A new chaos game representation of protein sequences based on the detailed hydrophobic-hydrophilic (HP) model has been proposed by Yu et al (Physica A 337(2004) 171). A CGR-walk model is proposed based on the ne...A new chaos game representation of protein sequences based on the detailed hydrophobic-hydrophilic (HP) model has been proposed by Yu et al (Physica A 337(2004) 171). A CGR-walk model is proposed based on the new CGR coordinates for the protein sequences from complete genomes in the present paper. The new CCR coordinates based on the detailed HP model are converted into a time series, and a long-memory ARFIMA(p, d, q) model is introduced into the protein sequence analysis. This model is applied to simulating real CCR-walk sequence data of twelve protein sequences. Remarkably long-range correlations are uncovered in the data and the results obtained from these models are reasonably consistent with those available from the ARFIMA(p, d, q) model.展开更多
As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods ge...As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes.展开更多
To makesystem-of-systems combat simulation models easy to be developed and reused, simulation model formal specification and representation are researched. According to the view of system-of-systems combat simulation,...To makesystem-of-systems combat simulation models easy to be developed and reused, simulation model formal specification and representation are researched. According to the view of system-of-systems combat simulation, and based on DEVS, the simulation model's fundamental formalisms are explored. It includes entity model, system-of-systems model and experiment model. It also presents rigorous formal specification. XML data exchange standard is combined to design the XML based language, SCSL, to support simulation model representation. The corresponding relationship between SCSL and simulation model formalism is discussed and the syntax and semantics of elements in SCSL are detailed. Based on simulation model formal specification, the abstract simulation algorithm is given and SCSL virtual machine, which is capable of automatically interpreting and executing simulation model represented by SCSL, is designed. Finally an application case is presented, which can show the validation of the theory and verification of SCSL.展开更多
Data-driven turbulence modeling studies have reached such a stage that the basic framework is settled,but several essential issues remain that strongly affect the performance.Two problems are studied in the current re...Data-driven turbulence modeling studies have reached such a stage that the basic framework is settled,but several essential issues remain that strongly affect the performance.Two problems are studied in the current research:(1)the processing of the Reynolds stress tensor and(2)the coupling method between the machine learning model and flow solver.For the Reynolds stress processing issue,we perform the theoretical derivation to extend the relevant tensor arguments of Reynolds stress.Then,the tensor representation theorem is employed to give the complete irreducible invariants and integrity basis.An adaptive regularization term is employed to enhance the representation performance.For the coupling issue,an iterative coupling framework with consistent convergence is proposed and then applied to a canonical separated flow.The results have high consistency with the direct numerical simulation true values,which proves the validity of the current approach.展开更多
A sinusoidal representation of speech and a cochlear model are used to extract speech parameters in this paper, and a speech analysis/synthesis system controlled by the auditory spectrum is developed with the model. T...A sinusoidal representation of speech and a cochlear model are used to extract speech parameters in this paper, and a speech analysis/synthesis system controlled by the auditory spectrum is developed with the model. The computer simulation shows that speech can be synthesized with only 12 parameters per frame on the average. The method has the advantages of few parameters, low complexity and high performance of speech representation. The synthetic speech has high intelligibility.展开更多
Functionality represents a blueprint of a product and plays a crucial role in problem-solving such as design.This article discusses the model representation from the angle of functional ontology by function deployment...Functionality represents a blueprint of a product and plays a crucial role in problem-solving such as design.This article discusses the model representation from the angle of functional ontology by function deployment.We construct a framework of functional ontology which decomposes the function and contains a library of vocabulary to comprehensively represent the conceptual design model.The ontology enables the automatic identification system to search in the functional space.Furthermore,the functional ontology can form a systematic representation for the model so that it can be reused in the conceptual design and can be applied in the domain of knowledge fusion in our further work.展开更多
Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation technologies.Current methods for extracting features from mesh edges or ...Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation technologies.Current methods for extracting features from mesh edges or faces struggle with complex 3D models because edge-based approaches miss global contexts and face-based methods overlook variations in adjacent areas,which affects the overall precision.To address these issues,we propose the Feature Discrimination and Context Propagation Network(FDCPNet),which is a novel approach that synergistically integrates local and global features in mesh datasets.Methods FDCPNet is composed of two modules:(1)the Feature Discrimination Module,which employs an attention mechanism to enhance the identification of key local features,and(2)the Context Propagation Module,which enriches key local features by integrating global contextual information,thereby facilitating a more detailed and comprehensive representation of crucial areas within the mesh model.Results Experiments on popular datasets validated the effectiveness of FDCPNet,showing an improvement in the classification accuracy over the baseline MeshNet.Furthermore,even with reduced mesh face numbers and limited training data,FDCPNet achieved promising results,demonstrating its robustness in scenarios of variable complexity.展开更多
An identification-based approach for aircraft engine modeling using the nonlinear HammersteinWiener representation was proposed.Hammerstein-Wiener modeling for both limited flight envelope and extended flight envelope...An identification-based approach for aircraft engine modeling using the nonlinear HammersteinWiener representation was proposed.Hammerstein-Wiener modeling for both limited flight envelope and extended flight envelope was investigated.Simulation shows that the resulting model can be valid over 10%variation of rotational speed of the engine,compared with those linear models that are only valid over 3%—5%change of rotational speed.It is further demonstrated that the proposed method can be utilized over large envelope up to 20% variation of rotational speed of the engine.The fundamental idea is to use nonlinear models to extend the feasible/valid region rather than those linear models.This may consequently simplify the switching logic in the onboard digital control units.This is often overlooked in aircraft engine control community,but has been emphasized in the research.展开更多
Action model learning has become a hot topic in knowledge engineering for automated planning.A key problem for learning action models is to analyze state changes before and after action executions from observed"p...Action model learning has become a hot topic in knowledge engineering for automated planning.A key problem for learning action models is to analyze state changes before and after action executions from observed"plan traces".To support such an analysis,a new approach is proposed to partition propositions of plan traces into states.First,vector representations of propositions and actions are obtained by training a neural network called Skip-Gram borrowed from the area of natural language processing(NLP).Then,a type of semantic distance among propositions and actions is defined based on their similarity measures in the vector space.Finally,k-means and k-nearest neighbor(kNN)algorithms are exploited to map propositions to states.This approach is called state partition by word vector(SPWV),which is implemented on top of a recent action model learning framework by Rao et al.Experimental results on the benchmark domains show that SPWV leads to a lower error rate of the learnt action model,compared to the probability based approach for state partition that was developed by Rao et al.展开更多
Traditional topic models have been widely used for analyzing semantic topics from electronic documents.However,the obvious defects of topic words acquired by them are poor in readability and consistency.Only the domai...Traditional topic models have been widely used for analyzing semantic topics from electronic documents.However,the obvious defects of topic words acquired by them are poor in readability and consistency.Only the domain experts are possible to guess their meaning.In fact,phrases are the main unit for people to express semantics.This paper presents a Distributed Representation-Phrase Latent Dirichlet Allocation(DR-Phrase LDA)which is a phrase topic model.Specifically,we reasonably enhance the semantic information of phrases via distributed representation in this model.The experimental results show the topics quality acquired by our model is more readable and consistent than other similar topic models.展开更多
A knowledge representation has been proposed using the state space theory of Artificial Intelligence for Dynamic Programming Model, in which a model can be defined as a six tuple M=(I,G,O,T,D,S). A building block mode...A knowledge representation has been proposed using the state space theory of Artificial Intelligence for Dynamic Programming Model, in which a model can be defined as a six tuple M=(I,G,O,T,D,S). A building block modeling method uses the modules of a six tuple to form a rule based solution model. Moreover, a rule based system has been designed and set up to solve the Dynamic Programming Model. This knowledge based representation can be easily used to express symbolical knowledge and dynamic characteristics for Dynamic Programming Model, and the inference based on the knowledge in the process of solving Dynamic Programming Model can also be conveniently realized in computer.展开更多
