期刊文献+
共找到7,252篇文章
< 1 2 250 >
每页显示 20 50 100
Fast,Safe and Robust Motion Planning for Autonomous Vehicles Based on Robust Control Invariant Tubes
1
作者 Mingzhuo Zhao Tong Shen +1 位作者 Fanxun Wang Guodong Yin 《Chinese Journal of Mechanical Engineering》 2025年第2期326-343,共18页
This paper tackles uncertainties between planning and actual models.It extends the concept of RCI(robust control invariant)tubes,originally a parameterized representation of closed-loop control robustness in tradition... This paper tackles uncertainties between planning and actual models.It extends the concept of RCI(robust control invariant)tubes,originally a parameterized representation of closed-loop control robustness in traditional feedback control,to the domain of motion planning for autonomous vehicles.Thus,closed-loop system uncertainty can be preemptively addressed during vehicle motion planning.This involves selecting collision-free trajectories to minimize the volume of robust invariant tubes.Furthermore,constraints on state and control variables are translated into constraints on the RCI tubes of the closed-loop system,ensuring that motion planning produces a safe and optimal trajectory while maintaining flexibility,rather than solely optimizing for the open-loop nominal model.Additionally,to expedite the solving process,we were inspired by L2gain to parameterize the RCI tubes and developed a parameterized explicit iterative expression for propagating ellipsoidal uncertainty sets within closedloop systems.Furthermore,we applied the pseudospectral orthogonal collocation method to parameterize the optimization problem of transcribing trajectories using high-order Lagrangian polynomials.Finally,under various operating conditions,we incorporate both the kinematic and dynamic models of the vehicle and also conduct simulations and analyses of uncertainties such as heading angle measurement,chassis response,and steering hysteresis.Our proposed robust motion planning framework has been validated to effectively address nearly all bounded uncertainties while anticipating potential tracking errors in control during the planning phase.This ensures fast,closed-loop safety and robustness in vehicle motion planning. 展开更多
关键词 Motion planning Vehicle dynamics Robust control invariant tubes Autonomous driving Robust control Trajectory optimization
在线阅读 下载PDF
Gait Planning,and Motion Control Methods for Quadruped Robots:Achieving High Environmental Adaptability:A Review
2
作者 Sheng Dong Feihu Fan +2 位作者 Yinuo Chen Shangpeng Guo Jiayu Liu 《Computer Modeling in Engineering & Sciences》 2025年第4期1-50,共50页
Legged robots have always been a focal point of research for scholars domestically and internationally.Compared to other types of robots,quadruped robots exhibit superior balance and stability,enabling them to adapt e... Legged robots have always been a focal point of research for scholars domestically and internationally.Compared to other types of robots,quadruped robots exhibit superior balance and stability,enabling them to adapt effectively to diverse environments and traverse rugged terrains.This makes them well-suited for applications such as search and rescue,exploration,and transportation,with strong environmental adaptability,high flexibility,and broad application prospects.This paper discusses the current state of research on quadruped robots in terms of development status,gait trajectory planning methods,motion control strategies,reinforcement learning applications,and control algorithm integration.It highlights advancements in modeling,optimization,control,and data-driven approaches.The study identifies the adoption of efficient gait planning algorithms,the integration of reinforcement learning-based control technologies,and data-driven methods as key directions for the development of quadruped robots.The aim is to provide theoretical references for researchers in the field of quadruped robotics. 展开更多
关键词 Quadruped robots model-based planning motion control autonomous learning algorithmintegration
在线阅读 下载PDF
Artificial Intelligence-Driven Advanced Wave Energy Planning and Control:Framework,Challenges and Perspectives
3
作者 Bo Yang Guo Zhou +1 位作者 Shua Zhou Yaxing Ren 《Energy Engineering》 2025年第10期3905-3915,共11页
1 Introduction With the continuous increase in global population,the demand for energy is upgrading at an unprecedented rate.At present,fossil fuels dominate the global energy landscape,but their limitations lay the g... 1 Introduction With the continuous increase in global population,the demand for energy is upgrading at an unprecedented rate.At present,fossil fuels dominate the global energy landscape,but their limitations lay the groundwork for the upcoming global energy crisis[1].The non renewable nature of fossil fuels,coupled with increasing energy consumption,poses a significant threat to the long-term energy security of the world.In addition,the combustion of fossil fuels releases a large amount of air pollutants such as carbon dioxide and sulfur dioxide,leading to serious environmental pollution and climate change.These environmental issues have far-reaching impacts,including rising sea levels,extreme weather events,and loss of biodiversity[2–4]. 展开更多
