The integration of high-speed railway communication systems with 5G technology is widely recognized as a significant development.Due to the considerable mobility of trains and the complex nature of the environment,the...The integration of high-speed railway communication systems with 5G technology is widely recognized as a significant development.Due to the considerable mobility of trains and the complex nature of the environment,the wireless channel exhibits non-stationary characteristics and fast time-varying characteristics,which presents significant hurdles in terms of channel estimation.In addition,the use of massive MIMO technology in the context of 5G networks also leads to an increase in the complexity of estimation.To address the aforementioned issues,this paper presents a novel approach for channel estimation in high mobility scenarios using a reconstruction and recovery network.In this method,the time-frequency response of the channel is considered as a two-dimensional image.The Fast Super-Resolution Convolution Neural Network(FSRCNN)is used to first reconstruct channel images.Next,the Denoising Convolution Neural Network(DnCNN)is applied to reduce the channel noise and improve the accuracy of channel estimation.Simulation results show that the accuracy of the channel estimation model surpasses that of the standard channel estimation method,while also exhibiting reduced algorithmic complexity.展开更多
The Fifth Generation of Mobile Communications for Railways(5G-R)brings significant opportunities for the rail industry.However,alongside the potential and benefits of the railway 5G network are complex security challe...The Fifth Generation of Mobile Communications for Railways(5G-R)brings significant opportunities for the rail industry.However,alongside the potential and benefits of the railway 5G network are complex security challenges.Ensuring the security and reliability of railway 5G networks is therefore essential.This paper presents a detailed examination of security assessment techniques for railway 5G networks,focusing on addressing the unique security challenges in this field.In this paper,various security requirements in railway 5G networks are analyzed,and specific processes and methods for conducting comprehensive security risk assessments are presented.This study provides a framework for securing railway 5G network development and ensuring its long-term sustainability.展开更多
Purpose–The purpose of this study is to study the quantitative evaluation method of contact wire cracks by analyzing the changing law of eddy current signal characteristics under different cracks of contact wire of h...Purpose–The purpose of this study is to study the quantitative evaluation method of contact wire cracks by analyzing the changing law of eddy current signal characteristics under different cracks of contact wire of high-speed railway so as to provide a new way of thinking and method for the detection of contact wire injuries of high-speed railway.Design/methodology/approach–Based on the principle of eddy current detection and the specification parameters of high-speed railway contact wires in China,a finite element model for eddy current testing of contact wires was established to explore the variation patterns of crack signal characteristics in numerical simulation.A crack detection system based on eddy current detection was built,and eddy current detection voltage data was obtained for cracks of different depths and widths.By analyzing the variation law of eddy current signals,characteristic parameters were obtained and a quantitative evaluation model for crack width and depth was established based on the back propagation(BP)neural network.Findings–Numerical simulation and experimental detection of eddy current signal change rule is basically consistent,based on the law of the selected characteristics of the parameters in the BP neural network crack quantitative evaluation model also has a certain degree of effectiveness and reliability.BP neural network training results show that the classification accuracy for different widths and depths of the classification is 100 and 85.71%,respectively,and can be effectively realized on the high-speed railway contact line cracks of the quantitative evaluation classification.Originality/value–This study establishes a new type of high-speed railway contact wire crack detection and identification method,which provides a new technical means for high-speed railway contact wire injury detection.The study of eddy current characteristic law and quantitative evaluation model for different cracks in contact line has important academic value and practical significance,and it has certain guiding significance for the detection technology of contact line in high-speed railway.展开更多
This paper describes the development and optimization plans for the China Railway Express(CR Express).As a new type of international land transport organization,CR Express has emerged with the continuous expansion of ...This paper describes the development and optimization plans for the China Railway Express(CR Express).As a new type of international land transport organization,CR Express has emerged with the continuous expansion of China toward European investment and trade,and in particular,has expanded with the continuous progress of the One Belt and One Road(OBOR)initiative.In addition to improving the service quality of CR Express,the operating costs must be reduced for developing“smart railways”that serve“smart cities”.We propose a dualobjective-based function mathematical optimization model;the satisfaction of the cargo owner is considered,and the timeliness,transportation capacity,and goods category constraints of CR Express transportation are designed.Moreover,we present the normalized equivalent method of the two-objective function of the model.Finally,a case study is conducted against the background of certain trains in the western corridor of CR Express to validate the effectiveness of the model and research methods proposed in this study.展开更多