We present a family of graphical representations for the O(N)spin model,where N≥1 represents the spin dimension,and N=1,2,3 corresponds to the Ising,XY and Heisenberg models,respectively.With an integer parameter 0≤...We present a family of graphical representations for the O(N)spin model,where N≥1 represents the spin dimension,and N=1,2,3 corresponds to the Ising,XY and Heisenberg models,respectively.With an integer parameter 0≤ℓ≤N/2,each configuration is the coupling of ℓ copies of subgraphs consisting of directed flows and N−2ℓ copies of subgraphs constructed by undirected loops,which we call the XY and Ising subgraphs,respectively.On each lattice site,the XY subgraphs satisfy the Kirchhoff flow-conservation law and the Ising subgraphs obey the Eulerian bond condition.Then,we formulate worm-type algorithms and simulate the O(N)model on the simple-cubic lattice for N from 2 to 6 at all possibleℓ.It is observed that the worm algorithm has much higher efficiency than the Metropolis method,and,for a given N,the efficiency is an increasing function ofℓ.Besides Monte Carlo simulations,we expect that these graphical representations would provide a convenient basis for the study of the O(N)spin model by other state-of-the-art methods like the tensor network renormalization.展开更多
The structure of the irreducible collective spaces of the group Sp(12,R),which many-particle nuclear states are classified according to the chain Sp(12,R)⊃U(6)⊃SO(6)⊃SU_(pn)(3)⊗SO(2)⊃SO(3)of the proton-neutron symplec...The structure of the irreducible collective spaces of the group Sp(12,R),which many-particle nuclear states are classified according to the chain Sp(12,R)⊃U(6)⊃SO(6)⊃SU_(pn)(3)⊗SO(2)⊃SO(3)of the proton-neutron symplectic model(PNSM),is considered in detail.This chain of the PNSM was recently shown to correspond to a microscopic shell-model version of the Bohr-Mottelson collective model.The construction of the relevant shell-model representations of the Sp(12,R)group along this chain is considered for three nuclei with varying collective properties and from different mass regions.It is shown that the SU_(pn)(3)basis states of the Sp(12,R)representations belonging to the SO(6)irreps with seniorityυ≥υ0,withυ0 denoting the maximal seniority SO(6)irrep contained in the Sp(12,R)bandhead,are always Pauli allowed,but organized in a different way into different SO(6)shells.This is in contrast to the case of filling the levels of the standard three-dimensional harmonic oscillator and using the plethysm operation.Although the SU_(pn)(3)multiplets withinυ<υ0 are not all Pauli forbidden,it is safe to discard them.The results obtained in the present work are important for the practical application of the microscopic version of the Bohr-Mottelson collective model.展开更多
Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition sys...Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods.展开更多
The existing geometrical solution models for predicting ternary thermodynamic properties from relevant binary ones have been analysed,and a general representation was proposed in an integral form on the bases of these...The existing geometrical solution models for predicting ternary thermodynamic properties from relevant binary ones have been analysed,and a general representation was proposed in an integral form on the bases of these models.展开更多
An explicit algebraic stress model (EASM) has been formulated for two-dimensional turbulent buoyant flows using a five-term tensor representation in a prior study. The derivation was based on partitioning the buoyant ...An explicit algebraic stress model (EASM) has been formulated for two-dimensional turbulent buoyant flows using a five-term tensor representation in a prior study. The derivation was based on partitioning the buoyant flux tensor into a two-dimensional and a three-dimensional component. The five-term basis was formed with the two-dimensional component of the buoyant flux tensor. As such, the derived EASM is limited to two-dimensional flows only. In this paper, a more general approach using a seven-term representation without partitioning the buoyant flux tensor is used to derive an EASM valid for two- and three-dimensional turbulent buoyant flows. Consequently, the basis tensors are formed with the fully three-dimensional buoyant flux tensor. The derived EASM has the two-dimensional flow as a special case. The matrices and the representation coefficients are further simplified using a four-term representation. When this four-term representation model is applied to calculate two-dimensional homogeneous buoyant flows, the results are essentially identical with those obtained previously using the two-dimensional component of the buoyant flux tensor. Therefore, the present approach leads to a more general EASM formulation that is equally valid for two- and three-dimensional turbulent buoyant flows.展开更多
Feature based design has been regarded as a promising approach for CAD/CAM integration.This paper aims to establish a domain independent representation formalism for feature based design in three aspects: formal re...Feature based design has been regarded as a promising approach for CAD/CAM integration.This paper aims to establish a domain independent representation formalism for feature based design in three aspects: formal representation,design process model and design algorithm.The implementing scheme and formal description of feature taxonomy,feature operator,feature model validation and feature transformation are given in the paper.The feature based design process model suited for either sequencial or concurrent engineering is proposed and its application to product structural design and process plan design is presented. Some general design algorithms for developing feature based design system are also addressed.The proposed scheme provides a formal methodology elementary for feature based design system development and operation in a structural way.展开更多