关键词 Artificial intelligence wave energy WEC control hybrid planning
在线阅读 下载PDF
Time-dependent Reservoir-based Gait Planning for Enhanced Lower-limb Prosthetic Control and Perturbation Adaptability
4
作者 Chang Lu Yang Lv +5 位作者 Wen Zhang Hao Sun Qidi Wu Shuai Wang Xiaoxu Zhang Jian Xu 《Journal of Bionic Engineering》 2025年第6期2980-2998,共19页
Gait coordination in lower limbs plays a critical role in maintaining stability of the human body during walking.For transfemoral amputees,the absence of limbs disrupts this coordination,reducing prosthesis control ac... Gait coordination in lower limbs plays a critical role in maintaining stability of the human body during walking.For transfemoral amputees,the absence of limbs disrupts this coordination,reducing prosthesis control accuracy.Hip-knee coordination mapping offers a feasible solution for lower-limb prosthesis control,involving the generation of a reference trajectory for the knee joint by leveraging information from the hip.However,current reference trajectories are usually derived from static models,which cannot generate reference trajectories robustly when dealing with perturbations.Therefore,this paper introduces a time-dependent model based on the Delayed Feedback Reservoir(DFR)for hip-knee coordination in lower-limb prosthetic control.Experimental results show that DFR outperforms classical gait planning approaches when facing perturbations,achieving a 20%lower Root Mean Square Error(RMSE)and reducing residuals by up to 18.14 degrees.This research contributes to understanding gait mapping approaches and emphasizes the potential of time-dependent models for robust and strong lower-limb prosthetic control.The discovery provides a novel way to enhance the perturbation adaptability of prosthetic control. 展开更多
关键词 Delayed feedback reservoir Gait planning Gait control Lower limb coordination Powered prosthesis
在线阅读 下载PDF
COM trajectory planning and disturbance-resistant control of a bipedal robot based on CP-ZMP-COM dynamics
5
作者 Chunbiao GAN Zijing LI +1 位作者 Yimin GE Mengyue LU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第5期492-498,共7页
1Introduction To date,in model-based gait-planning methods,the dynamics of the center of mass(COM)of bipedal robots have been analyzed by establishing their linear inverted pendulum model(LIPM)or extended forms(Owaki ... 1Introduction To date,in model-based gait-planning methods,the dynamics of the center of mass(COM)of bipedal robots have been analyzed by establishing their linear inverted pendulum model(LIPM)or extended forms(Owaki et al.,2010;Englsberger et al.,2015;Xie et al.,2020).With regard to model-based gait-generation methods for uphill and downhill terrain,Kuo(2007)simulated human gait using an inverted pendulum,which provided a circular trajectory for the COM rather than a horizontal trajectory.He found that a horizontal COM trajectory consumed more muscle energy.Massah et al.(2012)utilized a 3D LIPM and the concept of zero moment point(ZMP).They developed a trajectory planner using the semi-elliptical motion equations of an NAO humanoid robot and simulated walking on various sloped terrains using the Webots platform. 展开更多
关键词 com trajectory planning inverted pendulumwhich disturbance resistant control linear inverted pendulum model lipm extended forms owaki bipedal robots human gait dynamics center
原文传递
Controllable Subsidence and Reasonable Planning May Mitigate Geo-Hazards in Large-Scale Land Creation Area
6
作者 Haijun Qiu Yingdong Wei Wen Liu 《Journal of Earth Science》 2025年第2期806-811,共6页
0 INTRODUCTION Due to the rapid population growth and the accelerated urbanization process,the contradiction between the demand for expanding ground space and the limited available land scale is becoming increasingly ... 0 INTRODUCTION Due to the rapid population growth and the accelerated urbanization process,the contradiction between the demand for expanding ground space and the limited available land scale is becoming increasingly prominent.China has implemented and completed several largescale land infilling and excavation projects(Figure 1),which have become the main way to increase land resources and expand construction land. 展开更多
关键词 expand construction land increase land resources geo hazards largescale land infilling excavation projects figure reasonable planning large scale land creation area expanding ground space controllable subsidence
原文传递
Self-adapting control parameters modifieddifferential evolution for trajectoryplanning of manipulators 被引量:12
7
作者 Lianghong WU Yaonan WANG Shaowu ZHOU 《控制理论与应用(英文版)》 EI 2007年第4期365-373,共9页
Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinizat... Control parameters of original differential evolution (DE) are kept fixed throughout the entire evolutionary process. However, it is not an easy task to properly set control parameters in DE for different optiinization problems. According to the relative position of two different individual vectors selected to generate a difference vector in the searching place, a self-adapting strategy for the scale factor F of the difference vector is proposed. In terms of the convergence status of the target vector in the current population, a self-adapting crossover probability constant CR strategy is proposed. Therefore, good target vectors have a lower CFI while worse target vectors have a large CFI. At the same time, the mutation operator is modified to improve the convergence speed. The performance of these proposed approaches are studied with the use of some benchmark problems and applied to the trajectory planning of a three-joint redundant manipulator. Finally, the experiment results show that the proposed approaches can greatly improve robustness and convergence speed. 展开更多
关键词 Self-adapting control parameters Differential evolution Redundant manipulator Trajectory planning
在线阅读 下载PDF
Local Path Planning and Tracking Control of Vehicle Collision Avoidance System 被引量:6
8
作者 Xu Zhijiang Zhao Wanzhong +1 位作者 Wang Chunyan Dai Yifan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第4期729-738,共10页
Automotive collision avoidance technology can effectively avoid the accidents caused by dangerous traffic conditions or driver's manipulation errors.Moreover,it can promote the development of autonomous driving fo... Automotive collision avoidance technology can effectively avoid the accidents caused by dangerous traffic conditions or driver's manipulation errors.Moreover,it can promote the development of autonomous driving for intelligent vehicle in intelligent transportation.We present a collision avoidance system,which is composed of an evasive trajectory planner and a path following controller.Considering the stability of the vehicle in the conflict-free process,the evasive trajectory planner is designed by polynomial parametric method and optimized by genetic algorithm.The path following controller is proposed to make the car drive along the designed path by controlling the vehicle's lateral movement.Simulation results show that the vehicle with the proposed controller has good stability in the collision process,and it can ensure the vehicle driving in accordance with the planned trajectory at different speeds.The research results can provide a certain basis for the research and development of automotive collision avoidance technology. 展开更多
关键词 VEHICLE collision avoidance dynamic model path planning tracking control
在线阅读 下载PDF
Tracking Control for a Cushion Robot Based on Fuzzy Path Planning With Safe Angular Velocity 被引量:7
9
作者 Ping Sun Zhuang Yu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期610-619,共10页
This study proposes a new nonlinear tracking control method with safe angular velocity constraints for a cushion robot. A fuzzy path planning algorithm is investigated and a realtime desired motion path of obstacle av... This study proposes a new nonlinear tracking control method with safe angular velocity constraints for a cushion robot. A fuzzy path planning algorithm is investigated and a realtime desired motion path of obstacle avoidance is obtained. The angular velocity is constrained by the controller, so the planned path guarantees the safety of users. According to Lyapunov theory, the controller is designed to maintain stability in terms of solutions of linear matrix inequalities and the controller's performance with safe angular velocity constraints is derived.The simulation and experiment results confirm the effectiveness of the proposed method and verify that the angular velocity of the cushion robot provided safe motion with obstacle avoidance. 展开更多
关键词 Cushion robot path planning safe angular velocity tracking control
在线阅读 下载PDF
Planning and Control of COP-Switch-Based Planar Biped Walking 被引量:5
10
作者 X. Luo W. Li C. Zhu 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第1期33-48,共16页
Efficient walking is one of the main goals of researches on biped robots. A feasible way is to translate the understanding from human walking into robot walking, for example, an artificial control approach on a human ... Efficient walking is one of the main goals of researches on biped robots. A feasible way is to translate the understanding from human walking into robot walking, for example, an artificial control approach on a human like walking structure. In this paper, a walking pattern based on Center of Pressure (COP) switched and modeled after human walking is introduced firstly. Then, a parameterization method for the proposed walking gait is presented. In view of the complication, a multi-space planning method which divides the whole planning task into three sub-spaces, including simplified model space, work space and joint space, is proposed. Furthermore, a finite-state-based control method is also developed to implement the proposed walking pattern. The state switches of this method are driven by sensor events. For convincing verification, a 2D simulation system with a 9-1ink planar biped robot is developed. The simulation results exhibit an efficient walking gait. 展开更多
