期刊文献+
共找到431篇文章
< 1 2 22 >
每页显示 20 50 100
Multi-Human Pose Estimation by Deep Learning-Based Sequential Approach for Human Keypoint Position and Human Body Detection
1
作者 TAHIR Rizwana CAI Yunze 《Journal of Shanghai Jiaotong university(Science)》 2025年第6期1103-1113,共11页
Recent multimedia and computer vision research has focused on analyzing human behavior and activity using images.Skeleton estimation,known as pose estimation,has received a significant attention.For human pose estimat... Recent multimedia and computer vision research has focused on analyzing human behavior and activity using images.Skeleton estimation,known as pose estimation,has received a significant attention.For human pose estimation,deep learning approaches primarily emphasize on the keypoint features.Conversely,in the case of occluded or incomplete poses,the keypoint feature is insufficiently substantial,especially when there are multiple humans in a single frame.Other features,such as the body border and visibility conditions,can contribute to pose estimation in addition to the keypoint feature.Our model framework integrates multiple features,namely the human body mask features,which can serve as a constraint to keypoint location estimation,the body keypoint features,and the keypoint visibility via mask region-based convolutional neural network(Mask-RCNN).A sequential multi-feature learning setup is formed to share multi-features across the structure,whereas,in the Mask-RCNN,the only feature that could be shared through the system is the region of interest feature.By two-way up-scaling with the shared weight process to produce the mask,we have addressed the problems of improper segmentation,small intrusion,and object loss when Mask-RCNN is used,for instance,segmentation.Accuracy is indicated by the percentage of correct keypoint,and our model can identify 86.1%of the correct keypoints. 展开更多
关键词 multiperson pose estimation multi-feature learning mask region-based convolutional neural network(RCNN) deep learning
原文传递
An Efficient and Secure Privacy-Preserving Federated Learning Framework Based on Multiplicative Double Privacy Masking
2
作者 Cong Shen Wei Zhang +2 位作者 Tanping Zhou Yiming Zhang Lingling Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4729-4748,共20页
With the increasing awareness of privacy protection and the improvement of relevant laws,federal learning has gradually become a new choice for cross-agency and cross-device machine learning.In order to solve the prob... With the increasing awareness of privacy protection and the improvement of relevant laws,federal learning has gradually become a new choice for cross-agency and cross-device machine learning.In order to solve the problems of privacy leakage,high computational overhead and high traffic in some federated learning schemes,this paper proposes amultiplicative double privacymask algorithm which is convenient for homomorphic addition aggregation.The combination of homomorphic encryption and secret sharing ensures that the server cannot compromise user privacy from the private gradient uploaded by the participants.At the same time,the proposed TQRR(Top-Q-Random-R)gradient selection algorithm is used to filter the gradient of encryption and upload efficiently,which reduces the computing overhead of 51.78%and the traffic of 64.87%on the premise of ensuring the accuracy of themodel,whichmakes the framework of privacy protection federated learning lighter to adapt to more miniaturized federated learning terminals. 展开更多
关键词 Federated learning privacy protection homomorphic encryption double mask secret sharing gradient selection
在线阅读 下载PDF
基于改进Mask R-CNN的低空遥感实例分割算法
3
作者 李冰锋 王光耀 崔立志 《兵器装备工程学报》 北大核心 2025年第2期168-176,共9页
针对遥感领域图像目标繁杂、检测和分割精度不高的问题,提出一种改进Mask R-CNN算法。设计PMResNet-50结构作为主干网络,其中金字塔挤压注意模块可以促进局部和全局通道注意之间的信息交互作用,多层次特征聚合模块可以提高PMResNet-50... 针对遥感领域图像目标繁杂、检测和分割精度不高的问题,提出一种改进Mask R-CNN算法。设计PMResNet-50结构作为主干网络,其中金字塔挤压注意模块可以促进局部和全局通道注意之间的信息交互作用,多层次特征聚合模块可以提高PMResNet-50对输入通道语义信息的高效聚合作用。在RoI Align前引入自校准卷积模块来扩大卷积层的感受野大小并对边界框和掩码框执行校准操作。在分割分支使用掩码预测平衡损失函数,对每个类别的正负样本梯度进行平衡,实现对损失梯度的平滑降低处理。在自建低空遥感数据集和iSAID-Reduce100数据集上进行测试,实验结果表明:改进后的算法在自建数据集上box AP和mask AP分别提升17.9%和15.0%,在iSAID-Reduce100数据集上box AP和mask AP达到49.62%和50.27%,该算法很好地完成了对遥感目标的检测和分割。 展开更多
关键词 深度学习 图像处理 遥感图像 实例分割 改进mask R-CNN算法 ResNet-50
在线阅读 下载PDF
Masked Autoencoders as Single Object Tracking Learners 被引量:1
4
作者 Chunjuan Bo XinChen Junxing Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第7期1105-1122,共18页
Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of ... Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of such trackers heavily relies on ViT models pretrained for long periods,limitingmore flexible model designs for tracking tasks.To address this issue,we propose an efficient unsupervised ViT pretraining method for the tracking task based on masked autoencoders,called TrackMAE.During pretraining,we employ two shared-parameter ViTs,serving as the appearance encoder and motion encoder,respectively.The appearance encoder encodes randomly masked image data,while the motion encoder encodes randomly masked pairs of video frames.Subsequently,an appearance decoder and a motion decoder separately reconstruct the original image data and video frame data at the pixel level.In this way,ViT learns to understand both the appearance of images and the motion between video frames simultaneously.Experimental results demonstrate that ViT-Base and ViT-Large models,pretrained with TrackMAE and combined with a simple tracking head,achieve state-of-the-art(SOTA)performance without additional design.Moreover,compared to the currently popular MAE pretraining methods,TrackMAE consumes only 1/5 of the training time,which will facilitate the customization of diverse models for tracking.For instance,we additionally customize a lightweight ViT-XS,which achieves SOTA efficient tracking performance. 展开更多
关键词 Visual object tracking vision transformer masked autoencoder visual representation learning
在线阅读 下载PDF
A Hybrid Approach for Pavement Crack Detection Using Mask R-CNN and Vision Transformer Model 被引量:2
5
作者 Shorouq Alshawabkeh Li Wu +2 位作者 Daojun Dong Yao Cheng Liping Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期561-577,共17页
Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learni... Detecting pavement cracks is critical for road safety and infrastructure management.Traditional methods,relying on manual inspection and basic image processing,are time-consuming and prone to errors.Recent deep-learning(DL)methods automate crack detection,but many still struggle with variable crack patterns and environmental conditions.This study aims to address these limitations by introducing the Masker Transformer,a novel hybrid deep learning model that integrates the precise localization capabilities of Mask Region-based Convolutional Neural Network(Mask R-CNN)with the global contextual awareness of Vision Transformer(ViT).The research focuses on leveraging the strengths of both architectures to enhance segmentation accuracy and adaptability across different pavement conditions.We evaluated the performance of theMaskerTransformer against other state-of-theartmodels such asU-Net,TransformerU-Net(TransUNet),U-NetTransformer(UNETr),SwinU-NetTransformer(Swin-UNETr),You Only Look Once version 8(YoloV8),and Mask R-CNN using two benchmark datasets:Crack500 and DeepCrack.The findings reveal that the MaskerTransformer significantly outperforms the existing models,achieving the highest Dice SimilarityCoefficient(DSC),precision,recall,and F1-Score across both datasets.Specifically,the model attained a DSC of 80.04%on Crack500 and 91.37%on DeepCrack,demonstrating superior segmentation accuracy and reliability.The high precision and recall rates further substantiate its effectiveness in real-world applications,suggesting that the Masker Transformer can serve as a robust tool for automated pavement crack detection,potentially replacing more traditional methods. 展开更多
关键词 Pavement crack segmentation TRANSPORTATION deep learning vision transformer mask R-CNN image segmentation
在线阅读 下载PDF
Nonlinear Masking and Iterative Learning Decryption for Secure Communications 被引量:1
6
作者 Ming-Xuan Sun 《International Journal of Automation and computing》 EI CSCD 2015年第3期297-306,共10页
Typical masking techniques adopted in the conventional secure communication schemes are the additive masking and modulation by multiplication. In order to enhance security, this paper presents a nonlinear masking meth... Typical masking techniques adopted in the conventional secure communication schemes are the additive masking and modulation by multiplication. In order to enhance security, this paper presents a nonlinear masking methodology, applicable to the conventional schemes. In the proposed cryptographic scheme, the plaintext spans over a pre-specified finite-time interval, which is modulated through parameter modulation, and masked chaotically by a nonlinear mechanism. An efficient iterative learning algorithm is exploited for decryption, and the sufficient condition for convergence is derived, by which the learning gain can be chosen. Case studies are conducted to demonstrate the effectiveness of the proposed masking method. 展开更多
关键词 Secure communication maskING CONVERGENCE learning algorithms nonlinearities.