Session-based recommendation systems(SBR)are pivotal in suggesting items by analyzing anonymized sequences of user interactions.Traditional methods,while competent,often fall short in two critical areas:they fail to a...Session-based recommendation systems(SBR)are pivotal in suggesting items by analyzing anonymized sequences of user interactions.Traditional methods,while competent,often fall short in two critical areas:they fail to address potential inter-session item transitions,which are behavioral dependencies that extend beyond individual session boundaries,and they rely on monolithic item aggregation to construct session representations.This approach does not capture the multi-scale and heterogeneous nature of user intent,leading to a decrease in modeling accuracy.To overcome these limitations,a novel approach called HMGS has been introduced.This system incorporates dual graph architectures to enhance the recommendation process.A global transition graph captures latent cross-session item dependencies,while a heterogeneous intra-session graph encodesmulti-scale item embeddings through localized feature propagation.Additionally,amulti-tier graphmatchingmechanism aligns user preference signals across different granularities,significantly improving interest localization accuracy.Empirical validation on benchmark datasets(Tmall and Diginetica)confirms HMGS’s efficacy against state-of-the-art baselines.Quantitative analysis reveals performance gains of 20.54%and 12.63%in Precision@10 on Tmall and Diginetica,respectively.Consistent improvements are observed across auxiliary metrics,with MRR@10,Precision@20,and MRR@20 exhibiting enhancements between 4.00%and 21.36%,underscoring the framework’s robustness in multi-faceted recommendation scenarios.展开更多
Currently,most trains are equipped with dedicated cameras for capturing pantograph videos.Pantographs are core to the high-speed-railway pantograph-catenary system,and their failure directly affects the normal operati...Currently,most trains are equipped with dedicated cameras for capturing pantograph videos.Pantographs are core to the high-speed-railway pantograph-catenary system,and their failure directly affects the normal operation of high-speed trains.However,given the complex and variable real-world operational conditions of high-speed railways,there is no real-time and robust pantograph fault-detection method capable of handling large volumes of surveillance video.Hence,it is of paramount importance to maintain real-time monitoring and analysis of pantographs.Our study presents a real-time intelligent detection technology for identifying faults in high-speed railway pantographs,utilizing a fusion of self-attention and convolution features.We delved into lightweight multi-scale feature-extraction and fault-detection models based on deep learning to detect pantograph anomalies.Compared with traditional methods,this approach achieves high recall and accuracy in pantograph recognition,accurately pinpointing issues like discharge sparks,pantograph horns,and carbon pantograph-slide malfunctions.After experimentation and validation with actual surveillance videos of electric multiple-unit train,our algorithmic model demonstrates real-time,high-accuracy performance even under complex operational conditions.展开更多
In order to ensure the uninterrupted communication between high-speed train and base station,driving safety and satisfying online experience of passengers,a dual-link switching algorithm based on CNN-WaveNet decision ...In order to ensure the uninterrupted communication between high-speed train and base station,driving safety and satisfying online experience of passengers,a dual-link switching algorithm based on CNN-WaveNet decision parameter multi-step prediction model is proposed to establish a two-hop relay communication system model between the high-speed train and the base station.Firstly,the switching algorithm uses convolution neural network(CNN)to extract the time sequence characteristics of decision parameters.Then,it learns the mapping relationship between feature information and decision parameters based on WaveNet and combining with rolling prediction method to realize multi-step prediction of decision parameters.Finally,dual-antenna communication mode is adopted to realize dual-link communication.The simulation results show that the proposed handover algorithm can improve handover trigger rate and handover success rate.展开更多
5G-R is the main type of next-generation mobile communication system for railways,offering highly reliable broadband data transmission services for intelligent railway operations.In the light of meeting the bearing de...5G-R is the main type of next-generation mobile communication system for railways,offering highly reliable broadband data transmission services for intelligent railway operations.In the light of meeting the bearing demands of the 5G-R network,a comprehensive data transmission platform is proposed.This platform enables unified accession for various data service systems and applies Software Defined Network(SDN)technology for dynamic routing selection and high-effective data forwarding.Based on shared key lightweight access authentication technology,two-way identity authentication is performed for mobile terminals and network-side devices,ensuring the legitimacy verification of heterogeneous terminals within the application domain.展开更多
In this paper, a new model is constructed for the causation analysis of railway accident based on the complex network theory. In the model, the nodes are defined as various manifest or latent accident causal factors. ...In this paper, a new model is constructed for the causation analysis of railway accident based on the complex network theory. In the model, the nodes are defined as various manifest or latent accident causal factors. By employing the complex network theory, especially its statistical indicators, the railway accident as well as its key causations can be analyzed from the overall perspective. As a case, the "7.23" China-Yongwen railway accident is illustrated based on this model. The results show that the inspection of signals and the checking of line conditions before trains run played an important role in this railway accident. In conclusion, the constructed model gives a theoretical clue for railway accident prediction and, hence, greatly reduces the occurrence of railway accidents.展开更多
