To address the limitations of existing coupling methods in aero-engine system simulation,which fail to adaptively adjust iterative parameters and coupling relationships,which can result in low efficiency and in⁃stabil...To address the limitations of existing coupling methods in aero-engine system simulation,which fail to adaptively adjust iterative parameters and coupling relationships,which can result in low efficiency and in⁃stability,this study introduces a‘Dynamic Event-Driven Co-Simulation’algorithm integrated with decision tree algorithms.This algorithm separates the overall coupling relationships and the main solver from the primary mod⁃el,utilizing a dynamic event monitoring module to adaptively adjust simulation strategies,including iteration pa⁃rameters,coupling relationships,and convergence criteria.This facilitates efficient adaptive simulations of dy⁃namic events while balancing solution accuracy and computational efficiency.The research focuses on a twinshaft turbofan engine,establishing six system-level models that encompass overall performance and various sub⁃systems based on three coupling methods,along with a multidisciplinary multi-fidelity simulation framework in⁃corporating a 3D CFD nozzle model.The study tests both model exchange and coupled simulation methods under a 14 s transient acceleration and deceleration scenario.In a 100%throttle condition,a high-fidelity nozzle model is used to analyze the sensitivity of different convergence criteria on computational efficiency and accuracy.Re⁃sults indicate that the accuracy and efficiency achieved with this method are comparable to those of PROOSIS soft⁃ware(18 s and 35 s,respectively),while being 71%more efficient than Simulink software(62 s and 120 s,re⁃spectively).Furthermore,appropriately relaxing the convergence criteria for the 0D model(from 10-6 to 10-4)while enhancing those for the 3D model(from 3000 steps to 6000 steps)can effectively balance computational accuracy and efficiency.展开更多
In response to the issue of determining the appropriate capacity when hybrid energy storage systems(HESS)collaborate with thermal power units(TPU)in the system’s secondary frequency regulation,a configuration method ...In response to the issue of determining the appropriate capacity when hybrid energy storage systems(HESS)collaborate with thermal power units(TPU)in the system’s secondary frequency regulation,a configuration method for HESS based on the analysis of frequency regulation demand analysis is proposed.And a corresponding simulation platform is developed.Firstly,a frequency modulation demand method for reducing the frequency modulation losses of TPU is proposed.Secondly,taking into comprehensive consideration that flywheel energy storage features rapid power response and battery energy storage has the characteristic of high energy density,a coordinated control strategy for HESS considering the self-recovery of state of charge(SOC)is put forward.Then,to measure the economic and technical performance of HESS in assisting the secondary frequency modulation of TPU,an optimized configurationmodel considering the full-life-cycle economy and frequency modulation performance of TPU and HESS system is constructed.Finally,a visual simulation platform for the combined frequency modulation of TPU and HESS is developed based on Matlab Appdesigner.Theresults of calculation examples indicate that the proposed configuration method can improve the overall economic efficiency and frequency modulation performance of TPU and HESS;The control strategy can not only prolong the service life of battery energy storage but also enhance the continuous response ability of HESS;The visual simulation platform is easy to use,and the simulation results are accurate and reliable.展开更多
Accurate prediction of the aerodynamic response of a compressor under inlet distortion is crucial for next-generation civil aircraft,such as Boundary Layer Ingestion(BLI)silent aircraft.Therefore,research on the Body ...Accurate prediction of the aerodynamic response of a compressor under inlet distortion is crucial for next-generation civil aircraft,such as Boundary Layer Ingestion(BLI)silent aircraft.Therefore,research on the Body Force(BF)model plays a significant role in achieving this objective.However,distorted inlet airflow can lead to varying operating conditions across different spatial locations of the compressor,which may cause some regions to operate outside the stability boundary.Consequently,the accuracy of BF model simulations might be compromised.To address this issue,this paper proposes a numerical simulation strategy for acquiring the steady axisymmetric three-dimensional flow field of a compressor operating at low mass flow rates,which is known as the Underlying Axisymmetric Pressure Rise Characteristic(UAPRC).The proposed simulation accounts for two different rotor speeds of a transonic compressor and identifies initial positions in the flow field where deterioration occurs based on prior experimental investigations.Moreover,simulation results are incorporated into the BF model to replicate hub instability observed in experiments.Obtained results demonstrate that this strategy provides valid predictions of the UAPRC of the compressor,thereby addressing the limitations associated with the BF model.展开更多