原文传递
Deep reinforcement learning based multi-level dynamic reconfiguration for urban distribution network:a cloud-edge collaboration architecture 被引量:1
7
作者 Siyuan Jiang Hongjun Gao +2 位作者 Xiaohui Wang Junyong Liu Kunyu Zuo 《Global Energy Interconnection》 EI CAS CSCD 2023年第1期1-14,共14页
With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provi... With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provides reliable support for reconfiguration optimization in urban distribution networks.Thus,this study proposed a deep reinforcement learning based multi-level dynamic reconfiguration method for urban distribution networks in a cloud-edge collaboration architecture to obtain a real-time optimal multi-level dynamic reconfiguration solution.First,the multi-level dynamic reconfiguration method was discussed,which included feeder-,transformer-,and substation-levels.Subsequently,the multi-agent system was combined with the cloud-edge collaboration architecture to build a deep reinforcement learning model for multi-level dynamic reconfiguration in an urban distribution network.The cloud-edge collaboration architecture can effectively support the multi-agent system to conduct“centralized training and decentralized execution”operation modes and improve the learning efficiency of the model.Thereafter,for a multi-agent system,this study adopted a combination of offline and online learning to endow the model with the ability to realize automatic optimization and updation of the strategy.In the offline learning phase,a Q-learning-based multi-agent conservative Q-learning(MACQL)algorithm was proposed to stabilize the learning results and reduce the risk of the next online learning phase.In the online learning phase,a multi-agent deep deterministic policy gradient(MADDPG)algorithm based on policy gradients was proposed to explore the action space and update the experience pool.Finally,the effectiveness of the proposed method was verified through a simulation analysis of a real-world 445-node system. 展开更多
关键词 Cloud-edge collaboration architecture Multi-agent deep reinforcement learning multi-level dynamic reconfiguration Offline learning Online learning
在线阅读 下载PDF
基于Faster R-CNN和Mask R-CNN的滑坡自动识别研究 被引量:3
8
作者 于宪煜 杨森 《大地测量与地球动力学》 北大核心 2025年第1期1-4,12,共5页
基于高分一号影像,以三峡库区库首段为例,通过目视解译出160个滑坡样本,按照9∶1比例分为训练样本和验证样本,分别利用Faster R-CNN和Mask R-CNN算法构建滑坡自动识别模型。为进一步对比分析不同样本比例下两种模型的性能,分别采用8∶2... 基于高分一号影像,以三峡库区库首段为例,通过目视解译出160个滑坡样本,按照9∶1比例分为训练样本和验证样本,分别利用Faster R-CNN和Mask R-CNN算法构建滑坡自动识别模型。为进一步对比分析不同样本比例下两种模型的性能,分别采用8∶2、7∶3、6∶4的样本比例进行计算。研究结果表明,Mask R-CNN模型识别结果准确率、召回率和F 1分数等3项指标均优于Faster R-CNN;且经过交叉验证,证明Mask R-CNN模型的性能更为稳定。 展开更多
关键词 深度学习 滑坡识别 mask R-CNN Faster R-CNN 交叉验证
在线阅读 下载PDF
Short video preloading via domain knowledge assisted deep reinforcement learning