This paper chooses passenger flow data of some stations in China from January 2015 to March 2016, and the time series prediction model of BP neural network for railway passenger flow is established. But because of its...This paper chooses passenger flow data of some stations in China from January 2015 to March 2016, and the time series prediction model of BP neural network for railway passenger flow is established. But because of its slow convergence speed and easily falling into local optimal solution of the problem, we propose to improve the time series model of BP neural network by genetic algorithm to predict railway passenger flow. Experimental results show that the improved method has higher prediction accuracy and better nonlinear fitting ability.展开更多
A model is proposed to describe the passengers’route choice behaviors in urban railway traffic with stochastic link capacity degradation by considering two types of demand,sensitive and insensitive passenger.The inse...A model is proposed to describe the passengers’route choice behaviors in urban railway traffic with stochastic link capacity degradation by considering two types of demand,sensitive and insensitive passenger.The insensitive passengers choose their route without paying much attention to congestion.To the contrary,sensitive passengers who consider route congestion choose travel route based on generalized cost.An equilibrium state is given by variational inequalities in terms of travel generalized cost,which is represented by the combinations of mean and variance of total travel time.The diagonalization algorithm is given to solve this programming.Results show that insensitive passengers have large effects on the path choice than sensitive ones,especially for the larger demand.展开更多
This paper discussed the necessity of establishing a computer network in a mining railway transport management system. The network structure and the system security design, associated with the real development conditi...This paper discussed the necessity of establishing a computer network in a mining railway transport management system. The network structure and the system security design, associated with the real development condition of a mining area, were brought forward, and the system evaluation was given.展开更多
Nowadays,high mobility scenarios have become increasingly common.The widespread adoption of High-speed Rail(HSR)in China exemplifies this trend,while more promising use cases,such as vehicle-to-everything,continue to ...Nowadays,high mobility scenarios have become increasingly common.The widespread adoption of High-speed Rail(HSR)in China exemplifies this trend,while more promising use cases,such as vehicle-to-everything,continue to emerge.However,the Internet access provided in high mobility environments stllstruggles to achieve seamless connectivity.The next generation of wireless cellular technology 5 G further poses more requirements on the endto-end evolution to fully utilize its ultra-high band-width,while existing network diagnostic tools focus on above-IP layers or below-IP layers only.We then propose HiMoDiag,which enables flexible online analysis of the network performance in a cross-layer manner,i.e.,from the top(application layer)to the bottom(physical layer).We believe HiMoDiag could greatly simplify the process of pinpointing the deficiencies of the Internet access delivery on HSR,lead to more timely optimization and ultimately help to improve the network performance.展开更多
In order to study the nodes importance and its evolution process of the railway network of SREB (Silk Road Economic Belt), we construct the network (RNSREB) based on Graph Theory, which focuses on the time intervals a...In order to study the nodes importance and its evolution process of the railway network of SREB (Silk Road Economic Belt), we construct the network (RNSREB) based on Graph Theory, which focuses on the time intervals according to actually railway network, railway project under construction and the national railway network of medium-and long-term plan. The algorithms for vital nodes evaluation are analyzed, the evaluation method on nodes importance of RNSREB is proposed, the quantized values of each node are calculated with Pajek, and TOP20 core nodes of the network with different coefficients and time intervals are determined respectively. Then the evolution process of TOP20 critical nodes with 4 periods is contrasted and analyzed. It is indicated that some vital nodes newly discovered (Geermu, Maduo, Ruoqiang) should be concerned.展开更多
This Paper focuses on the formation of Pan-Asian trunk railway netWork. Pan-Asian trunk railways will be composed of two railway systems; one is the railway system linking up railways of 19 countries in Middle East, S...This Paper focuses on the formation of Pan-Asian trunk railway netWork. Pan-Asian trunk railways will be composed of two railway systems; one is the railway system linking up railways of 19 countries in Middle East, South Asia and Southeast Asia; the other is the cooperative railways system between countries. To realize Chinese railway network connecting with the railway networks of Eurasian countries is the prerequisite and guarantee for developing socialist market economy. The present transport capacity and the overall network level are too low to connect with Pan-Asian railway network, for example, the density of railway networks is low, the structure of airway networks is backward, the distribution of railway networks is unbalanced, etc. In order to match Pan-Asian trunk railway network, China must speed up railway construction, open some new ports, construct railway thoroughfare passing through China and neighboring展开更多