With the development of activated sludge model, the simulation software for the design and operation of wastewater treatment plant (WWTP) was produced and has been widely used. The dynamic change of the quality and ...With the development of activated sludge model, the simulation software for the design and operation of wastewater treatment plant (WWTP) was produced and has been widely used. The dynamic change of the quality and flow of influent are major factors causing the unstable operation of wastewater treatment process. As a basic model, ASMI model was used for the simulation of activated sludge process, and double exponential model was selected for the simulation of secondary sedimentation tank. The influences of influent change to the aeration tank and secondary sedimentation tank were investigated, and the relationship among influent change, the quality of effluent and the level of sludge blanket in secondary sedimentation tank was established. On the basis of the simulation results, the operation of the WWTP could be adjusted under the dynamic change of the influent. Furthermore, the controlling strategy combined the feed-forward on the influent flow and the feedback on the level of sludge blanket in the secondary sedimentation tank was studied.展开更多
Coupled turbulent flow, temperature fields of the twin-roll casting strip process were simulated by three-dimensional finite element method. Based on the heat balance calculation and using inverse methods between the ...Coupled turbulent flow, temperature fields of the twin-roll casting strip process were simulated by three-dimensional finite element method. Based on the heat balance calculation and using inverse methods between the simulations and real experiments, the relational models among casting speed, location, and coefficient of heat transfer between molten metal and rolls in different regions are given. In the simulation, the calculated surface temperatures are in good agreement with the measured values. An on-line model of kiss point is derived by simulations and the geometry of molten pool, corresponding control strategy is also proposed.展开更多
When multiphysics coupling calculations contain time-dependent Monte Carlo particle transport simulations, these simulations often account for the largest part of the calculation time, which is insufferable in certain...When multiphysics coupling calculations contain time-dependent Monte Carlo particle transport simulations, these simulations often account for the largest part of the calculation time, which is insufferable in certain important cases. This study proposes an adaptive strategy for automatically adjusting the sample size to fulfil more reasonable simulations. This is realized based on an extension of the Shannon entropy concept and is essentially different from the popular methods in timeindependent Monte Carlo particle transport simulations, such as controlling the sample size according to the relative error of a target tally or by experience. The results of the two models show that this strategy can yield almost similar results while significantly reducing the calculation time. Considering the efficiency, the sample size should not be increased blindly if the efficiency cannot be enhanced further. The strategy proposed herein satisfies this requirement.展开更多
To improve the outdoor environment of rural settlement and reduce the energy consumption of rural houses in winterin cold areas,the seriously bad wind environment should been controlled and considered. This paper appl...To improve the outdoor environment of rural settlement and reduce the energy consumption of rural houses in winterin cold areas,the seriously bad wind environment should been controlled and considered. This paper applies the method of numerical simulation to simulate the wind environment of some typical arrangement of building and courtyard in winter,and concludes the optimal building and courtyard arrangement types and strategies. It aims to provide some technical supports for improving the wind environment of rural settlements in cold regions.展开更多
In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is d...In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is divided into power mode and economy mode. Energy management strategy designing methods of power mode and economy mode are proposed. Maximum velocity, acceleration performance and fuel consumption are simulated during the CS period in the AVL CRUISE simulation environment. The simulation results indicate that the maximum velocity and acceleration time of the power mode are better than those in the economy mode. Fuel consumption of the economy mode is better than that in the power mode. Fuel consumption of PHEV during the CS period is further improved by using the methods proposed in this paper, and this is meaningful for research and development of PHEV.展开更多
It is considered as an important and effective means to give priority to the development of public transit which can improve the efficiency of transportation resources utilization and alleviate traffic jams. Public tr...It is considered as an important and effective means to give priority to the development of public transit which can improve the efficiency of transportation resources utilization and alleviate traffic jams. Public transit signal priority belongs to the "time priority" among the right-of-way priorities. After reviewing the existing bus priority signal control strategies and the advances in related technologies at home and abroad, this article analyzed the breakthrough direction of the bus signal priority design technologies suitable for China's conditions, and then proposed the hardware and software systems and the modules for the bus priority signal control system. Finally, the hardware-in-the-loop simulation (HILS) was introduced to evaluate bus priority signal control programs in order to optimize the control strategies.展开更多