9
作者 Yuhong Xie Yuan Zhang +4 位作者 Tao Lin Zipeng Pan Si-Ze Qian Bo Jiang Jinyao Yan 《Digital Communications and Networks》 CSCD 2024年第6期1826-1836,共11页
Short video applications like Tik Tok have seen significant growth in recent years.One common behavior of users on these platforms is watching and swiping through videos,which can lead to a significant waste of bandwi... Short video applications like Tik Tok have seen significant growth in recent years.One common behavior of users on these platforms is watching and swiping through videos,which can lead to a significant waste of bandwidth.As such,an important challenge in short video streaming is to design a preloading algorithm that can effectively decide which videos to download,at what bitrate,and when to pause the download in order to reduce bandwidth waste while improving the Quality of Experience(QoE).However,designing such an algorithm is non-trivial,especially when considering the conflicting objectives of minimizing bandwidth waste and maximizing QoE.In this paper,we propose an end-to-end Deep reinforcement learning framework with Action Masking called DAM that leverages domain knowledge to learn an optimal policy for short video preloading.To achieve this,we introduce a reward shaping technique to minimize bandwidth waste and use action masking to make actions more reasonable,reduce playback rebuffering,and accelerate the training process.We have conducted extensive experiments using real-world video datasets and network traces including 4G/Wi Fi/5G.Our results show that DAM improves the Qo E score by 3.73%-11.28%compared to state-of-the-art algorithms,and achieves an average bandwidth waste of only 10.27%-12.07%,outperforming all baseline methods. 展开更多
关键词 Short video preloading Deep reinforcement learning Reward shaping Action masking Domain knowledge
在线阅读 下载PDF
基于改进Mask RCNN的金刚石微粉分割算法
10
作者 李文开 王莉 +1 位作者 牛群峰 王涛 《现代电子技术》 北大核心 2025年第11期51-56,共6页
针对金刚石微粉形状复杂多变、颜色相似度高以及相互粘连导致的分割困难等问题,文中提出基于改进Mask RCNN的金刚石微粉分割算法。首先,在原有主干网络的基础上重新设计残差结构,引入高效通道注意力机制,在不增加网络参数的情况下增强... 针对金刚石微粉形状复杂多变、颜色相似度高以及相互粘连导致的分割困难等问题,文中提出基于改进Mask RCNN的金刚石微粉分割算法。首先,在原有主干网络的基础上重新设计残差结构,引入高效通道注意力机制,在不增加网络参数的情况下增强模型的复杂特征提取能力;其次,根据金刚石微粉实际尺寸和形状不规则性优化Anchor box框,增强检测框切合度,进一步提高模型的图像分割精度;最后,采用DIoU-NMS模块改进检测框筛选方式,避免粘连金刚石微粉漏检现象。实验结果表明,在自建的金刚石微粉数据集上,改进后的Mask RCNN算法对金刚石微粉的平均精度均值(mAP)为75.51%,比标准Mask RCNN算法提升了2.86%,分割精度得到显著提升,为精准分割金刚石微粉提供了一种可行性方法。 展开更多
关键词 深度学习 实例分割 金刚石微粉 注意力机制 mask RCNN DIoU-NMS
在线阅读 下载PDF
基于改进Mask R-CNN的复合绝缘子憎水性状态评估方法
11
作者 绳飞 曹留 +3 位作者 刘玉龙 黄杰 黄雅倩 朱彦卿 《电测与仪表》 北大核心 2025年第4期73-80,共8页