Purpose–The traction cable is paralleled with the existing traction network of electrified railway through transverse connecting line to form the scheme of long distance power supply for the traction network.This pap...Purpose–The traction cable is paralleled with the existing traction network of electrified railway through transverse connecting line to form the scheme of long distance power supply for the traction network.This paper aims to study the scheme composition and power supply distance(PSD)of the scheme.Design/methodology/approach–Based on the structure of parallel traction network(referred to as“cable traction network(CTN)”),the power supply modes(PSMs)are divided into cableþdirect PSM and cableþautotransformer(AT)PSM(including Japanese mode,French mode and new mode).Taking cableþJapanese AT PSM as an example,the scheme of long distance power supply for CTN under the PSMs of co-phase and out-of-phase power supply are designed.On the basis of establishing the equivalent circuit model and the chain circuit model of CTN,taking the train working voltage as the constraint condition,and based on the power flow calculation of multiple train loads,the calculation formula and process for determining the PSD of CTN are given.The impedance and PSD of CTN under the cableþAT PSM are simulated and analyzed,and a certain line is taken as an example to compare the scheme design.Findings–Results show that the equivalent impedance of CTN under the cableþAT PSM is smaller,and the PSD is about 2.5 times of that under the AT PSM,which can effectively increase the PSD and the flexibility of external power supply location.Originality/value–The research content can effectively improve the PSD of traction power supply system and has important reference value for the engineering application of the scheme.展开更多
To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure ...To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure of evaluation model is constructed according to evaluation indicator system. Then evaluation samples are generated and provided to train this model. Thus it can reflect the relation between attributive value and evaluation result,as well as the weight of evaluation indicator. Once evaluation indicators of each candidate are fuzzily quantified and fed into the trained network model,the corresponding evaluation result is outputted and the best alternative can be selected. Under this model,expert knowledge can be effectively acquired and expressed,and the quantificational evaluation can be implemented for kinematic scheme with multi-level evaluation indicator system. Several key problems on this model are discussed and an illustration has demonstrated that this model is feasible and can be regarded as a new idea for solving kinematic scheme evaluation.展开更多
The integrated aviation and High-Speed Railway(HSR)transportation system plays a vital role for today’s inter-city transportation services.However,an increasing number of unexpected disruptions(such as operation fail...The integrated aviation and High-Speed Railway(HSR)transportation system plays a vital role for today’s inter-city transportation services.However,an increasing number of unexpected disruptions(such as operation failures,natural disasters,or intentional attacks)pose a considerable threat to the normal operation of the system,especially on ground transfer,leading to the extensive research on its vulnerability.Previous approaches mainly focus on interruptions within a single transportation mode,neglecting the role of ground transfer which serves as a coupled connection between aviation and High-Speed Railway.This paper proposes a network-based framework for evaluating the vulnerability of the Chinese Coupled Aviation and High-Speed Railway(CAHSR)network from the viewpoint of ground transfer interruption.Taking the end-to-end travel time and passenger flow information into consideration as an evaluation measure and analyzing from the perspective of urban agglomerations,an adaptive method is developed to identify the critical cities and further investigate their failure impacts on the geographic distribution of vulnerability.In addition,the proposed model explores variations of vulnerability under different failure time intervals.Based on the empirical study,some major conclusions are highlighted as follows:(A)Only a few cities show significant impacts on the network’s vulnerability when ground transfer interruptions occurred.(B)The distribution of vulnerability is not proportional to the distance between failure city and influenced city.(C)The vulnerability is more serious in the morning and evening when the ground transfer is disconnected.Our findings may provide new insights for maintenance and optimization of the CAHSR network and other real-world transportation networks.展开更多
It is an important issue to identify important influencing factors in railway accident analysis.In this paper,employing the good measure of dependence for two-variable relationships,the maximal information coefficient...It is an important issue to identify important influencing factors in railway accident analysis.In this paper,employing the good measure of dependence for two-variable relationships,the maximal information coefficient(MIC),which can capture a wide range of associations,a complex network model for railway accident analysis is designed in which nodes denote factors of railway accidents and edges are generated between two factors of which MIC values are larger than or equal to the dependent criterion.The variety of network structure is studied.As the increasing of the dependent criterion,the network becomes to an approximate scale-free network.Moreover,employing the proposed network,important influencing factors are identified.And we find that the annual track density-gross tonnage factor is an important factor which is a cut vertex when the dependent criterion is equal to 0.3.From the network,it is found that the railway development is unbalanced for different states which is consistent with the fact.展开更多