关键词 biped walking BIO-INSPIRED COP switch control multi-space planning SIMULATION
在线阅读 下载PDF
Post-Impact Motion Planning and Tracking Control for Autonomous Vehicles 被引量:7
11
作者 Cong Wang Zhenpo Wang +2 位作者 Lei Zhang Huilong Yu Dongpu Cao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期315-332,共18页
There is an increasing awareness of the need to reduce traffic accidents and fatality due to vehicle collision.Post-impact hazards can be more serious as the driver may fail to maintain effective control after collisi... There is an increasing awareness of the need to reduce traffic accidents and fatality due to vehicle collision.Post-impact hazards can be more serious as the driver may fail to maintain effective control after collisions.To avoid subsequent crash events and to stabilize the vehicle,this paper proposes a post-impact motion planning and stability control method for autonomous vehicles.An enabling motion planning method is proposed for post-impact situations by combining the polynomial curve and artificial potential field while considering obstacle avoidance.A hierarchical controller that consists of an upper and a lower controller is then developed to track the planned motion.In the upper controller,a time-varying linear quadratic regulator is presented to calculate the desired generalized forces.In the lower controller,a nonlinear-optimization-based torque allocation algorithm is proposed to optimally coordinate the actuators to realize the desired generalized forces.The proposed scheme is verified under comprehensive driving scenarios through hardware-in-loop tests. 展开更多
关键词 Active safety Post-impact control Motion planning Vehicle dynamics control
在线阅读 下载PDF
Optimal control based coordinated taxiing path planning and tracking for multiple carrier aircraft on flight deck 被引量:7
12
作者 Xin-wei Wang Hai-jun Peng +3 位作者 Jie Liu Xian-zhou Dong Xu-dong Zhao Chen Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第2期238-248,共11页
Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is t... Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is transformed into a centralized optimal control problem where collision-free conditions and mechanical limits are considered.Since the formulated optimal control problem is of large state space and highly nonlinear,an efficient hierarchical initialization technique based on the Dubins-curve method is proposed.Then,a model predictive controller is designed to track the obtained reference trajectory in the presence of initial state error and external disturbances.Numerical experiments demonstrate that the proposed“offline planningþonline tracking”framework can achieve efficient and robust coordinated taxiing planning and tracking even in the presence of initial state error and continuous external disturbances. 展开更多
关键词 Carrier aircraft Coordinated path planning Centralized optimal control Trajectory tracking Model predictive control
在线阅读 下载PDF
Energy-Optimal Braking Control Using a Double-Layer Scheme for Trajectory Planning and Tracking of Connected Electric Vehicles 被引量:10
13
作者 Haoxuan Dong Weichao Zhuang +4 位作者 Guodong Yin Liwei Xu Yan Wang Fa’an Wang Yanbo Lu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第5期44-55,共12页
Most researches focus on the regenerative braking system design in vehicle components control and braking torque distribution,few combine the connected vehicle technologies into braking velocity planning.If the brakin... Most researches focus on the regenerative braking system design in vehicle components control and braking torque distribution,few combine the connected vehicle technologies into braking velocity planning.If the braking intention is accessed by the vehicle-to-everything communication,the electric vehicles(EVs)could plan the braking velocity for recovering more vehicle kinetic energy.Therefore,this paper presents an energy-optimal braking strategy(EOBS)to improve the energy efficiency of EVs with the consideration of shared braking intention.First,a double-layer control scheme is formulated.In the upper-layer,an energy-optimal braking problem with accessed braking intention is formulated and solved by the distance-based dynamic programming algorithm,which could derive the energy-optimal braking trajectory.In the lower-layer,the nonlinear time-varying vehicle longitudinal dynamics is transformed to the linear time-varying system,then an efficient model predictive controller is designed and solved by quadratic programming algorithm to track the original energy-optimal braking trajectory while ensuring braking comfort and safety.Several simulations are conducted by jointing MATLAB and CarSim,the results demonstrated the proposed EOBS achieves prominent regeneration energy improvement than the regular constant deceleration braking strategy.Finally,the energy-optimal braking mechanism of EVs is investigated based on the analysis of braking deceleration,battery charging power,and motor efficiency,which could be a guide to real-time control. 展开更多