In expression recognition, feature representation is critical for successful recognition since it contains distinctive information of expressions. In this paper, a new approach for representing facial expression featu...In expression recognition, feature representation is critical for successful recognition since it contains distinctive information of expressions. In this paper, a new approach for representing facial expression features is proposed with its objective to describe features in an effective and efficient way in order to improve the recognition performance. The method combines the facial action coding system(FACS) and 'uniform' local binary patterns(LBP) to represent facial expression features from coarse to fine. The facial feature regions are extracted by active shape models(ASM) based on FACS to obtain the gray-level texture. Then, LBP is used to represent expression features for enhancing the discriminant. A facial expression recognition system is developed based on this feature extraction method by using K nearest neighborhood(K-NN) classifier to recognize facial expressions. Finally, experiments are carried out to evaluate this feature extraction method. The significance of removing the unrelated facial regions and enhancing the discrimination ability of expression features in the recognition process is indicated by the results, in addition to its convenience.展开更多
The machinery fault signal is a typical non-Gaussian and non-stationary process. The fault signal can be described by SaS distribution model because of the presence of impulses.Time-frequency distribution is a useful ...The machinery fault signal is a typical non-Gaussian and non-stationary process. The fault signal can be described by SaS distribution model because of the presence of impulses.Time-frequency distribution is a useful tool to extract helpful information of the machinery fault signal. Various fractional lower order(FLO) time-frequency distribution methods have been proposed based on fractional lower order statistics, which include fractional lower order short time Fourier transform(FLO-STFT), fractional lower order Wigner-Ville distributions(FLO-WVDs), fractional lower order Cohen class time-frequency distributions(FLO-CDs), fractional lower order adaptive kernel time-frequency distributions(FLO-AKDs) and adaptive fractional lower order time-frequency auto-regressive moving average(FLO-TFARMA) model time-frequency representation method.The methods and the exiting methods based on second order statistics in SaS distribution environments are compared, simulation results show that the new methods have better performances than the existing methods. The advantages and disadvantages of the improved time-frequency methods have been summarized.Last, the new methods are applied to analyze the outer race fault signals, the results illustrate their good performances.展开更多
Many methods based on deep learning have achieved amazing results in image sentiment analysis.However,these existing methods usually pursue high accuracy,ignoring the effect on model training efficiency.Considering th...Many methods based on deep learning have achieved amazing results in image sentiment analysis.However,these existing methods usually pursue high accuracy,ignoring the effect on model training efficiency.Considering that when faced with large-scale sentiment analysis tasks,the high accuracy rate often requires long experimental time.In view of the weakness,a method that can greatly improve experimental efficiency with only small fluctuations in model accuracy is proposed,and singular value decomposition(SVD)is used to find the sparse feature of the image,which are sparse vectors with strong discriminativeness and effectively reduce redundant information;The authors propose the Fast Dictionary Learning algorithm(FDL),which can combine neural network with sparse representation.This method is based on K-Singular Value Decomposition,and through iteration,it can effectively reduce the calculation time and greatly improve the training efficiency in the case of small fluctuation of accuracy.Moreover,the effectiveness of the proposed method is evaluated on the FER2013 dataset.By adding singular value decomposition,the accuracy of the test suite increased by 0.53%,and the total experiment time was shortened by 8.2%;Fast Dictionary Learning shortened the total experiment time by 36.3%.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60575038)the Natural Science Foundation of Jiangnan University, China (Grant No 20070365)the Program for Innovative Research Team of Jiangnan University, China
文摘A new chaos game representation of protein sequences based on the detailed hydrophobic-hydrophilic (HP) model has been proposed by Yu et al (Physica A 337(2004) 171). A CGR-walk model is proposed based on the new CGR coordinates for the protein sequences from complete genomes in the present paper. The new CCR coordinates based on the detailed HP model are converted into a time series, and a long-memory ARFIMA(p, d, q) model is introduced into the protein sequence analysis. This model is applied to simulating real CCR-walk sequence data of twelve protein sequences. Remarkably long-range correlations are uncovered in the data and the results obtained from these models are reasonably consistent with those available from the ARFIMA(p, d, q) model.