基金funded in part by the National Natural Science Foundation of China(62261024 and U2001213)in part by National Key Research and Development Project(2020YFB1807204)+2 种基金in part by Science and Technology Project of Education Department of Jiangxi Province(GJJ214606 and GJJ2205201)in part by Key Laboratory of Universal Wireless Communications(BUPT),Ministry of Education,P.R.China(KFKT-2022101)in part by the Jiangxi Provincial Natural Science Foundation(20212BAB212001)。
文摘The integration of high-speed railway communication systems with 5G technology is widely recognized as a significant development.Due to the considerable mobility of trains and the complex nature of the environment,the wireless channel exhibits non-stationary characteristics and fast time-varying characteristics,which presents significant hurdles in terms of channel estimation.In addition,the use of massive MIMO technology in the context of 5G networks also leads to an increase in the complexity of estimation.To address the aforementioned issues,this paper presents a novel approach for channel estimation in high mobility scenarios using a reconstruction and recovery network.In this method,the time-frequency response of the channel is considered as a two-dimensional image.The Fast Super-Resolution Convolution Neural Network(FSRCNN)is used to first reconstruct channel images.Next,the Denoising Convolution Neural Network(DnCNN)is applied to reduce the channel noise and improve the accuracy of channel estimation.Simulation results show that the accuracy of the channel estimation model surpasses that of the standard channel estimation method,while also exhibiting reduced algorithmic complexity.
基金supported in part by the Fundamental Research Funds for the Central Universities under Grant No.2025JBXT010in part by NSFC under Grant No.62171021,in part by the Project of China State Railway Group under Grant No.N2024B004in part by ZTE IndustryUniversityInstitute Cooperation Funds under Grant No.l23L00010.
文摘The Fifth Generation of Mobile Communications for Railways(5G-R)brings significant opportunities for the rail industry.However,alongside the potential and benefits of the railway 5G network are complex security challenges.Ensuring the security and reliability of railway 5G networks is therefore essential.This paper presents a detailed examination of security assessment techniques for railway 5G networks,focusing on addressing the unique security challenges in this field.In this paper,various security requirements in railway 5G networks are analyzed,and specific processes and methods for conducting comprehensive security risk assessments are presented.This study provides a framework for securing railway 5G network development and ensuring its long-term sustainability.
文摘Purpose–The purpose of this study is to study the quantitative evaluation method of contact wire cracks by analyzing the changing law of eddy current signal characteristics under different cracks of contact wire of high-speed railway so as to provide a new way of thinking and method for the detection of contact wire injuries of high-speed railway.Design/methodology/approach–Based on the principle of eddy current detection and the specification parameters of high-speed railway contact wires in China,a finite element model for eddy current testing of contact wires was established to explore the variation patterns of crack signal characteristics in numerical simulation.A crack detection system based on eddy current detection was built,and eddy current detection voltage data was obtained for cracks of different depths and widths.By analyzing the variation law of eddy current signals,characteristic parameters were obtained and a quantitative evaluation model for crack width and depth was established based on the back propagation(BP)neural network.Findings–Numerical simulation and experimental detection of eddy current signal change rule is basically consistent,based on the law of the selected characteristics of the parameters in the BP neural network crack quantitative evaluation model also has a certain degree of effectiveness and reliability.BP neural network training results show that the classification accuracy for different widths and depths of the classification is 100 and 85.71%,respectively,and can be effectively realized on the high-speed railway contact line cracks of the quantitative evaluation classification.Originality/value–This study establishes a new type of high-speed railway contact wire crack detection and identification method,which provides a new technical means for high-speed railway contact wire injury detection.The study of eddy current characteristic law and quantitative evaluation model for different cracks in contact line has important academic value and practical significance,and it has certain guiding significance for the detection technology of contact line in high-speed railway.
基金supported by the National Natural Science Foundation of China(Grant No.62102032)the R&D Program of Beijing Municipal Education Commission(Grant No.KM202211417010).
文摘This paper describes the development and optimization plans for the China Railway Express(CR Express).As a new type of international land transport organization,CR Express has emerged with the continuous expansion of China toward European investment and trade,and in particular,has expanded with the continuous progress of the One Belt and One Road(OBOR)initiative.In addition to improving the service quality of CR Express,the operating costs must be reduced for developing“smart railways”that serve“smart cities”.We propose a dualobjective-based function mathematical optimization model;the satisfaction of the cargo owner is considered,and the timeliness,transportation capacity,and goods category constraints of CR Express transportation are designed.Moreover,we present the normalized equivalent method of the two-objective function of the model.Finally,a case study is conducted against the background of certain trains in the western corridor of CR Express to validate the effectiveness of the model and research methods proposed in this study.
