With the continuous development of face recognition network,the selection of loss function plays an increasingly important role in improving accuracy.The loss function of face recognition network needs to minimize the...With the continuous development of face recognition network,the selection of loss function plays an increasingly important role in improving accuracy.The loss function of face recognition network needs to minimize the intra-class distance while expanding the inter-class distance.So far,one of our mainstream loss function optimization methods is to add penalty terms,such as orthogonal loss,to further constrain the original loss function.The other is to optimize using the loss based on angular/cosine margin.The last is Triplet loss and a new type of joint optimization based on HST Loss and ACT Loss.In this paper,based on the three methods with good practical performance and the joint optimization method,various loss functions are thoroughly reviewed.展开更多
With the explosive growth of computational resources and data generation,deep machine learning has been successfully employed in various applications.One important and emerging scientific application of deep learning ...With the explosive growth of computational resources and data generation,deep machine learning has been successfully employed in various applications.One important and emerging scientific application of deep learning involves solving differential equations.Here,physics-informed neural networks(PINNs)are developed to solve the differential equations associated with a specific scientific problem.As such,algorithms for solving the differential equations by embedding their initial and boundary conditions in the cost function of the artificial neural networks using algorithmic differentiation must also be developed.In this study,various PINNs are adopted to estimate the stresses in the tablets and the interphase of a single lap joint.The proposed model is represented by two fourth-order non-homogeneous coupled partial differential equations,with the axial stresses in the upper and lower tablets adopted as the dependent variables.The axial stresses are a function of the tablet length,which presents the independent variable.Therefore,the axial stresses in the tablets are estimated by solving the coupled partial differential equations when subjected to the boundary conditions,whereas the remaining stress components are expressed in terms of axial stresses.The results obtained using the developed methodology are validated using the results obtained via MAPLE software.展开更多
基金This work was supported in part by the National Natural Science Foundation of China(Grant No.41875184)Innovation Team of“Six Talent Peaks”In Jiangsu Province(Grant No.TD-XYDXX-004).
文摘With the continuous development of face recognition network,the selection of loss function plays an increasingly important role in improving accuracy.The loss function of face recognition network needs to minimize the intra-class distance while expanding the inter-class distance.So far,one of our mainstream loss function optimization methods is to add penalty terms,such as orthogonal loss,to further constrain the original loss function.The other is to optimize using the loss based on angular/cosine margin.The last is Triplet loss and a new type of joint optimization based on HST Loss and ACT Loss.In this paper,based on the three methods with good practical performance and the joint optimization method,various loss functions are thoroughly reviewed.
基金Project supported by the Science and Engineering Research Board(SERB),Department of Science and Technology(DST),India(No.SRG/2019/001581)。
文摘With the explosive growth of computational resources and data generation,deep machine learning has been successfully employed in various applications.One important and emerging scientific application of deep learning involves solving differential equations.Here,physics-informed neural networks(PINNs)are developed to solve the differential equations associated with a specific scientific problem.As such,algorithms for solving the differential equations by embedding their initial and boundary conditions in the cost function of the artificial neural networks using algorithmic differentiation must also be developed.In this study,various PINNs are adopted to estimate the stresses in the tablets and the interphase of a single lap joint.The proposed model is represented by two fourth-order non-homogeneous coupled partial differential equations,with the axial stresses in the upper and lower tablets adopted as the dependent variables.The axial stresses are a function of the tablet length,which presents the independent variable.Therefore,the axial stresses in the tablets are estimated by solving the coupled partial differential equations when subjected to the boundary conditions,whereas the remaining stress components are expressed in terms of axial stresses.The results obtained using the developed methodology are validated using the results obtained via MAPLE software.