基金National Natural Science Foundation of China(Nos.42301473,42271424,42171397)Chinese Postdoctoral Innovation Talents Support Program(No.BX20230299)+2 种基金China Postdoctoral Science Foundation(No.2023M742884)Natural Science Foundation of Sichuan Province(Nos.24NSFSC2264,2025ZNSFSC0322)Key Research and Development Project of Sichuan Province(No.24ZDYF0633).
文摘As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes.
文摘To makesystem-of-systems combat simulation models easy to be developed and reused, simulation model formal specification and representation are researched. According to the view of system-of-systems combat simulation, and based on DEVS, the simulation model's fundamental formalisms are explored. It includes entity model, system-of-systems model and experiment model. It also presents rigorous formal specification. XML data exchange standard is combined to design the XML based language, SCSL, to support simulation model representation. The corresponding relationship between SCSL and simulation model formalism is discussed and the syntax and semantics of elements in SCSL are detailed. Based on simulation model formal specification, the abstract simulation algorithm is given and SCSL virtual machine, which is capable of automatically interpreting and executing simulation model represented by SCSL, is designed. Finally an application case is presented, which can show the validation of the theory and verification of SCSL.
基金This work was supported by the National Natural Science Foundation of China(91852108,11872230 and 92152301).
文摘Data-driven turbulence modeling studies have reached such a stage that the basic framework is settled,but several essential issues remain that strongly affect the performance.Two problems are studied in the current research:(1)the processing of the Reynolds stress tensor and(2)the coupling method between the machine learning model and flow solver.For the Reynolds stress processing issue,we perform the theoretical derivation to extend the relevant tensor arguments of Reynolds stress.Then,the tensor representation theorem is employed to give the complete irreducible invariants and integrity basis.An adaptive regularization term is employed to enhance the representation performance.For the coupling issue,an iterative coupling framework with consistent convergence is proposed and then applied to a canonical separated flow.The results have high consistency with the direct numerical simulation true values,which proves the validity of the current approach.
文摘A sinusoidal representation of speech and a cochlear model are used to extract speech parameters in this paper, and a speech analysis/synthesis system controlled by the auditory spectrum is developed with the model. The computer simulation shows that speech can be synthesized with only 12 parameters per frame on the average. The method has the advantages of few parameters, low complexity and high performance of speech representation. The synthetic speech has high intelligibility.
基金the National Natural Science Foundation of China (Nos.50575142,50775140 and 60304015)the National High Technology Research and Development Program (863) of China (No.2008AA04Z113)+2 种基金the National Basic Research Program (973) of China (No.2006CB705400)the Shanghai Committee of Science and Technology (Nos.08JC1412000,09DZ1121400 and 07XD14016)the Research Fund for the Doctoral Program of Higher Education (No.200802480036)
文摘Functionality represents a blueprint of a product and plays a crucial role in problem-solving such as design.This article discusses the model representation from the angle of functional ontology by function deployment.We construct a framework of functional ontology which decomposes the function and contains a library of vocabulary to comprehensively represent the conceptual design model.The ontology enables the automatic identification system to search in the functional space.Furthermore,the functional ontology can form a systematic representation for the model so that it can be reused in the conceptual design and can be applied in the domain of knowledge fusion in our further work.
