The complex vibration directly affects the dynamic safety of drill string in ultra-deep wells and extra-deep wells.It is important to understand the dynamic characteristics of drill string to ensure the safety of dril...The complex vibration directly affects the dynamic safety of drill string in ultra-deep wells and extra-deep wells.It is important to understand the dynamic characteristics of drill string to ensure the safety of drill string.Due to the super slenderness ratio of drill string,strong nonlinearity implied in dynamic analysis and the complex load environment,dynamic simulation of drill string faces great challenges.At present,many simulation methods have been developed to analyze drill string dynamics,and node iteration method is one of them.The node iteration method has a unique advantage in dealing with the contact characteristics between drill string and borehole wall,but its drawback is that the calculation consumes a considerable amount of time.This paper presents a dynamic simulation method of drilling string in extra-deep well based on successive over-relaxation node iterative method(SOR node iteration method).Through theoretical analysis and numerical examples,the correctness and validity of this method were verified,and the dynamics characteristics of drill string in extra-deep wells were calculated and analyzed.The results demonstrate that,in contrast to the conventional node iteration method,the SOR node iteration method can increase the computational efficiency by 48.2%while achieving comparable results.And the whirl trajectory of the extra-deep well drill string is extremely complicated,the maximum rotational speed downhole is approximately twice the rotational speed on the ground.The dynamic torque increases rapidly at the position of the bottom stabilizer,and the lateral vibration in the middle and lower parts of drill string is relatively intense.展开更多
In this paper,the efficient preconditioned modified Hermitian and skew-Hermitian splitting(PMHSS)iteration method is further explored and it is extended to solve more general block two-by-two linear systems with diffe...In this paper,the efficient preconditioned modified Hermitian and skew-Hermitian splitting(PMHSS)iteration method is further explored and it is extended to solve more general block two-by-two linear systems with different and nonsymmetric off-diagonal blocks.With the aid of the singular value decomposition technique,the detailed analysis of the algebraic and convergence properties of the PMHSS iteration method demonstrates that it is still convergent unconditionally as when it is used to solve the well-studied case of block two-by-two linear systems with same and symmetric off-diagonal blocks.Moreover,the PMHSS preconditioned matrix is almost unitary diagonalizable with clustered eigenvalue distributions for this more general case.On account of the favorable spectral properties of the PMHSS preconditioned matrix,a parameter free Chebyshev accelerated PMHSS(CAPMHSS)method is established to further improve its convergence rate.Numerical experiments about Kroncker structured block two-by-two linear systems arising from a time-dependent PDE-constrained optimal control problem demonstrate quite satisfactory and competitive performance of the CAPMHSS method compared with some existing preconditioned Krylov subspace methods.展开更多
Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycle...Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry.展开更多
In this paper,a distributed adaptive dynamic programming(ADP)framework based on value iteration is proposed for multi-player differential games.In the game setting,players have no access to the information of others...In this paper,a distributed adaptive dynamic programming(ADP)framework based on value iteration is proposed for multi-player differential games.In the game setting,players have no access to the information of others'system parameters or control laws.Each player adopts an on-policy value iteration algorithm as the basic learning framework.To deal with the incomplete information structure,players collect a period of system trajectory data to compensate for the lack of information.The policy updating step is implemented by a nonlinear optimization problem aiming to search for the proximal admissible policy.Theoretical analysis shows that by adopting proximal policy searching rules,the approximated policies can converge to a neighborhood of equilibrium policies.The efficacy of our method is illustrated by three examples,which also demonstrate that the proposed method can accelerate the learning process compared with the centralized learning framework.展开更多
Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural ...Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural artifacts online.As an effective medium,posters serve to attract public attention and facilitate broader engagement with cultural artifacts.However,existing poster generation methods mainly rely on fixed templates and manual design,which limits their scalability and adaptability to the diverse visual and semantic features of the artifacts.Therefore,we propose CAPGen,an automated aesthetic Cultural Artifacts Poster Generation framework built on a Multimodal Large Language Model(MLLM)with integrated iterative optimization.During our research,we collaborated with designers to define principles of graphic design for cultural artifact posters,to guide the MLLM in generating layout parameters.Later,we generated these parameters into posters.Finally,we refined the posters using an MLLM integrated with a multi-round iterative optimization mechanism.Qualitative results show that CAPGen consistently outperforms baseline methods in both visual quality and aesthetic performance.Furthermore,ablation studies indicate that the prompt,iterative optimization mechanism,and design principles significantly enhance the effectiveness of poster generation.展开更多
