warning of landslide disasters.While most existing prediction methods focus on time-series forecasting for individual monitoring points,there is limited research on the spatiotemporal characteristics of landslide deformation.This paper proposes a novel Multi-Relation Spatiotemporal Graph Residual Network with Multi-Level Feature Attention(MFA-MRSTGRN)that effectively improves the prediction performance of landslide displacement through spatiotemporal fusion.This model integrates internal seepage factors as data feature enhancements with external triggering factors,allowing for accurate capture of the complex spatiotemporal characteristics of landslide displacement and the construction of a multi-source heterogeneous dataset.The MFA-MRSTGRN model incorporates dynamic graph theory and four key modules:multilevel feature attention,temporal-residual decomposition,spatial multi-relational graph convolution,and spatiotemporal fusion prediction.This comprehensive approach enables the efficient analyses of multi-source heterogeneous datasets,facilitating adaptive exploration of the evolving multi-relational,multi-dimensional spatiotemporal complexities in landslides.When applying this model to predict the displacement of the Liangshuijing landslide,we demonstrate that the MFA-MRSTGRN model surpasses traditional models,such as random forest(RF),long short-term memory(LSTM),and spatial temporal graph convolutional networks(ST-GCN)models in terms of various evaluation metrics including mean absolute error(MAE=1.27 mm),root mean square error(RMSE=1.49 mm),mean absolute percentage error(MAPE=0.026),and R-squared(R^(2)=0.88).Furthermore,feature ablation experiments indicate that incorporating internal seepage factors improves the predictive performance of landslide displacement models.This research provides an advanced and reliable method for landslide displacement prediction.
文摘Eco-geotechnical engineering plays a pivotal role in enhancing global sustainability and upholding the perfor-mance of earthen structures.The utilization of vegetation to stabilise geotechnical infrastructures is widely recognized and embraced for its environmentally friendly attributes.The spectre of climate change further in-tensifies the focus on the effects of temperature and humidity on vegetated soil.Consequently,there is a pressing need for research exploring the influence of changing climates on vegetated infrastructures.Such research de-mands a holistic and interdisciplinary approach,bridging fields such as soil mechanics,botany,and atmospheric science.This review underscores key facets crucial to vegetated geotechnical infrastructures,encompassing climate projections,centrifuge modelling,field monitoring,and numerical methodologies.
基金the National Key Research and Development Program of China(Grant No.2023YFC3007203).
文摘Different slope geohazards have different causal mechanisms.This study aims to propose a method to investigate the decision-making mechanisms for the susceptibility of different slope geohazards.The study includes a geospatial dataset consisting of 1203 historical slope geohazard units,including slope creeps,shallow slides,rockfalls and debris flows,and 584 non-geohazard units,and 22 initial condition factors.Following a 7:3 ratio,the data were randomly divided into a test set and a training set,and an ensemble SMOTE-RF-SHAP model was constructed.The performance and generalization ability of the model were evaluated by confusion matrix and the receiver operating characteristic(ROC)for the four types of geohazards.The decision-making mechanism of different geohazards was then identified and investigated using the Shapley additive explanations(SHAP)model.The results show that the hybrid optimization improves the overall accuracy of the model from 0.486 to 0.831,with significant improvements in the prediction accuracy for all four types of slope geohazards,as well as reductions in misclassification and omission rates.Furthermore,this study reveals that the main influencing factors and spatiotemporal distribution of different slope geohazards exhibit high similarity,while the impacts of individual factors and different factor values on different slope geohazards demonstrate significant differences.For example,prolonged continuous rainfall can erode rock masses and lead to slope creep,increased rainfall may trigger shallow mountain landslides,and sudden surface runoff can even cause debris flows.These findings have important practical implications for slope geohazards risk management.
基金research was funded bymultiple sources,including the Guangxi Natural Science Foundation of Youth Fund(2020GXNSFBA159004)the National Natural Science Foundation Project of China(51779204)the Guilin University of Technology High-Level Talent Research Startup Project(GUTQDJJ2018069).