及时在线判别复合绝缘子憎水性状态是保证电力系统安全运行的一个重要举措。为提高复合绝缘子憎水性状态评估模型的泛化能力,解决现有分类模型评估憎水性程度变化不均的复合绝缘子时往往只关注憎水性不错的部分而误判的问题。文章提出... 及时在线判别复合绝缘子憎水性状态是保证电力系统安全运行的一个重要举措。为提高复合绝缘子憎水性状态评估模型的泛化能力,解决现有分类模型评估憎水性程度变化不均的复合绝缘子时往往只关注憎水性不错的部分而误判的问题。文章提出将分类问题转变为目标检测问题,采用改进掩膜区域卷积神经网络(mask region-based convolutional neural network, Mask R-CNN)算法评估复合绝缘子憎水性等级。通过特征金字塔网络(feature pyramid network, FPN)确定图像中所有水滴的位置与大小,采用Mask R-CNN中特有的mask分支预测所有水珠憎水性等级,再计算出相应憎水性等级所占的面积,最终选择面积最大的作为图像的憎水性等级并输出分类结果。结合各等级憎水性图像的特点,引入改进非极大值抑制(soft non-maximum suppression, Soft-NMS)来减少高等级憎水性图像中水迹面积大且分布不规则时的目标漏检,并采用Giou-loss(generalized intersection over union loss)加快低等级图像中目标小而多时模型的收敛速度。最终通过对比实验,从mAP(mean average precision)、每秒帧率(frame per second, FPS)、准确率三项评判指标验证了基于改进Mask R-CNN的憎水图像识别算法的有效性与优越性。 展开更多
关键词 憎水性 目标检测 mask R-CNN 深度学习 复合绝缘子
在线阅读 下载PDF
基于改进Mask R-CNN的金刚石磨盘表面形态分割与评价
12
作者 索文隆 林燕芬 方从富 《金刚石与磨料磨具工程》 北大核心 2025年第3期416-426,共11页
金刚石磨盘广泛应用于各类硬脆材料的磨削加工中,磨盘表面形态对加工工件质量与磨盘磨削性能有着直接的影响。为对磨盘表面形态进行检测,提出基于改进Mask R-CNN模型的分割方法对磨盘表面图像中的磨粒、气孔进行识别与分割,并对模型进... 金刚石磨盘广泛应用于各类硬脆材料的磨削加工中,磨盘表面形态对加工工件质量与磨盘磨削性能有着直接的影响。为对磨盘表面形态进行检测,提出基于改进Mask R-CNN模型的分割方法对磨盘表面图像中的磨粒、气孔进行识别与分割,并对模型进行训练与验证。结果表明:使用该方法能够实现磨盘表面图像中磨粒、气孔的识别与分割,平均准确率为78.2%。为验证该方法分割的磨粒、气孔与实际结果的差异,提出目标数量识别准确率、目标分割面积准确率、目标位置误差3个参数来评价分割效果,结果表明:磨粒、气孔的数量识别准确率分别为82.1%与93.4%,分割面积准确率分别为89.9%与95.3%,位置误差分别为3.80%与2.80%,证明该方法有效。 展开更多
关键词 磨盘检测 深度学习 改进mask R-CNN模型 分割评价
在线阅读 下载PDF
An Automated Real-Time Face Mask Detection System Using Transfer Learning with Faster-RCNN in the Era of the COVID-19 Pandemic
13
作者 Maha Farouk S.Sabir Irfan Mehmood +4 位作者 Wafaa Adnan Alsaggaf Enas Fawai Khairullah Samar Alhuraiji Ahmed S.Alghamdi Ahmed A.Abd El-Latif 《Computers, Materials & Continua》 SCIE EI 2022年第5期4151-4166,共16页
Today,due to the pandemic of COVID-19 the entire world is facing a serious health crisis.According to the World Health Organization(WHO),people in public places should wear a face mask to control the rapid transmissio... Today,due to the pandemic of COVID-19 the entire world is facing a serious health crisis.According to the World Health Organization(WHO),people in public places should wear a face mask to control the rapid transmission of COVID-19.The governmental bodies of different countries imposed that wearing a face mask is compulsory in public places.Therefore,it is very difficult to manually monitor people in overcrowded areas.This research focuses on providing a solution to enforce one of the important preventative measures of COVID-19 in public places,by presenting an automated system that automatically localizes masked and unmasked human faces within an image or video of an area which assist in this outbreak of COVID-19.This paper demonstrates a transfer learning approach with the Faster-RCNN model to detect faces that are masked or unmasked.The proposed framework is built by fine-tuning the state-of-the-art deep learning model,Faster-RCNN,and has been validated on a publicly available dataset named Face Mask Dataset(FMD)and achieving the highest average precision(AP)of 81%and highest average Recall(AR)of 84%.This shows the strong robustness and capabilities of the Faster-RCNN model to detect individuals with masked and un-masked faces.Moreover,this work applies to real-time and can be implemented in any public service area. 展开更多