In seismic prospecting, fi eld conditions and other factors hamper the recording of the complete seismic wavefi eld; thus, data interpolation is critical in seismic data processing. Especially, in complex conditions, ...In seismic prospecting, fi eld conditions and other factors hamper the recording of the complete seismic wavefi eld; thus, data interpolation is critical in seismic data processing. Especially, in complex conditions, prestack missing data affect the subsequent highprecision data processing workfl ow. Compressive sensing is an effective strategy for seismic data interpolation by optimally representing the complex seismic wavefi eld and using fast and accurate iterative algorithms. The seislet transform is a sparse multiscale transform well suited for representing the seismic wavefield, as it can effectively compress seismic events. Furthermore, the Bregman iterative algorithm is an efficient algorithm for sparse representation in compressive sensing. Seismic data interpolation methods can be developed by combining seismic dynamic prediction, image transform, and compressive sensing. In this study, we link seismic data interpolation and constrained optimization. We selected the OC-seislet sparse transform to represent complex wavefields and used the Bregman iteration method to solve the hybrid norm inverse problem under the compressed sensing framework. In addition, we used an H-curve method to choose the threshold parameter in the Bregman iteration method. Thus, we achieved fast and accurate reconstruction of the seismic wavefi eld. Model and fi eld data tests demonstrate that the Bregman iteration method based on the H-curve norm in the sparse transform domain can effectively reconstruct missing complex wavefi eld data.展开更多
A class of coupled system for the E1 Nifio-Southern Oscillation (ENSO) mechanism is studied. Using the method of variational iteration for perturbation theory, the asymptotic expansions of the solution for ENSO mode...A class of coupled system for the E1 Nifio-Southern Oscillation (ENSO) mechanism is studied. Using the method of variational iteration for perturbation theory, the asymptotic expansions of the solution for ENSO model are obtained and the asymptotic behaviour of solution for corresponding problem is considered.展开更多
A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conce...A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conceptual oscillator model should consider the variations of both the eastern and western Pacific anomaly patterns. An E1 Niйo atmospheric physics model is proposed using a method for the variational iteration theory. Using the variational iteration method, the approximate expansions of the solution of corresponding problem are constructed. That is, firstly, introducing a set of functional and accounting their variationals, the Lagrange multiplicators are counted, and then the variational iteration is defined, finally, the approximate solution is obtained. From approximate expansions of the solution, the zonal sea surface temperature anomaly in the equatorial eastern Pacific and the thermocline depth anomaly of the sea-air oscillation for E1 Niйo atmospheric physics model can be analyzed. E1 Niйo is a very complicated natural phenomenon. Hence basic models need to be reduced for the sea-air oscillator and are solved. The variational iteration is a simple and valid approximate method.展开更多
The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied....The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.展开更多
This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zer...This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zero norm solution. The inversion approach mainly employs forward modeling; a depth weight function is introduced into the objective function of the zero norms. Sparse inversion results are obtained by the corresponding optimal mathematical method. To achieve the practical geophysical and geological significance of the results, penalty function is applied to constrain the density values. Results obtained by proposed provide clear boundary depth and density contrast distribution information. The method's accuracy, validity, and reliability are verified by comparing its results with those of synthetic models. To further explain its reliability, a practical gravity data is obtained for a region in Texas, USA is applied. Inversion results for this region are compared with those of previous studies, including a research of logging data in the same area. The depth of salt dome obtained by the inversion method is 4.2 km, which is in good agreement with the 4.4 km value from the logging data. From this, the practicality of the inversion method is also validated.展开更多
Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate o...Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.展开更多
The corresponding solution for a class of disturbed KdV equation is considered using the analytic method. From the generalized variational iteration theory, the problem of solving soliton for the corresponding equatio...The corresponding solution for a class of disturbed KdV equation is considered using the analytic method. From the generalized variational iteration theory, the problem of solving soliton for the corresponding equation translates into the problem of variational iteration. And then the approximate solution of the soliton for the equation is obtained.展开更多
In this paper, equivalence between the Mann and Ishikawa iterations for a generalized contraction mapping in cone subset of a real Banach space is discussed.