The disorderly mining activities and irrational layout in underground coal mines have left a large number of adjacent abandoned roadways.During the process of a working face passing through abandoned roadways,these st...The disorderly mining activities and irrational layout in underground coal mines have left a large number of adjacent abandoned roadways.During the process of a working face passing through abandoned roadways,these structures are prone to varying degrees of damage,with frequent occurrences of roof leakage and induced rock burst accidents,significantly impacting subsequent mining operations and safe production.To address these issues,this study investigates the surrounding rock deformation patterns during fully mechanized mining face passage through abandoned roadway clusters.Specific countermeasures were systematically summarized according to different occurrence characteristics of abandoned roadways.Through mechanical analysis,the critical unstable width of coal pillars was determined to be approximately 16.1~16.8 m.A three-dimensional numerical model was established based on 17 abandoned roadways with various shapes and occurrences in the working face.Simulation results indicate severe deformation and failure in roof rock layer roadways,while floor roadways exhibit relatively minor damage.Notably,when the distance between abandoned roadways and the coal seam exceeds 8 m,almost no damage occurs.Three technical measures for passing through abandoned roadway group was proposed according to their occurrence characteristics and implemented in engineering practice.Field applications demonstrate limited coal stress variations and weak strata pressure manifestations during the crossing process,ensuring safe passage through abandoned roadway clusters.This achievement enables efficient and safe crossing of abandoned roadway group in fully mechanized mining faces,enhances coal recovery rates,and provides practical engineering references for similar geological conditions.展开更多
Repetitious simulation after modifying parameters of multi-domain physical system based on Modelica often appears in model experiment and optimization design. At present, the solvers based on Modelica need calculate a...Repetitious simulation after modifying parameters of multi-domain physical system based on Modelica often appears in model experiment and optimization design. At present, the solvers based on Modelica need calculate all the coupled blocks during every simulation run after updating parameters. Based on discussing scale decomposition methods of simulation model, subdivision solving strategy and minimum solving strategy are put forward to improve the efficiency of repetitious simulation, by which the numerical solution of the simulation model can be achieved by only calculating the solving sequence influenced by altered parameters. A simplified model of aircraft is used to demonstrate the efficiency of the strategies presented.展开更多
Conventional plant breeding largely depends on phenotypic selection and breeder's experience, therefore the breeding efficiency is low and the predictions are inaccurate. Along with the fast development in molecular ...Conventional plant breeding largely depends on phenotypic selection and breeder's experience, therefore the breeding efficiency is low and the predictions are inaccurate. Along with the fast development in molecular biology and biotechnology, a large amount of biological data is available for genetic studies of important breeding traits in plants, which in turn allows the conduction of genotypic selection in the breeding process. However, gene information has not been effectively used in crop improvement because of the lack of appropriate tools. The simulation approach can utilize the vast and diverse genetic information, predict the cross performance, and compare different selection methods. Thus, the best performing crosses and effective breeding strategies can be identified. QuLine is a computer tool capable of defining a range, from simple to complex genetic models, and simulating breeding processes for developing final advanced lines. On the basis of the results from simulation experiments, breeders can optimize their breeding methodology and greatly improve the breeding efficiency. In this article, the underlying principles of simulation modeling in crop enhancement is initially introduced, following which several applications of QuLine are summarized, by comparing the different selection strategies, the precision parental selection, using known gene information, and the design approach in breeding. Breeding simulation allows the definition of complicated genetic models consisting of multiple alleles, pleiotropy, epistasis, and genes, by environment interaction, and provides a useful tool for breeders, to efficiently use the wide spectrum of genetic data and information available.展开更多
In this paper, we propose a new formula of the real-time minimum safety headway based on the relative velocity of consecutive trains and present a dynamic model of high-speed passenger train movements in the rail line...In this paper, we propose a new formula of the real-time minimum safety headway based on the relative velocity of consecutive trains and present a dynamic model of high-speed passenger train movements in the rail line based on the proposed formula of the minimum safety headway. Moreover, we provide the control strategies of the high-speed passenger train operations based on the proposed formula of the real-time minimum safety headway and the dynamic model of highspeed passenger train movements. The simulation results demonstrate that the proposed control strategies of the passenger train operations can greatly reduce the delay propagation in the high-speed rail line when a random delay occurs.展开更多