基金funded by the State Grid Hebei Electric Power Company(Project Number:KJ2023-093).
文摘Session-based recommendation systems(SBR)are pivotal in suggesting items by analyzing anonymized sequences of user interactions.Traditional methods,while competent,often fall short in two critical areas:they fail to address potential inter-session item transitions,which are behavioral dependencies that extend beyond individual session boundaries,and they rely on monolithic item aggregation to construct session representations.This approach does not capture the multi-scale and heterogeneous nature of user intent,leading to a decrease in modeling accuracy.To overcome these limitations,a novel approach called HMGS has been introduced.This system incorporates dual graph architectures to enhance the recommendation process.A global transition graph captures latent cross-session item dependencies,while a heterogeneous intra-session graph encodesmulti-scale item embeddings through localized feature propagation.Additionally,amulti-tier graphmatchingmechanism aligns user preference signals across different granularities,significantly improving interest localization accuracy.Empirical validation on benchmark datasets(Tmall and Diginetica)confirms HMGS’s efficacy against state-of-the-art baselines.Quantitative analysis reveals performance gains of 20.54%and 12.63%in Precision@10 on Tmall and Diginetica,respectively.Consistent improvements are observed across auxiliary metrics,with MRR@10,Precision@20,and MRR@20 exhibiting enhancements between 4.00%and 21.36%,underscoring the framework’s robustness in multi-faceted recommendation scenarios.
基金supported by the National Key R&D Program of China(No.2022YFB4301102).
文摘Currently,most trains are equipped with dedicated cameras for capturing pantograph videos.Pantographs are core to the high-speed-railway pantograph-catenary system,and their failure directly affects the normal operation of high-speed trains.However,given the complex and variable real-world operational conditions of high-speed railways,there is no real-time and robust pantograph fault-detection method capable of handling large volumes of surveillance video.Hence,it is of paramount importance to maintain real-time monitoring and analysis of pantographs.Our study presents a real-time intelligent detection technology for identifying faults in high-speed railway pantographs,utilizing a fusion of self-attention and convolution features.We delved into lightweight multi-scale feature-extraction and fault-detection models based on deep learning to detect pantograph anomalies.Compared with traditional methods,this approach achieves high recall and accuracy in pantograph recognition,accurately pinpointing issues like discharge sparks,pantograph horns,and carbon pantograph-slide malfunctions.After experimentation and validation with actual surveillance videos of electric multiple-unit train,our algorithmic model demonstrates real-time,high-accuracy performance even under complex operational conditions.
基金supported by National Natural Science Foundation of China(Nos.62161016,61661025)Gansu Provincial Science and Technology Plan(No.20JR10RA273)。
文摘In order to ensure the uninterrupted communication between high-speed train and base station,driving safety and satisfying online experience of passengers,a dual-link switching algorithm based on CNN-WaveNet decision parameter multi-step prediction model is proposed to establish a two-hop relay communication system model between the high-speed train and the base station.Firstly,the switching algorithm uses convolution neural network(CNN)to extract the time sequence characteristics of decision parameters.Then,it learns the mapping relationship between feature information and decision parameters based on WaveNet and combining with rolling prediction method to realize multi-step prediction of decision parameters.Finally,dual-antenna communication mode is adopted to realize dual-link communication.The simulation results show that the proposed handover algorithm can improve handover trigger rate and handover success rate.
文摘5G-R is the main type of next-generation mobile communication system for railways,offering highly reliable broadband data transmission services for intelligent railway operations.In the light of meeting the bearing demands of the 5G-R network,a comprehensive data transmission platform is proposed.This platform enables unified accession for various data service systems and applies Software Defined Network(SDN)technology for dynamic routing selection and high-effective data forwarding.Based on shared key lightweight access authentication technology,two-way identity authentication is performed for mobile terminals and network-side devices,ensuring the legitimacy verification of heterogeneous terminals within the application domain.