关键词 Connected electric vehicles Energy optimization Velocity planning Regenerative braking Dynamic programming Model predictive control
在线阅读 下载PDF
Real-time trajectory planning for UCAV air-to-surface attack using inverse dynamics optimization method and receding horizon control 被引量:16
14
作者 Zhang Yu Chen Jing Shen Lincheng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期1038-1056,共19页
This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits... This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits of inverse dynamics optimization method and receding horizon optimal control technique. Firstly, the ground attack trajectory planning problem is mathematically formulated as a receding horizon optimal control problem (RHC-OCP). In particular, an approximate elliptic launch acceptable region (LAR) model is proposed to model the critical weapon delivery constraints. Secondly, a planning algorithm based on inverse dynamics optimization, which has high computational efficiency and good convergence properties, is developed to solve the RHCOCP in real-time. Thirdly, in order to improve robustness and adaptivity in a dynamic and uncer- tain environment, a two-degree-of-freedom (2-DOF) receding horizon control architecture is introduced and a regular real-time update strategy is proposed as well, and the real-time feedback can be achieved and the not-converged situations can be handled. Finally, numerical simulations demon- strate the efficiency of this framework, and the results also show that the presented technique is well suited for real-time implementation in dynamic and uncertain environment. 展开更多
关键词 Air-to-surface attack Direct method Inverse dynamics Motion planning Real time control Receding horizon control Trajectory planning Unmanned combat aerial vehicles
原文传递
A homogenization-planning-tracking method to solve cooperative autonomous motion control for heterogeneous carrier dispatch systems 被引量:5
15
作者 Jie LIU Xianzhou DONG +3 位作者 Xinwei WANG Kaikai CUI Xiwang QIE Jun JIA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第9期293-305,共13页
Taxiing aircraft and towed aircraft with drawbar are two typical dispatch modes on the flight deck of aircraft carriers. In this paper, a novel hierarchical solution strategy, named as the Homogenization-Planning-Trac... Taxiing aircraft and towed aircraft with drawbar are two typical dispatch modes on the flight deck of aircraft carriers. In this paper, a novel hierarchical solution strategy, named as the Homogenization-Planning-Tracking(HPT) method, to solve cooperative autonomous motion control for heterogeneous carrier dispatch systems is developed. In the homogenization layer, any towed aircraft system involved in the sortie task is abstracted into a virtual taxiing aircraft. This layer transforms the heterogeneous systems into a homogeneous configuration. Then in the planning layer, a centralized optimal control problem is formulated for the homogeneous system. Compared with conducting the path planning directly with the original heterogeneous system, the homogenization layer contributes to reduce the dimension and nonlinearity of the formulated optimal control problem in the planning layer and consequently improves the robustness and efficiency of the solution process. Finally, in the tracking layer, a receding horizon controller is developed to track the reference trajectory obtained in the planning layer. To improve the tracking performance,multi-objective optimization techniques are implemented offline in advance to determine optimal weight parameters used in the tracking layer. Simulations demonstrate that smooth and collision-free cooperative trajectory can be generated efficiently in the planning phase. And robust trajectory tracking can be realized in the presence of external disturbances in the tracking phase.The developed HPT method provides a promising solution to the autonomous deck dispatch for unmanned carrier aircraft in the future. 展开更多
关键词 Autonomous motion control Carrier dispatch system Heterogeneous system Cooperative trajectory planning Receding horizon control Weight optimization
原文传递
MPC-based Motion Planning and Control Enables Smarter and Safer Autonomous Marine Vehicles:Perspectives and a Tutorial Survey 被引量:6
16
作者 Henglai Wei Yang Shi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期8-24,共17页