Mooring arrays have been widely deployed in sustained ocean observation in high resolution to measure finer dynamic features of marine phenomena.However,the irregular posture changes and nonlinear response of moorings...Mooring arrays have been widely deployed in sustained ocean observation in high resolution to measure finer dynamic features of marine phenomena.However,the irregular posture changes and nonlinear response of moorings under the effect of ocean currents face huge challenges for the deployment of mooring arrays,which may cause the deviations of measurements and yield a vacuum of observation in the upper ocean.We developed a data-driven mooring simulation model based on LSTM(long short-term memory)neural network,coupling the ocean current with position data from moorings to predict the motion of moorings,including single-step output prediction and multi-step prediction.Based on the predictive information,the formation of the mooring array can be adjusted to improve the accuracy and integrity of measurements.Moreover,we proposed the cuckoo search(CS)optimization algorithm to tune the parameters of LSTM,which improves the robustness and generalization of the model.We utilize the datasets observed from moorings anchored in the Kuroshio Extension region to train and validate the simulation model.The experimental results demonstrate that the model can remarkably improve prediction accuracy and yield stable performance.Moreover,compared with other optimization algorithms,CS is more efficient and performs better in simulating the motion of moorings.展开更多
In this paper,a generic retailer-oriented portfolio simulation system linking manufacturer,retailer,and customer in apparel supply chain is presented.The purpose of the simulator is to generate a portfolio consisting ...In this paper,a generic retailer-oriented portfolio simulation system linking manufacturer,retailer,and customer in apparel supply chain is presented.The purpose of the simulator is to generate a portfolio consisting of replenishment strategy and performance index under different sales forecasting errors to satisfy the retailer-defined customer service level in apparel industry.After analyzing the main parameters in the portfolio simulator,the procedure and detailed structure of the simulator are then described.With the use of data from the industry,one case study of the portfolio simulator is achieved and the process of the simulation is validated.展开更多
The COVID-19 pandemic caused severe and enduring effects globally,impacting public health,normalcy,and productivity significantly.In response,government-led food supplies became crucial in many countries to counter th...The COVID-19 pandemic caused severe and enduring effects globally,impacting public health,normalcy,and productivity significantly.In response,government-led food supplies became crucial in many countries to counter the adverse effects of pandemic control measures on daily activities.Focusing on government-led food supply chain during the COVID-19 pandemic,this study employed simulations across different pandemic phases to identify and confirm effective recovery strategies.Our analysis pinpointed insufficient transportation capacity,uneven distribution of district warehouses,and production-demand mismatches as the main factors contributing to food shortages.Strategies such as enhancing transportation capacity,establishing new district warehouses,and increasing production capacity proved to significantly bolster supply chain resilience,stabilize supplies,and meet escalating demands.Opening municipal emergency warehouses ahead of potential disruptions also showed a positive recovery effect.However,while food aid from other provinces and more frequent inventory checks generally enhanced resilience,they occasionally led to unintended negative consequences.Surprisingly,reallocating food between district warehouses negatively impacted the supply chain.This research advances the understanding of government-led food supply chain vulnerabilities during significant public health crises and proposes targeted recovery strategies for different pandemic phases,aiding policymakers in better managing future emergencies.展开更多
With the acceleration of urbanization,urban wind environment problems are becoming increasingly prominent,directly affecting air quality and residents’quality of life.The complex layout of old urban areas restricts w...With the acceleration of urbanization,urban wind environment problems are becoming increasingly prominent,directly affecting air quality and residents’quality of life.The complex layout of old urban areas restricts wind circulation and is prone to forming unfavorable wind environment zones.This study takes the old urban area within Hefei City Ring Park as the study area by selecting three representative blocks,establishes three-dimensional models,and employs Computational Fluid Dynamics(CFD)numerical simulation to analyze wind velocity distribution in the study area and the key influencing factors.Simulation results show that,influenced by a combination of multiple factors,the wind environment of the old urban area varies significantly.This study then proposes corresponding optimization strategies for the wind environment conditions of each block,such as adjusting the layout and form of target buildings,optimizing the layout of building clusters,increasing green spaces in the city,and improving the design of individual buildings.Comparing existing and optimized simulations validates the effectiveness of these strategies.Finally,the research compares the existing and optimized wind environment conditions,providing empirical support and scientific guidance for optimizing wind environments of old urban areas and promoting high-quality urban renewal practices.展开更多