基金Supported by the National Key R&D Program of China(2022YFC3803600).
文摘Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation technologies.Current methods for extracting features from mesh edges or faces struggle with complex 3D models because edge-based approaches miss global contexts and face-based methods overlook variations in adjacent areas,which affects the overall precision.To address these issues,we propose the Feature Discrimination and Context Propagation Network(FDCPNet),which is a novel approach that synergistically integrates local and global features in mesh datasets.Methods FDCPNet is composed of two modules:(1)the Feature Discrimination Module,which employs an attention mechanism to enhance the identification of key local features,and(2)the Context Propagation Module,which enriches key local features by integrating global contextual information,thereby facilitating a more detailed and comprehensive representation of crucial areas within the mesh model.Results Experiments on popular datasets validated the effectiveness of FDCPNet,showing an improvement in the classification accuracy over the baseline MeshNet.Furthermore,even with reduced mesh face numbers and limited training data,FDCPNet achieved promising results,demonstrating its robustness in scenarios of variable complexity.
文摘An identification-based approach for aircraft engine modeling using the nonlinear HammersteinWiener representation was proposed.Hammerstein-Wiener modeling for both limited flight envelope and extended flight envelope was investigated.Simulation shows that the resulting model can be valid over 10%variation of rotational speed of the engine,compared with those linear models that are only valid over 3%—5%change of rotational speed.It is further demonstrated that the proposed method can be utilized over large envelope up to 20% variation of rotational speed of the engine.The fundamental idea is to use nonlinear models to extend the feasible/valid region rather than those linear models.This may consequently simplify the switching logic in the onboard digital control units.This is often overlooked in aircraft engine control community,but has been emphasized in the research.
基金Supported by the National Natural Science Foundation of China(61103136,61370156,61503074)Open Research Foundation of Science and Technology on Aerospace Flight Dynamics Laboratory(2014afdl002)
文摘Action model learning has become a hot topic in knowledge engineering for automated planning.A key problem for learning action models is to analyze state changes before and after action executions from observed"plan traces".To support such an analysis,a new approach is proposed to partition propositions of plan traces into states.First,vector representations of propositions and actions are obtained by training a neural network called Skip-Gram borrowed from the area of natural language processing(NLP).Then,a type of semantic distance among propositions and actions is defined based on their similarity measures in the vector space.Finally,k-means and k-nearest neighbor(kNN)algorithms are exploited to map propositions to states.This approach is called state partition by word vector(SPWV),which is implemented on top of a recent action model learning framework by Rao et al.Experimental results on the benchmark domains show that SPWV leads to a lower error rate of the learnt action model,compared to the probability based approach for state partition that was developed by Rao et al.
基金This work was supported by the Project of Industry and University Cooperative Research of Jiangsu Province,China(No.BY2019051)Ma,J.would like to thank the Jiangsu Eazytec Information Technology Company(www.eazytec.com)for their financial support.
文摘Traditional topic models have been widely used for analyzing semantic topics from electronic documents.However,the obvious defects of topic words acquired by them are poor in readability and consistency.Only the domain experts are possible to guess their meaning.In fact,phrases are the main unit for people to express semantics.This paper presents a Distributed Representation-Phrase Latent Dirichlet Allocation(DR-Phrase LDA)which is a phrase topic model.Specifically,we reasonably enhance the semantic information of phrases via distributed representation in this model.The experimental results show the topics quality acquired by our model is more readable and consistent than other similar topic models.
文摘A knowledge representation has been proposed using the state space theory of Artificial Intelligence for Dynamic Programming Model, in which a model can be defined as a six tuple M=(I,G,O,T,D,S). A building block modeling method uses the modules of a six tuple to form a rule based solution model. Moreover, a rule based system has been designed and set up to solve the Dynamic Programming Model. This knowledge based representation can be easily used to express symbolical knowledge and dynamic characteristics for Dynamic Programming Model, and the inference based on the knowledge in the process of solving Dynamic Programming Model can also be conveniently realized in computer.