关键词 COIVD-19 deep learning faster-RCNN object detection transfer learning face mask
暂未订购
结合注意力机制的Mask R-CNN轮胎外观缺陷检测研究 被引量:1
14
作者 刘韵婷 戴佳霖 +1 位作者 高宇 谭明晓 《通信与信息技术》 2025年第1期23-27,共5页
针对我国轮胎外观缺陷检测中存在检测效率低、精度低、主观性强等问题,提出了结合注意力机制的Mask RCNN轮胎外观缺陷检测网络。首先,采用结合注意力机制的特征提取网络对轮胎表面进行特征提取,提高网络的特征提取能力以及特征图的质量... 针对我国轮胎外观缺陷检测中存在检测效率低、精度低、主观性强等问题,提出了结合注意力机制的Mask RCNN轮胎外观缺陷检测网络。首先,采用结合注意力机制的特征提取网络对轮胎表面进行特征提取,提高网络的特征提取能力以及特征图的质量;然后,通过RPN对得到的特征图进行区域候选操作,完成轮胎缺陷的检测;最后,采用Mask R-CNN网络有效地进行图像分割,并生成Mask标记。经实验验证,本文所提方法对轮胎外观缺陷检测的准确率达到了91.3%,并可以同时对胎面上较大缺陷、细小伤痕以及较浅的划痕进行检测。 展开更多
关键词 深度学习 mask R-CNN 轮胎外观缺陷检测 注意力机制
在线阅读 下载PDF
Deep Learning Based Face Mask Detection in Religious Mass Gathering During COVID-19 Pandemic
15
作者 Abdullah S AL-Malaise AL-Ghamdi Sultanah MAlshammari Mahmoud Ragab 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1863-1877,共15页
Notwithstanding the religious intention of billions of devotees,the religious mass gathering increased major public health concerns since it likely became a huge super spreading event for the severe acute respiratory ... Notwithstanding the religious intention of billions of devotees,the religious mass gathering increased major public health concerns since it likely became a huge super spreading event for the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Most attendees ignored preventive measures,namely maintaining physical distance,practising hand hygiene,and wearing facemasks.Wearing a face mask in public areas protects people from spreading COVID-19.Artificial intelligence(AI)based on deep learning(DL)and machine learning(ML)could assist in fighting covid-19 in several ways.This study introduces a new deep learning-based Face Mask Detection in Religious Mass Gathering(DLFMD-RMG)technique during the COVID-19 pandemic.The DLFMD-RMG technique focuses mainly on detecting face masks in a religious mass gathering.To accomplish this,the presented DLFMD-RMG technique undergoes two pre-processing levels:Bilateral Filtering(BF)and Contrast Enhancement.For face detection,the DLFMD-RMG technique uses YOLOv5 with a ResNet-50 detector.In addition,the face detection performance can be improved by the seeker optimization algorithm(SOA)for tuning the hyperparameter of the ResNet-50 module,showing the novelty of the work.At last,the faces with and without masks are classified using the Fuzzy Neural Network(FNN)model.The stimulation study of the DLFMD-RMG algorithm is examined on a benchmark dataset.The results highlighted the remarkable performance of the DLFMD-RMG model algorithm in other recent approaches. 展开更多