文摘To address the limitations of existing coupling methods in aero-engine system simulation,which fail to adaptively adjust iterative parameters and coupling relationships,which can result in low efficiency and in⁃stability,this study introduces a‘Dynamic Event-Driven Co-Simulation’algorithm integrated with decision tree algorithms.This algorithm separates the overall coupling relationships and the main solver from the primary mod⁃el,utilizing a dynamic event monitoring module to adaptively adjust simulation strategies,including iteration pa⁃rameters,coupling relationships,and convergence criteria.This facilitates efficient adaptive simulations of dy⁃namic events while balancing solution accuracy and computational efficiency.The research focuses on a twinshaft turbofan engine,establishing six system-level models that encompass overall performance and various sub⁃systems based on three coupling methods,along with a multidisciplinary multi-fidelity simulation framework in⁃corporating a 3D CFD nozzle model.The study tests both model exchange and coupled simulation methods under a 14 s transient acceleration and deceleration scenario.In a 100%throttle condition,a high-fidelity nozzle model is used to analyze the sensitivity of different convergence criteria on computational efficiency and accuracy.Re⁃sults indicate that the accuracy and efficiency achieved with this method are comparable to those of PROOSIS soft⁃ware(18 s and 35 s,respectively),while being 71%more efficient than Simulink software(62 s and 120 s,re⁃spectively).Furthermore,appropriately relaxing the convergence criteria for the 0D model(from 10-6 to 10-4)while enhancing those for the 3D model(from 3000 steps to 6000 steps)can effectively balance computational accuracy and efficiency.
基金supported by a Key Project of the National Natural Science Foundation of China under Grant 52337004.
文摘In response to the issue of determining the appropriate capacity when hybrid energy storage systems(HESS)collaborate with thermal power units(TPU)in the system’s secondary frequency regulation,a configuration method for HESS based on the analysis of frequency regulation demand analysis is proposed.And a corresponding simulation platform is developed.Firstly,a frequency modulation demand method for reducing the frequency modulation losses of TPU is proposed.Secondly,taking into comprehensive consideration that flywheel energy storage features rapid power response and battery energy storage has the characteristic of high energy density,a coordinated control strategy for HESS considering the self-recovery of state of charge(SOC)is put forward.Then,to measure the economic and technical performance of HESS in assisting the secondary frequency modulation of TPU,an optimized configurationmodel considering the full-life-cycle economy and frequency modulation performance of TPU and HESS system is constructed.Finally,a visual simulation platform for the combined frequency modulation of TPU and HESS is developed based on Matlab Appdesigner.Theresults of calculation examples indicate that the proposed configuration method can improve the overall economic efficiency and frequency modulation performance of TPU and HESS;The control strategy can not only prolong the service life of battery energy storage but also enhance the continuous response ability of HESS;The visual simulation platform is easy to use,and the simulation results are accurate and reliable.
基金the National Natural Science Foundation of China(Nos.52322603 and 51976005)the Science Center for Gas Turbine Project,China(Nos.P2022-B-II-004-001 and P2023-B-II-001-001)the Fundamental Research Funds for the Central Universities,and Beijing Nova Program,China(Nos.20220484074 and 20230484479).
文摘Accurate prediction of the aerodynamic response of a compressor under inlet distortion is crucial for next-generation civil aircraft,such as Boundary Layer Ingestion(BLI)silent aircraft.Therefore,research on the Body Force(BF)model plays a significant role in achieving this objective.However,distorted inlet airflow can lead to varying operating conditions across different spatial locations of the compressor,which may cause some regions to operate outside the stability boundary.Consequently,the accuracy of BF model simulations might be compromised.To address this issue,this paper proposes a numerical simulation strategy for acquiring the steady axisymmetric three-dimensional flow field of a compressor operating at low mass flow rates,which is known as the Underlying Axisymmetric Pressure Rise Characteristic(UAPRC).The proposed simulation accounts for two different rotor speeds of a transonic compressor and identifies initial positions in the flow field where deterioration occurs based on prior experimental investigations.Moreover,simulation results are incorporated into the BF model to replicate hub instability observed in experiments.Obtained results demonstrate that this strategy provides valid predictions of the UAPRC of the compressor,thereby addressing the limitations associated with the BF model.