文摘The particle size distribution plays a crucial role in the transportation and deposition of eroded sediments.Gaining insights into the related sorting mechanism can significantly enhance our understanding of such processes.In this study,sand-covered slopes were examined.A controlled indoor rainfall simulation was conducted on loess slopes with a 12°incline and a rainfall intensity of 1.5 mm/min.These slopes were then covered with sand layers of varying thicknesses—0.5,1.0,and 1.5 cm—to observe their effects.The findings have revealed that as the thickness of the sand cover increases,the content of sediment particles smaller than 0.054 mm decreases.In contrast,the content of particles larger than 0.054 mm increases after the sixth minute of runoff.The eroded sediment was predominantly composed of silt.During the inter-rill erosion stage,runoff primarily transported particles larger than 0.054 mm.However,in the subsequent rill erosion and combined rill and inter-rill erosion stages,the runoff predominantly carried finer particles,smaller than 0.054 mm.Moreover,the presence of the sand layer significantly influenced the size and form of the eroded sediment particles.Initially,during the first 10 min of runoff,the eroded particles were predominantly larger than 0.054 mm.After this period,however,the particle size shifted,with the majority of particles being smaller than 0.054 mm.This study highlights the intricate relationship between sediment sorting,the thickness of sand covers,and the dynamics of sediment transport under rainfall-induced erosion.
基金Supported by the National Natural Science Foundation(No.42272340).
文摘Recurring Slope Lineae(RSL)are seasonally observed dark streaks on the Martian surface that exhibit distinct spatial and temporal distribution characteristics.Exploring their formation mechanisms can deepen our understanding of surface activity on Mars and provide scientific basis for future Mars exploration.This study aims to gain a comprehensive understanding of the spatial and temporal distribution characteristics and formation mechanisms of RSL by reviewing relevant literature and synthesizing various viewpoints and experimental results.RSL typically appear during warm seasons,disappear during cold seasons,and repeat over multiple Martian years.The formation mechanisms can be broadly categorized into three types:dry mode,wet mode,and mixed mode.However,a definitive explanation for the formation of RSL is still lacking,and both the dry and wet models have their respective limitations.It is likely that the formation of RSL is the result of the combined action of multiple mechanisms.The next step should be to search for terrestrial analogs of RSL and conduct research at high spatial and temporal resolutions to understand the forming processes of RSL.
基金co-supported by the National Key Research and Development Program of China(No.2022YFF0503100)the Youth Innovation Project of Pandeng Program of National Space Science Center,Chinese Academy of Sciences(No.E3PD40012S).
文摘As we look ahead to future lunar exploration missions, such as crewed lunar exploration and establishing lunar scientific research stations, the lunar rovers will need to cover vast distances. These distances could range from kilometers to tens of kilometers, and even hundreds and thousands of kilometers. Therefore, it is crucial to develop effective long-range path planning for lunar rovers to meet the demands of lunar patrol exploration. This paper presents a hierarchical map model path planning method that utilizes the existing high-resolution images, digital elevation models and mineral abundance maps. The objective is to address the issue of the construction of lunar rover travel costs in the absence of large-scale, high-resolution digital elevation models. This method models the reference and semantic layers using the middle- and low-resolution remote sensing data. The multi-scale obstacles on the lunar surface are extracted by combining the deep learning algorithm on the high-resolution image, and the obstacle avoidance layer is modeled. A two-stage exploratory path planning decision is employed for long-distance driving path planning on a global–local scale. The proposed method analyzes the long-distance accessibility of various areas of scientific significance, such as Rima Bode. A high-precision digital elevation model is created using stereo images to validate the method. Based on the findings, it can be observed that the entire route spans a distance of 930.32 km. The route demonstrates an impressive ability to avoid meter-level impact craters and linear structures while maintaining an average slope of less than 8°. This paper explores scientific research by traversing at least seven basalt units, uncovering the secrets of lunar volcanic activities, and establishing ‘golden spike’ reference points for lunar stratigraphy. The final result of path planning can serve as a valuable reference for the design, mission demonstration, and subsequent project implementation of the new manned lunar rover.
文摘Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and treatment.However,achieving precise segmentation remains a challenge due to various factors,including scattering noise,low contrast,and limited resolution in ultrasound images.Although existing segmentation models have made progress,they still suffer from several limitations,such as high error rates,low generalizability,overfitting,limited feature learning capability,etc.To address these challenges,this paper proposes a Multi-level Relation Transformer-based U-Net(MLRT-UNet)to improve thyroid nodule segmentation.The MLRTUNet leverages a novel Relation Transformer,which processes images at multiple scales,overcoming the limitations of traditional encoding methods.This transformer integrates both local and global features effectively through selfattention and cross-attention units,capturing intricate relationships within the data.The approach also introduces a Co-operative Transformer Fusion(CTF)module to combine multi-scale features from different encoding layers,enhancing the model’s ability to capture complex patterns in the data.Furthermore,the Relation Transformer block enhances long-distance dependencies during the decoding process,improving segmentation accuracy.Experimental results showthat the MLRT-UNet achieves high segmentation accuracy,reaching 98.2% on the Digital Database Thyroid Image(DDT)dataset,97.8% on the Thyroid Nodule 3493(TG3K)dataset,and 98.2% on the Thyroid Nodule3K(TN3K)dataset.These findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule segmentation,addressing the limitations of existing models.