Autonomous marine vehicles(AMVs)have received considerable attention in the past few decades,mainly because they play essential roles in broad marine applications such as environmental monitoring and resource explorat... Autonomous marine vehicles(AMVs)have received considerable attention in the past few decades,mainly because they play essential roles in broad marine applications such as environmental monitoring and resource exploration.Recent advances in the field of communication technologies,perception capability,computational power and advanced optimization algorithms have stimulated new interest in the development of AMVs.In order to deploy the constrained AMVs in the complex dynamic maritime environment,it is crucial to enhance the guidance and control capabilities through effective and practical planning,and control algorithms.Model predictive control(MPC)has been exceptionally successful in different fields due to its ability to systematically handle constraints while optimizing control performance.This paper aims to provide a review of recent progress in the context of motion planning and control for AMVs from the perceptive of MPC.Finally,future research trends and directions in this substantial research area of AMVs are highlighted. 展开更多
关键词 Autonomous marine vehicles(AMVs) model predictive control(MPC) motion control motion planning
在线阅读 下载PDF
Locomotion Optimization and Manipulation Planning of a Tetrahedron-Based Mobile Mechanism with Binary Control 被引量:2
17
作者 Ran Liu Yan-An Yao +1 位作者 Wan Ding Xiao-Ping Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第1期78-99,共22页
Locomotion and manipulation optimization is essential for the performance of tetrahedron-based mobile mechanism. Most of current optimization methods are constrained to the continuous actuated system with limited degr... Locomotion and manipulation optimization is essential for the performance of tetrahedron-based mobile mechanism. Most of current optimization methods are constrained to the continuous actuated system with limited degree of freedom(DOF), which is infeasible to the optimization of binary control multi-DOF system. A novel optimization method using for the locomotion and manipulation of an 18 DOFs tetrahedron-based mechanism called 5-TET is proposed. The optimization objective is to realize the required locomotion by executing the least number of struts.Binary control strategy is adopted, and forward kinematic and tipping dynamic analyses are performed, respectively.Based on a developed genetic algorithm(GA), the optimal number of alternative struts between two adjacent steps is obtained as 5. Finally, a potential manipulation function is proposed, and the energy consumption comparison between optimal 5-TET and the traditional wheeled robot is carried out. The presented locomotion optimization and manipulation planning enrich the research of tetrahedron-based mechanisms and provide the instruction to the successive locomotion and operation planning of multi-DOF mechanisms. 展开更多
关键词 Tetrahedron-based mobile mechanism Binary control GA Locomotion optimization Manipulation planning
在线阅读 下载PDF
Motion Planning Based Coordinated Control for Hydraulic Excavators 被引量:4
18
作者 GAO Yingjie JIN Yanchao ZHANG Qin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第1期97-101,共5页
Hydraulic excavator is one type of the most widely applied construction equipment for various applications mainly because of its versatility and mobility.Among the tasks performed by a hydraulic excavator,repeatable l... Hydraulic excavator is one type of the most widely applied construction equipment for various applications mainly because of its versatility and mobility.Among the tasks performed by a hydraulic excavator,repeatable level digging or flat surface finishing may take a large percentage.Using automated functions to perform such repeatable and tedious jobs will not only greatly increase the overall productivity but more importantly also improve the operation safety.For the purpose of investigating the technology without loss of generality,this research is conducted to create a coordinate control method for the boom,arm and bucket cylinders on a hydraulic excavator to perform accurate and effective works.On the basis of the kinematic analysis of the excavator linkage system,the tip trajectory of the end-effector can be determined in terms of three hydraulic cylinders coordinated motion with a visualized method.The coordination of those hydraulic cylinders is realized by controlling three electro-hydraulic proportional valves coordinately.Therefore,the complex control algorithm of a hydraulic excavator can be simplified into coordinated motion control of three individual systems.This coordinate control algorithm was validated on a wheeled hydraulic excavator,and the validation results indicated that this developed control method could satisfactorily accomplish the auto-digging function for level digging or flat surface finishing. 展开更多
关键词 hydraulic excavator motion planning coordinated control
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部