文摘With the development of activated sludge model, the simulation software for the design and operation of wastewater treatment plant (WWTP) was produced and has been widely used. The dynamic change of the quality and flow of influent are major factors causing the unstable operation of wastewater treatment process. As a basic model, ASMI model was used for the simulation of activated sludge process, and double exponential model was selected for the simulation of secondary sedimentation tank. The influences of influent change to the aeration tank and secondary sedimentation tank were investigated, and the relationship among influent change, the quality of effluent and the level of sludge blanket in secondary sedimentation tank was established. On the basis of the simulation results, the operation of the WWTP could be adjusted under the dynamic change of the influent. Furthermore, the controlling strategy combined the feed-forward on the influent flow and the feedback on the level of sludge blanket in the secondary sedimentation tank was studied.
基金supported by National Key Research Development Planning Project of China (2004CB619108).
文摘Coupled turbulent flow, temperature fields of the twin-roll casting strip process were simulated by three-dimensional finite element method. Based on the heat balance calculation and using inverse methods between the simulations and real experiments, the relational models among casting speed, location, and coefficient of heat transfer between molten metal and rolls in different regions are given. In the simulation, the calculated surface temperatures are in good agreement with the measured values. An on-line model of kiss point is derived by simulations and the geometry of molten pool, corresponding control strategy is also proposed.
基金supported by the CAEP Found (No.CX20200028)Youth Program of National Natural Science Foundation of China (No.11705011).
文摘When multiphysics coupling calculations contain time-dependent Monte Carlo particle transport simulations, these simulations often account for the largest part of the calculation time, which is insufferable in certain important cases. This study proposes an adaptive strategy for automatically adjusting the sample size to fulfil more reasonable simulations. This is realized based on an extension of the Shannon entropy concept and is essentially different from the popular methods in timeindependent Monte Carlo particle transport simulations, such as controlling the sample size according to the relative error of a target tally or by experience. The results of the two models show that this strategy can yield almost similar results while significantly reducing the calculation time. Considering the efficiency, the sample size should not be increased blindly if the efficiency cannot be enhanced further. The strategy proposed herein satisfies this requirement.
基金Sponsored bythe National Project of Scientific and Technical Supporting Programs Funded by Ministry of Science & Technology of China(Grant No.2013BAJ12B02)the Fundamental Research Funds for the Central Universities(Grant No.HIT.KISTP.201419)
文摘To improve the outdoor environment of rural settlement and reduce the energy consumption of rural houses in winterin cold areas,the seriously bad wind environment should been controlled and considered. This paper applies the method of numerical simulation to simulate the wind environment of some typical arrangement of building and courtyard in winter,and concludes the optimal building and courtyard arrangement types and strategies. It aims to provide some technical supports for improving the wind environment of rural settlements in cold regions.
文摘In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is divided into power mode and economy mode. Energy management strategy designing methods of power mode and economy mode are proposed. Maximum velocity, acceleration performance and fuel consumption are simulated during the CS period in the AVL CRUISE simulation environment. The simulation results indicate that the maximum velocity and acceleration time of the power mode are better than those in the economy mode. Fuel consumption of the economy mode is better than that in the power mode. Fuel consumption of PHEV during the CS period is further improved by using the methods proposed in this paper, and this is meaningful for research and development of PHEV.
基金supported in part by National Basic Research Program of China (2006CB705500)National Natural Science Foundation of China (No.50738001)Outstanding Young Teachers Teaching and Research Funding Program of Southeast University
文摘It is considered as an important and effective means to give priority to the development of public transit which can improve the efficiency of transportation resources utilization and alleviate traffic jams. Public transit signal priority belongs to the "time priority" among the right-of-way priorities. After reviewing the existing bus priority signal control strategies and the advances in related technologies at home and abroad, this article analyzed the breakthrough direction of the bus signal priority design technologies suitable for China's conditions, and then proposed the hardware and software systems and the modules for the bus priority signal control system. Finally, the hardware-in-the-loop simulation (HILS) was introduced to evaluate bus priority signal control programs in order to optimize the control strategies.