基金supported by the National Natural Science Foundation of China(under Grant No.12275263)the Innovation Program for Quantum Science and Technology(under Grant No.2021ZD0301900)the Natural Science Foundation of Fujian Province of China:2023J02032.
文摘We present a family of graphical representations for the O(N)spin model,where N≥1 represents the spin dimension,and N=1,2,3 corresponds to the Ising,XY and Heisenberg models,respectively.With an integer parameter 0≤ℓ≤N/2,each configuration is the coupling of ℓ copies of subgraphs consisting of directed flows and N−2ℓ copies of subgraphs constructed by undirected loops,which we call the XY and Ising subgraphs,respectively.On each lattice site,the XY subgraphs satisfy the Kirchhoff flow-conservation law and the Ising subgraphs obey the Eulerian bond condition.Then,we formulate worm-type algorithms and simulate the O(N)model on the simple-cubic lattice for N from 2 to 6 at all possibleℓ.It is observed that the worm algorithm has much higher efficiency than the Metropolis method,and,for a given N,the efficiency is an increasing function ofℓ.Besides Monte Carlo simulations,we expect that these graphical representations would provide a convenient basis for the study of the O(N)spin model by other state-of-the-art methods like the tensor network renormalization.
文摘The structure of the irreducible collective spaces of the group Sp(12,R),which many-particle nuclear states are classified according to the chain Sp(12,R)⊃U(6)⊃SO(6)⊃SU_(pn)(3)⊗SO(2)⊃SO(3)of the proton-neutron symplectic model(PNSM),is considered in detail.This chain of the PNSM was recently shown to correspond to a microscopic shell-model version of the Bohr-Mottelson collective model.The construction of the relevant shell-model representations of the Sp(12,R)group along this chain is considered for three nuclei with varying collective properties and from different mass regions.It is shown that the SU_(pn)(3)basis states of the Sp(12,R)representations belonging to the SO(6)irreps with seniorityυ≥υ0,withυ0 denoting the maximal seniority SO(6)irrep contained in the Sp(12,R)bandhead,are always Pauli allowed,but organized in a different way into different SO(6)shells.This is in contrast to the case of filling the levels of the standard three-dimensional harmonic oscillator and using the plethysm operation.Although the SU_(pn)(3)multiplets withinυ<υ0 are not all Pauli forbidden,it is safe to discard them.The results obtained in the present work are important for the practical application of the microscopic version of the Bohr-Mottelson collective model.
基金Supported by the Centre for Digital Entertainment at Bournemouth University by the UK Engineering and Physical Sciences Research Council(EPSRC)EP/L016540/1 and Humain Ltd.
文摘Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods.
文摘The existing geometrical solution models for predicting ternary thermodynamic properties from relevant binary ones have been analysed,and a general representation was proposed in an integral form on the bases of these models.
文摘An explicit algebraic stress model (EASM) has been formulated for two-dimensional turbulent buoyant flows using a five-term tensor representation in a prior study. The derivation was based on partitioning the buoyant flux tensor into a two-dimensional and a three-dimensional component. The five-term basis was formed with the two-dimensional component of the buoyant flux tensor. As such, the derived EASM is limited to two-dimensional flows only. In this paper, a more general approach using a seven-term representation without partitioning the buoyant flux tensor is used to derive an EASM valid for two- and three-dimensional turbulent buoyant flows. Consequently, the basis tensors are formed with the fully three-dimensional buoyant flux tensor. The derived EASM has the two-dimensional flow as a special case. The matrices and the representation coefficients are further simplified using a four-term representation. When this four-term representation model is applied to calculate two-dimensional homogeneous buoyant flows, the results are essentially identical with those obtained previously using the two-dimensional component of the buoyant flux tensor. Therefore, the present approach leads to a more general EASM formulation that is equally valid for two- and three-dimensional turbulent buoyant flows.