基金supported by the National Natural Science Foundation of China(No.42277175)Guangxi Emergency Management Department 2024 Innovation and Technology Research Project,China(No.2024GXYJ006)+2 种基金Hunan Provincial Department of Natural Resources Geological Exploration Project,China(No.2023ZRBSHZ056)The First National Natural Disaster Comprehensive Risk Survey in Hunan Province,China(No.2022-70)Guizhou Provincial Major Scientific and Technological Program,China(No.2023-425).
文摘A method combining finite difference method(FDM)and k-means clustering algorithm which can determine the threshold of rock bridge generation is proposed.Jointed slope models with different joint coalescence coefficients(k)are constructed based on FDM.The rock bridge area was divided through k-means algorithm and the optimal number of clusters was determined by sum of squared errors(SSE)and elbow method.The influence of maximum principal stress and stress change rate as clustering indexes on the clustering results of rock bridges was compared by using Euclidean distance.The results show that using stress change rate as clustering index is more effective.When the joint coalescence coefficient is less than 0.6,there is no significant stress concentration in the middle area of adjacent joints,that is,no generation of rock bridge.In addition,the range of rock bridge is affected by the coalescence coefficient(k),the relative position of joints and the parameters of weak interlayer.
基金Project(51378510) supported by the National Natural Science Foundation of China。
文摘In existing studies, most slope stability analyses concentrate on conditions with constant temperature, assuming the slope is intact, and employ the Mohr-Coulomb (M-C) failure criterion for saturated soil to characterize the strength of the backfill. However, the actual working temperature of slopes varies, and natural phenomena such as rainfall and groundwater infiltration commonly result in unsaturated soil conditions, with cracks typically present in cohesive slopes. This study introduces a novel approach for assessing the stability of unsaturated soil stepped slopes under varying temperatures, incorporating the effects of open and vertical cracks. Utilizing the kinematic approach and gravity increase method, we developed a three-dimensional (3D) rotational wedge failure mechanism to simulate slope collapse, enhancing the traditional two-dimensional analyses. We integrated temperature-dependent functions and nonlinear shear strength equations to evaluate the impact of temperature on four typical unsaturated soil types. A particle swarm optimization algorithm was employed to calculate the safety factor, ensuring our method’s accuracy by comparing it with existing studies. The results indicate that considering 3D effects yields a higher safety factor, while cracks reduce slope stability. Each unsaturated soil exhibits a distinctive temperature response curve, highlighting the importance of understanding soil types in the design phase.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.52039007 and 42477189)the Sichuan Science and Technology Program(Grant No.2024YFHZ0341).
文摘With climate change,high-altitude areas have been frequently observed with rising temperature and humidity levels,causing an increased likelihood of collapse of ice-rich slopes and threatening downstream human settlements and infrastructural assets.For example,two giant glaciers collapsed in 2016 in the Aru Range,Xizang,China,killing nine herders.Thus,developing numerical methodologies for stability analysis and reproducing the collapse and subsequent movement of landslide debris is imperative for proactively managing disaster risks.This study focuses on the two collapse events within the Aru Range,to numerically analyze the pre-collapse stability of the slopes and their movement processes after collapse.Compared with previous research,this study considers the impact of various environmental factors on the temperature and stability of the two Aru glaciers,especially the heat flux caused by subglacial seepage and geothermal activity.In addition to proving similar stability between the two slopes before the collapse and simulating the positions of headwalls after collapse,this study demonstrates the need of selecting the slope region for simulation,and clarifies the influence of subglacial water flow on the positions of headwalls.Finally,this study reproduces the transport distance of the sliding body and simulates the tsunami caused by the Aru glacial debris rushing into Aru Co Lake.An effective friction coefficient of 0.10-0.11 between the glacier debris and the terrain is proposed.This provides a reference for stability analyses and collapse consequence predictions of ice-rich slopes,aiding in developing strategies for hazard mitigation.