基金supported by the National Key R&D Program of China(2023YFC3904300)the Taichuangyuan Thick Coal Seam Water Conservation Mining"Scientists+Engineers"Team(2024QCY-KXJ-055)the 111 Project(B21016).
文摘The disorderly mining activities and irrational layout in underground coal mines have left a large number of adjacent abandoned roadways.During the process of a working face passing through abandoned roadways,these structures are prone to varying degrees of damage,with frequent occurrences of roof leakage and induced rock burst accidents,significantly impacting subsequent mining operations and safe production.To address these issues,this study investigates the surrounding rock deformation patterns during fully mechanized mining face passage through abandoned roadway clusters.Specific countermeasures were systematically summarized according to different occurrence characteristics of abandoned roadways.Through mechanical analysis,the critical unstable width of coal pillars was determined to be approximately 16.1~16.8 m.A three-dimensional numerical model was established based on 17 abandoned roadways with various shapes and occurrences in the working face.Simulation results indicate severe deformation and failure in roof rock layer roadways,while floor roadways exhibit relatively minor damage.Notably,when the distance between abandoned roadways and the coal seam exceeds 8 m,almost no damage occurs.Three technical measures for passing through abandoned roadway group was proposed according to their occurrence characteristics and implemented in engineering practice.Field applications demonstrate limited coal stress variations and weak strata pressure manifestations during the crossing process,ensuring safe passage through abandoned roadway clusters.This achievement enables efficient and safe crossing of abandoned roadway group in fully mechanized mining faces,enhances coal recovery rates,and provides practical engineering references for similar geological conditions.
基金Supported by the National High Technology Research and Development Program (863 Program) of China (2006AA04Z121)the National Natural Science Foundation of China (50775084)
文摘Repetitious simulation after modifying parameters of multi-domain physical system based on Modelica often appears in model experiment and optimization design. At present, the solvers based on Modelica need calculate all the coupled blocks during every simulation run after updating parameters. Based on discussing scale decomposition methods of simulation model, subdivision solving strategy and minimum solving strategy are put forward to improve the efficiency of repetitious simulation, by which the numerical solution of the simulation model can be achieved by only calculating the solving sequence influenced by altered parameters. A simplified model of aircraft is used to demonstrate the efficiency of the strategies presented.
文摘Conventional plant breeding largely depends on phenotypic selection and breeder's experience, therefore the breeding efficiency is low and the predictions are inaccurate. Along with the fast development in molecular biology and biotechnology, a large amount of biological data is available for genetic studies of important breeding traits in plants, which in turn allows the conduction of genotypic selection in the breeding process. However, gene information has not been effectively used in crop improvement because of the lack of appropriate tools. The simulation approach can utilize the vast and diverse genetic information, predict the cross performance, and compare different selection methods. Thus, the best performing crosses and effective breeding strategies can be identified. QuLine is a computer tool capable of defining a range, from simple to complex genetic models, and simulating breeding processes for developing final advanced lines. On the basis of the results from simulation experiments, breeders can optimize their breeding methodology and greatly improve the breeding efficiency. In this article, the underlying principles of simulation modeling in crop enhancement is initially introduced, following which several applications of QuLine are summarized, by comparing the different selection strategies, the precision parental selection, using known gene information, and the design approach in breeding. Breeding simulation allows the definition of complicated genetic models consisting of multiple alleles, pleiotropy, epistasis, and genes, by environment interaction, and provides a useful tool for breeders, to efficiently use the wide spectrum of genetic data and information available.
基金supported by the National Basic Research Program of China (Grant No. 2012CB725400)the National Natural Science Foundation of China (Grant No. 71131001-1)the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University,China (Grant Nos. RCS2012ZZ001 and RCS2012ZT001)
文摘In this paper, we propose a new formula of the real-time minimum safety headway based on the relative velocity of consecutive trains and present a dynamic model of high-speed passenger train movements in the rail line based on the proposed formula of the minimum safety headway. Moreover, we provide the control strategies of the high-speed passenger train operations based on the proposed formula of the real-time minimum safety headway and the dynamic model of highspeed passenger train movements. The simulation results demonstrate that the proposed control strategies of the passenger train operations can greatly reduce the delay propagation in the high-speed rail line when a random delay occurs.