基金Project supported by the National High Technology Research and Development Program of China (Grant No.2011AA110502)the National Natural Science Foundation of China (Grant No.71271022)the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety,China (Grant No.RCS2012ZQ001)
文摘In this paper, a new model is constructed for the causation analysis of railway accident based on the complex network theory. In the model, the nodes are defined as various manifest or latent accident causal factors. By employing the complex network theory, especially its statistical indicators, the railway accident as well as its key causations can be analyzed from the overall perspective. As a case, the "7.23" China-Yongwen railway accident is illustrated based on this model. The results show that the inspection of signals and the checking of line conditions before trains run played an important role in this railway accident. In conclusion, the constructed model gives a theoretical clue for railway accident prediction and, hence, greatly reduces the occurrence of railway accidents.
文摘This paper chooses passenger flow data of some stations in China from January 2015 to March 2016, and the time series prediction model of BP neural network for railway passenger flow is established. But because of its slow convergence speed and easily falling into local optimal solution of the problem, we propose to improve the time series model of BP neural network by genetic algorithm to predict railway passenger flow. Experimental results show that the improved method has higher prediction accuracy and better nonlinear fitting ability.
基金Project(71525002) supported by China National Funds for Distinguished Young ScientistsProjects(71271023,71210001) supported by the National Natural Science Foundation of ChinaProject(RCS2015ZZ003) supported by the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University,China
文摘A model is proposed to describe the passengers’route choice behaviors in urban railway traffic with stochastic link capacity degradation by considering two types of demand,sensitive and insensitive passenger.The insensitive passengers choose their route without paying much attention to congestion.To the contrary,sensitive passengers who consider route congestion choose travel route based on generalized cost.An equilibrium state is given by variational inequalities in terms of travel generalized cost,which is represented by the combinations of mean and variance of total travel time.The diagonalization algorithm is given to solve this programming.Results show that insensitive passengers have large effects on the path choice than sensitive ones,especially for the larger demand.
文摘This paper discussed the necessity of establishing a computer network in a mining railway transport management system. The network structure and the system security design, associated with the real development condition of a mining area, were brought forward, and the system evaluation was given.
基金supported by National Key Research and Development Plan,China(Grant No.2020YFB1710900)National Natural Science Foundation of China(Grant No.62022005 and 62172008).
文摘Nowadays,high mobility scenarios have become increasingly common.The widespread adoption of High-speed Rail(HSR)in China exemplifies this trend,while more promising use cases,such as vehicle-to-everything,continue to emerge.However,the Internet access provided in high mobility environments stllstruggles to achieve seamless connectivity.The next generation of wireless cellular technology 5 G further poses more requirements on the endto-end evolution to fully utilize its ultra-high band-width,while existing network diagnostic tools focus on above-IP layers or below-IP layers only.We then propose HiMoDiag,which enables flexible online analysis of the network performance in a cross-layer manner,i.e.,from the top(application layer)to the bottom(physical layer).We believe HiMoDiag could greatly simplify the process of pinpointing the deficiencies of the Internet access delivery on HSR,lead to more timely optimization and ultimately help to improve the network performance.
文摘In order to study the nodes importance and its evolution process of the railway network of SREB (Silk Road Economic Belt), we construct the network (RNSREB) based on Graph Theory, which focuses on the time intervals according to actually railway network, railway project under construction and the national railway network of medium-and long-term plan. The algorithms for vital nodes evaluation are analyzed, the evaluation method on nodes importance of RNSREB is proposed, the quantized values of each node are calculated with Pajek, and TOP20 core nodes of the network with different coefficients and time intervals are determined respectively. Then the evolution process of TOP20 critical nodes with 4 periods is contrasted and analyzed. It is indicated that some vital nodes newly discovered (Geermu, Maduo, Ruoqiang) should be concerned.