文摘Feature based design has been regarded as a promising approach for CAD/CAM integration.This paper aims to establish a domain independent representation formalism for feature based design in three aspects: formal representation,design process model and design algorithm.The implementing scheme and formal description of feature taxonomy,feature operator,feature model validation and feature transformation are given in the paper.The feature based design process model suited for either sequencial or concurrent engineering is proposed and its application to product structural design and process plan design is presented. Some general design algorithms for developing feature based design system are also addressed.The proposed scheme provides a formal methodology elementary for feature based design system development and operation in a structural way.
基金supported by National Natural Science Foundation of China(No.61273339)
文摘In expression recognition, feature representation is critical for successful recognition since it contains distinctive information of expressions. In this paper, a new approach for representing facial expression features is proposed with its objective to describe features in an effective and efficient way in order to improve the recognition performance. The method combines the facial action coding system(FACS) and 'uniform' local binary patterns(LBP) to represent facial expression features from coarse to fine. The facial feature regions are extracted by active shape models(ASM) based on FACS to obtain the gray-level texture. Then, LBP is used to represent expression features for enhancing the discriminant. A facial expression recognition system is developed based on this feature extraction method by using K nearest neighborhood(K-NN) classifier to recognize facial expressions. Finally, experiments are carried out to evaluate this feature extraction method. The significance of removing the unrelated facial regions and enhancing the discrimination ability of expression features in the recognition process is indicated by the results, in addition to its convenience.
基金supported by the National Natural Science Foundation of China(61261046,61362038)the Natural Science Foundation of Jiangxi Province(20142BAB207006,20151BAB207013)+2 种基金the Science and Technology Project of Provincial Education Department of Jiangxi Province(GJJ14738,GJJ14739)the Research Foundation of Health Department of Jiangxi Province(20175561)the Science and Technology Project of Jiujiang University(2016KJ001,2016KJ002)
文摘The machinery fault signal is a typical non-Gaussian and non-stationary process. The fault signal can be described by SaS distribution model because of the presence of impulses.Time-frequency distribution is a useful tool to extract helpful information of the machinery fault signal. Various fractional lower order(FLO) time-frequency distribution methods have been proposed based on fractional lower order statistics, which include fractional lower order short time Fourier transform(FLO-STFT), fractional lower order Wigner-Ville distributions(FLO-WVDs), fractional lower order Cohen class time-frequency distributions(FLO-CDs), fractional lower order adaptive kernel time-frequency distributions(FLO-AKDs) and adaptive fractional lower order time-frequency auto-regressive moving average(FLO-TFARMA) model time-frequency representation method.The methods and the exiting methods based on second order statistics in SaS distribution environments are compared, simulation results show that the new methods have better performances than the existing methods. The advantages and disadvantages of the improved time-frequency methods have been summarized.Last, the new methods are applied to analyze the outer race fault signals, the results illustrate their good performances.
基金supported by the National Natural Science Foundation of China(No.61801440)the High‐quality and Cutting‐edge Disciplines Construction Project for Universities in Beijing(Internet Information,Communication University of China),State Key Laboratory of Media Convergence and Communication(Communication University of China)the Fundamental Research Funds for the Central Universities(CUC2019B069).
文摘Many methods based on deep learning have achieved amazing results in image sentiment analysis.However,these existing methods usually pursue high accuracy,ignoring the effect on model training efficiency.Considering that when faced with large-scale sentiment analysis tasks,the high accuracy rate often requires long experimental time.In view of the weakness,a method that can greatly improve experimental efficiency with only small fluctuations in model accuracy is proposed,and singular value decomposition(SVD)is used to find the sparse feature of the image,which are sparse vectors with strong discriminativeness and effectively reduce redundant information;The authors propose the Fast Dictionary Learning algorithm(FDL),which can combine neural network with sparse representation.This method is based on K-Singular Value Decomposition,and through iteration,it can effectively reduce the calculation time and greatly improve the training efficiency in the case of small fluctuation of accuracy.Moreover,the effectiveness of the proposed method is evaluated on the FER2013 dataset.By adding singular value decomposition,the accuracy of the test suite increased by 0.53%,and the total experiment time was shortened by 8.2%;Fast Dictionary Learning shortened the total experiment time by 36.3%.