关键词 Religious mass gathering Hajj and Umrah covid-19 pandemic face mask computer vision deep learning
暂未订购
融合CBAM的Mask R-CNN模型在球团识别与粒径测量中的应用
16
作者 王猛 刘卫星 +3 位作者 李喆 李浩 齐西伟 杨爱民 《烧结球团》 北大核心 2025年第1期85-94,125,共11页
球团粒径的大小是影响高炉透气性、高炉冶炼效率与能源消耗的主要因素之一。本文针对工业条件下球团粒径难以精准测量的问题,采用融合注意力机制Mask R-CNN模型对球团进行分割与粒径测量。在对球团图像进行预处理后,构建了球团数据集,... 球团粒径的大小是影响高炉透气性、高炉冶炼效率与能源消耗的主要因素之一。本文针对工业条件下球团粒径难以精准测量的问题,采用融合注意力机制Mask R-CNN模型对球团进行分割与粒径测量。在对球团图像进行预处理后,构建了球团数据集,对比了多种主干网络的训练表现,并与多个分割模型进行了精度对比。此外,利用像素点统计分割掩膜面积实现了球团粒径的测量。结果表明,ResNet50作为主干网络在球团的特征提取中更具优越性。引入Convolutional Block Attention Module(CBAM)的Mask R-CNN模型对比初始模型A mean提高了2.18%。对比BlendMask、SOLOv2、YOLACT以及CondInst等分割模型,改进后的模型在分割精度上也有优势,并能更好地处理分割细节。此外,与Image J测量的球团粒径相比,本文所提出的球团粒径测量方法的最大误差保持在±1.8 mm之内,A_(IoU=0.5)可达到0.9483。 展开更多
关键词 球团粒径 mask R-CNN 迁移学习 ResNet CBAM
原文传递
基于改进Mask R-CNN的航空发动机保险丝实例分割方法
17
作者 张凤飞 孙军华 《计测技术》 2025年第1期96-104,共9页
针对成像背景复杂、光照不均、目标区域占比小等因素导致的航空发动机保险丝识别精度低的问题,提出一种改进的基于掩模区域的卷积神经网络(Mask Region-based Convolutional Neural Network,Mask RCNN)保险丝实例分割模型。首先分别对... 针对成像背景复杂、光照不均、目标区域占比小等因素导致的航空发动机保险丝识别精度低的问题,提出一种改进的基于掩模区域的卷积神经网络(Mask Region-based Convolutional Neural Network,Mask RCNN)保险丝实例分割模型。首先分别对保险丝图像的R、G、B三个通道进行不同程度的伽马校正,转化得到伪彩色图像,同时增强对比度;然后,针对保险丝的细长曲线几何特征,将动态蛇形卷积融入Mask R-CNN的骨干网络Resnet中,使得网络在特征提取时自适应地聚焦细长弯曲的局部结构;最后在特征融合阶段引入卷积注意力模块(Convolution Block Attention Module,CBAM),保留小目标浅层特征,从而提高网络对小目标的感知能力。实验结果表明,改进后的模型掩码A_(AP50)达到了82.54%,较基础模型提升了5.83%,为航空发动机保险丝数字化、智能化检测提供了有力支撑。 展开更多
关键词 航空发动机保险丝 基于掩模区域的卷积神经网络 实例分割 动态蛇形卷积 特征提取 卷积注意力模块 深度学习
在线阅读 下载PDF
基于深度学习模型Mask R-CNN对M50轴承钢中碳化物的研究
18
作者 孙瑞明 李淑欣 +2 位作者 鲁思渊 金永生 肖华海 《机械强度》 北大核心 2025年第8期19-27,共9页
M50轴承钢中主要的碳化物类型为MC、M_(2)C和M_(23)C_(6)。扫描电子显微镜(Scanning Electron Microscopy,SEM)下,3种碳化物的形状、尺寸和在材料中的分布存在明显的区别。有些碳化物的尺寸较大且分布不均匀。轴承受载过程中,这些碳化... M50轴承钢中主要的碳化物类型为MC、M_(2)C和M_(23)C_(6)。扫描电子显微镜(Scanning Electron Microscopy,SEM)下,3种碳化物的形状、尺寸和在材料中的分布存在明显的区别。有些碳化物的尺寸较大且分布不均匀。轴承受载过程中,这些碳化物会成为应力集中的区域,对轴承疲劳性能产生负面影响。为了高效地获得材料中的碳化物信息,提出一种改进的掩膜基于区域的卷积神经网络(Mask Region-based Convolutional Neural Network,Mask R-CNN)模型,可批量鉴别SEM图像中3种碳化物的种类,确定其尺寸大小及分布。网络模型输出的图像和数值结果显示,M50轴承钢中M_(2)C型碳化物尺寸大且分布不均匀,但总体尺寸最大的MC型碳化物和尺寸最小的M_(23)C_(6)型碳化物分布相对均匀。 展开更多
关键词 深度学习 mask R-CNN M50轴承钢 碳化物
在线阅读 下载PDF
A robust method for large-scale route optimization on lunar surface utilizing a multi-level map model
19
作者 Yutong JIA Shengnan ZHANG +5 位作者 Bin LIU Kaichang DI Bin XIE Jing NAN Chenxu ZHAO Gang WAN 《Chinese Journal of Aeronautics》 2025年第3期134-150,共17页