文摘This Paper focuses on the formation of Pan-Asian trunk railway netWork. Pan-Asian trunk railways will be composed of two railway systems; one is the railway system linking up railways of 19 countries in Middle East, South Asia and Southeast Asia; the other is the cooperative railways system between countries. To realize Chinese railway network connecting with the railway networks of Eurasian countries is the prerequisite and guarantee for developing socialist market economy. The present transport capacity and the overall network level are too low to connect with Pan-Asian railway network, for example, the density of railway networks is low, the structure of airway networks is backward, the distribution of railway networks is unbalanced, etc. In order to match Pan-Asian trunk railway network, China must speed up railway construction, open some new ports, construct railway thoroughfare passing through China and neighboring
基金funded by Youth Science Foundation Fund Project of National Natural Science Foundation of China(51607148)Science and Technology R&D Program of China State Railway Group Co.,Ltd.(SY2020G001)Project of Sichuan Science and Technology Program(2021YJ0028)。
文摘Purpose–The traction cable is paralleled with the existing traction network of electrified railway through transverse connecting line to form the scheme of long distance power supply for the traction network.This paper aims to study the scheme composition and power supply distance(PSD)of the scheme.Design/methodology/approach–Based on the structure of parallel traction network(referred to as“cable traction network(CTN)”),the power supply modes(PSMs)are divided into cableþdirect PSM and cableþautotransformer(AT)PSM(including Japanese mode,French mode and new mode).Taking cableþJapanese AT PSM as an example,the scheme of long distance power supply for CTN under the PSMs of co-phase and out-of-phase power supply are designed.On the basis of establishing the equivalent circuit model and the chain circuit model of CTN,taking the train working voltage as the constraint condition,and based on the power flow calculation of multiple train loads,the calculation formula and process for determining the PSD of CTN are given.The impedance and PSD of CTN under the cableþAT PSM are simulated and analyzed,and a certain line is taken as an example to compare the scheme design.Findings–Results show that the equivalent impedance of CTN under the cableþAT PSM is smaller,and the PSD is about 2.5 times of that under the AT PSM,which can effectively increase the PSD and the flexibility of external power supply location.Originality/value–The research content can effectively improve the PSD of traction power supply system and has important reference value for the engineering application of the scheme.
基金Supported by the Shanxi Natural Science Foundation under contract number 20041070 and Natural Science Foundation of north u-niversity of China .
文摘To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure of evaluation model is constructed according to evaluation indicator system. Then evaluation samples are generated and provided to train this model. Thus it can reflect the relation between attributive value and evaluation result,as well as the weight of evaluation indicator. Once evaluation indicators of each candidate are fuzzily quantified and fed into the trained network model,the corresponding evaluation result is outputted and the best alternative can be selected. Under this model,expert knowledge can be effectively acquired and expressed,and the quantificational evaluation can be implemented for kinematic scheme with multi-level evaluation indicator system. Several key problems on this model are discussed and an illustration has demonstrated that this model is feasible and can be regarded as a new idea for solving kinematic scheme evaluation.
基金co-supported by the National Key Research and Development Program of China(No.2019YFF0301400)the National Natural Science Foundation of China(Nos.61961146005,62088101)supported by Beijing Postdoctoral Research Foundation,China(No.2021-ZZ-153).
文摘The integrated aviation and High-Speed Railway(HSR)transportation system plays a vital role for today’s inter-city transportation services.However,an increasing number of unexpected disruptions(such as operation failures,natural disasters,or intentional attacks)pose a considerable threat to the normal operation of the system,especially on ground transfer,leading to the extensive research on its vulnerability.Previous approaches mainly focus on interruptions within a single transportation mode,neglecting the role of ground transfer which serves as a coupled connection between aviation and High-Speed Railway.This paper proposes a network-based framework for evaluating the vulnerability of the Chinese Coupled Aviation and High-Speed Railway(CAHSR)network from the viewpoint of ground transfer interruption.Taking the end-to-end travel time and passenger flow information into consideration as an evaluation measure and analyzing from the perspective of urban agglomerations,an adaptive method is developed to identify the critical cities and further investigate their failure impacts on the geographic distribution of vulnerability.In addition,the proposed model explores variations of vulnerability under different failure time intervals.Based on the empirical study,some major conclusions are highlighted as follows:(A)Only a few cities show significant impacts on the network’s vulnerability when ground transfer interruptions occurred.(B)The distribution of vulnerability is not proportional to the distance between failure city and influenced city.(C)The vulnerability is more serious in the morning and evening when the ground transfer is disconnected.Our findings may provide new insights for maintenance and optimization of the CAHSR network and other real-world transportation networks.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No.2016YJS087the National Natural Science Foundation of China under Grant No.U1434209the Research Foundation of State Key Laboratory of Railway Traffic Control and Safety,Beijing Jiaotong University under Grant No.RCS2016ZJ001
文摘It is an important issue to identify important influencing factors in railway accident analysis.In this paper,employing the good measure of dependence for two-variable relationships,the maximal information coefficient(MIC),which can capture a wide range of associations,a complex network model for railway accident analysis is designed in which nodes denote factors of railway accidents and edges are generated between two factors of which MIC values are larger than or equal to the dependent criterion.The variety of network structure is studied.As the increasing of the dependent criterion,the network becomes to an approximate scale-free network.Moreover,employing the proposed network,important influencing factors are identified.And we find that the annual track density-gross tonnage factor is an important factor which is a cut vertex when the dependent criterion is equal to 0.3.From the network,it is found that the railway development is unbalanced for different states which is consistent with the fact.