基金Supported by the Laoshan Laboratory (Nos.LSKJ202201302-5,LSKJ202201405-1,LSKJ202204304)。
文摘Mooring arrays have been widely deployed in sustained ocean observation in high resolution to measure finer dynamic features of marine phenomena.However,the irregular posture changes and nonlinear response of moorings under the effect of ocean currents face huge challenges for the deployment of mooring arrays,which may cause the deviations of measurements and yield a vacuum of observation in the upper ocean.We developed a data-driven mooring simulation model based on LSTM(long short-term memory)neural network,coupling the ocean current with position data from moorings to predict the motion of moorings,including single-step output prediction and multi-step prediction.Based on the predictive information,the formation of the mooring array can be adjusted to improve the accuracy and integrity of measurements.Moreover,we proposed the cuckoo search(CS)optimization algorithm to tune the parameters of LSTM,which improves the robustness and generalization of the model.We utilize the datasets observed from moorings anchored in the Kuroshio Extension region to train and validate the simulation model.The experimental results demonstrate that the model can remarkably improve prediction accuracy and yield stable performance.Moreover,compared with other optimization algorithms,CS is more efficient and performs better in simulating the motion of moorings.
文摘In this paper,a generic retailer-oriented portfolio simulation system linking manufacturer,retailer,and customer in apparel supply chain is presented.The purpose of the simulator is to generate a portfolio consisting of replenishment strategy and performance index under different sales forecasting errors to satisfy the retailer-defined customer service level in apparel industry.After analyzing the main parameters in the portfolio simulator,the procedure and detailed structure of the simulator are then described.With the use of data from the industry,one case study of the portfolio simulator is achieved and the process of the simulation is validated.
基金supported by the National Natural Science Foundation of China(No.72171208)Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ24G010001)。
文摘The COVID-19 pandemic caused severe and enduring effects globally,impacting public health,normalcy,and productivity significantly.In response,government-led food supplies became crucial in many countries to counter the adverse effects of pandemic control measures on daily activities.Focusing on government-led food supply chain during the COVID-19 pandemic,this study employed simulations across different pandemic phases to identify and confirm effective recovery strategies.Our analysis pinpointed insufficient transportation capacity,uneven distribution of district warehouses,and production-demand mismatches as the main factors contributing to food shortages.Strategies such as enhancing transportation capacity,establishing new district warehouses,and increasing production capacity proved to significantly bolster supply chain resilience,stabilize supplies,and meet escalating demands.Opening municipal emergency warehouses ahead of potential disruptions also showed a positive recovery effect.However,while food aid from other provinces and more frequent inventory checks generally enhanced resilience,they occasionally led to unintended negative consequences.Surprisingly,reallocating food between district warehouses negatively impacted the supply chain.This research advances the understanding of government-led food supply chain vulnerabilities during significant public health crises and proposes targeted recovery strategies for different pandemic phases,aiding policymakers in better managing future emergencies.
文摘With the acceleration of urbanization,urban wind environment problems are becoming increasingly prominent,directly affecting air quality and residents’quality of life.The complex layout of old urban areas restricts wind circulation and is prone to forming unfavorable wind environment zones.This study takes the old urban area within Hefei City Ring Park as the study area by selecting three representative blocks,establishes three-dimensional models,and employs Computational Fluid Dynamics(CFD)numerical simulation to analyze wind velocity distribution in the study area and the key influencing factors.Simulation results show that,influenced by a combination of multiple factors,the wind environment of the old urban area varies significantly.This study then proposes corresponding optimization strategies for the wind environment conditions of each block,such as adjusting the layout and form of target buildings,optimizing the layout of building clusters,increasing green spaces in the city,and improving the design of individual buildings.Comparing existing and optimized simulations validates the effectiveness of these strategies.Finally,the research compares the existing and optimized wind environment conditions,providing empirical support and scientific guidance for optimizing wind environments of old urban areas and promoting high-quality urban renewal practices.