As we look ahead to future lunar exploration missions, such as crewed lunar exploration and establishing lunar scientific research stations, the lunar rovers will need to cover vast distances. These distances could ra... As we look ahead to future lunar exploration missions, such as crewed lunar exploration and establishing lunar scientific research stations, the lunar rovers will need to cover vast distances. These distances could range from kilometers to tens of kilometers, and even hundreds and thousands of kilometers. Therefore, it is crucial to develop effective long-range path planning for lunar rovers to meet the demands of lunar patrol exploration. This paper presents a hierarchical map model path planning method that utilizes the existing high-resolution images, digital elevation models and mineral abundance maps. The objective is to address the issue of the construction of lunar rover travel costs in the absence of large-scale, high-resolution digital elevation models. This method models the reference and semantic layers using the middle- and low-resolution remote sensing data. The multi-scale obstacles on the lunar surface are extracted by combining the deep learning algorithm on the high-resolution image, and the obstacle avoidance layer is modeled. A two-stage exploratory path planning decision is employed for long-distance driving path planning on a global–local scale. The proposed method analyzes the long-distance accessibility of various areas of scientific significance, such as Rima Bode. A high-precision digital elevation model is created using stereo images to validate the method. Based on the findings, it can be observed that the entire route spans a distance of 930.32 km. The route demonstrates an impressive ability to avoid meter-level impact craters and linear structures while maintaining an average slope of less than 8°. This paper explores scientific research by traversing at least seven basalt units, uncovering the secrets of lunar volcanic activities, and establishing ‘golden spike’ reference points for lunar stratigraphy. The final result of path planning can serve as a valuable reference for the design, mission demonstration, and subsequent project implementation of the new manned lunar rover. 展开更多
关键词 Crewed lunar exploration Long-range path planningi multi-level map Deep learning Volcanic activities
原文传递
基于Mask R-CNN的海洋锋自动识别方法
20
作者 苏里阳 张雨杭 +1 位作者 夏江敏 牛原 《海洋技术学报》 2025年第4期69-77,共9页
海洋锋作为大气与海洋相互作用的重要界面,其精确识别对提升气象预报精度、优化海洋生态系统管理及深化全球气候变化研究具有重要意义。传统基于梯度阈值的海洋锋检测方法因阈值选择与判别标准的不一致,导致识别精度较低。为此,本文提... 海洋锋作为大气与海洋相互作用的重要界面,其精确识别对提升气象预报精度、优化海洋生态系统管理及深化全球气候变化研究具有重要意义。传统基于梯度阈值的海洋锋检测方法因阈值选择与判别标准的不一致,导致识别精度较低。为此,本文提出了一种基于掩模区域的卷积神经网络(Mask Region-based Convolutional Neural Network,Mask R-CNN)的海洋锋自动识别方法,利用1993—2020年长时间序列的海表温度数据,实现海洋锋的自动检测与特征提取。对比分析结果表明:相较于传统梯度阈值法,该方法的整体检测精度平均超过90%,在海洋锋的宽度与强度提取上误差更小,可识别出更多海洋锋特征,对小尺度特征的识别效果更加显著。本文研究成果有助于深化对气候与天气变化的理解,从而提升对极端天气事件及全球气候变化的响应能力。 展开更多
关键词 mask R-CNN 海洋锋 深度学习 目标识别
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部