Minimum mean square error(MMSE) detection algorithm can achieve nearly optimal performance when the number of antennas at the base station(BS) is large enough compared to the number of users. But the traditional MMSE ...Minimum mean square error(MMSE) detection algorithm can achieve nearly optimal performance when the number of antennas at the base station(BS) is large enough compared to the number of users. But the traditional MMSE involves complicated matrix inversion. In this paper, we propose a modified MMSE algorithm which exploits the channel characteristics occurring in massive multiple-input multipleoutput(MIMO) channels and the relaxation iteration(RI) method to avoid the matrix inversion. A proper initial solution is given to accelerate the convergence speed. In addition, we point out that the channel estimation scheme used in channel hardening-exploiting message passing(CHEMP) receiver is very appropriate for our proposed detection algorithm. Simulation results verify that the proposed algorithm can achieve very close performance of the traditional MMSE algorithm with a small number of iterations.展开更多
In this paper, Aitken’s extrapolation normally applied to convergent fixed point iteration is extended to extrapolate the solution of a divergent iteration. In addition, higher order Aitken extrapolation is introduce...In this paper, Aitken’s extrapolation normally applied to convergent fixed point iteration is extended to extrapolate the solution of a divergent iteration. In addition, higher order Aitken extrapolation is introduced that enables successive decomposition of high Eigen values of the iteration matrix to enable convergence. While extrapolation of a convergent fixed point iteration using a geometric series sum is a known form of Aitken acceleration, it is shown that in this paper, the same formula can be used to estimate the solution of sets of linear equations from diverging Gauss-Seidel iterations. In both convergent and divergent iterations, the ratios of differences among the consecutive values of iteration eventually form a convergent (divergent) series with a factor equal to the largest Eigen value of the iteration matrix. Higher order Aitken extrapolation is shown to eliminate the influence of dominant Eigen values of the iteration matrix in successive order until the iteration is determined by the lowest possible Eigen values. For the convergent part of the Gauss-Seidel iteration, further acceleration is made possible by coupling of the extrapolation technique with the successive over relaxation (SOR) method. Application examples from both convergent and divergent iterations have been provided. Coupling of the extrapolation with the SOR technique is also illustrated for a steady state two dimensional heat flow problem which was solved using MATLAB programming.展开更多
The dynamic differential equation of a multibody System can be presented inthe form of Aq= B. Calculating the inverse of matrix A is a simple way to solve this kindof differential equatbo. Matrix A will be in the ill ...The dynamic differential equation of a multibody System can be presented inthe form of Aq= B. Calculating the inverse of matrix A is a simple way to solve this kindof differential equatbo. Matrix A will be in the ill condition if the system is configured asa main they with small mass appendages. A hierarchical iteration method is given in thispaper to avoid the problem of the inverse of an ill condition matrix calculatbo. It is pont-ed out that the stability of the system input and output is the suffcient condition of itera-tion convergence. The method omits a series formula expanding step. It is also useful toreduce the immuence of the stiff problem. The calculation progress i8 modular and structural.展开更多
Terminal iterative learning control(TILC) is developed to reduce the error between system output and a fixed desired point at the terminal end of operation interval over iterations under strictly identical initial con...Terminal iterative learning control(TILC) is developed to reduce the error between system output and a fixed desired point at the terminal end of operation interval over iterations under strictly identical initial conditions. In this work, the initial states are not required to be identical further but can be varying from iteration to iteration. In addition, the desired terminal point is not fixed any more but is allowed to change run-to-run. Consequently, a new adaptive TILC is proposed with a neural network initial state learning mechanism to achieve the learning objective over iterations. The neural network is used to approximate the effect of iteration-varying initial states on the terminal output and the neural network weights are identified iteratively along the iteration axis.A dead-zone scheme is developed such that both learning and adaptation are performed only if the terminal tracking error is outside a designated error bound. It is shown that the proposed approach is able to track run-varying terminal desired points fast with a specified tracking accuracy beyond the initial state variance.展开更多
Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N)...Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N) steps of distance computing between two vectors. The quantum VQ iteration and corresponding quantum VQ encoding algorithm that takes O(√N) steps are presented in this paper. The unitary operation of distance computing can be performed on a number of vectors simultaneously because the quantum state exists in a superposition of states. The quantum VQ iteration comprises three oracles, by contrast many quantum algorithms have only one oracle, such as Shor's factorization algorithm and Grover's algorithm. Entanglement state is generated and used, by contrast the state in Grover's algorithm is not an entanglement state. The quantum VQ iteration is a rotation over subspace, by contrast the Grover iteration is a rotation over global space. The quantum VQ iteration extends the Grover iteration to the more complex search that requires more oracles. The method of the quantum VQ iteration is universal.展开更多
This paper studies the problem of the space station short-term mission planning, which aims to allocate the executing time of missions effectively, schedule the corresponding resources reasonably and arrange the time ...This paper studies the problem of the space station short-term mission planning, which aims to allocate the executing time of missions effectively, schedule the corresponding resources reasonably and arrange the time of the astronauts properly. A domain model is developed by using the ontology theory to describe the concepts, constraints and relations of the planning domain formally, abstractly and normatively. A method based on time iteration is adopted to solve the short-term planning problem. Meanwhile, the resolving strategies are proposed to resolve different kinds of conflicts induced by the constraints of power, heat, resource, astronaut and relationship. The proposed approach is evaluated in a test case with fifteen missions, thirteen resources and three astronauts. The results show that the developed domain ontology model is reasonable, and the time iteration method using the proposed resolving strategies can successfully obtain the plan satisfying all considered constraints.展开更多
The present research on moulded case circuit breaker(MCCB) focuses on the enhancement of current-limiting interrupting performance during short circuit, overload, under voltage and phase failure, involving electrics...The present research on moulded case circuit breaker(MCCB) focuses on the enhancement of current-limiting interrupting performance during short circuit, overload, under voltage and phase failure, involving electrics, magnetic, mechanics, thermal, material, friction, arc extinguishing, impact vibration, skin effect, etc. The rigid-flexible coupling of the parts and components of the metamorphic manipulating mechanism in multi-fields leads to the non-rigid, high frequency, high damping, singularity of the Euler-Lagrange equations which represents the multi-body dynamics. The small step iteration which is used for obtaining the instantaneous and short time critical interrupting performance of metamorphic mechanism appears inaccuracy. It is difficult to realize top-down design by existing CAD systems. Therefore, a metamorphic manipulating mechanism design method for MCCB using index reduced iteration(IRI) is put forward. The metamorphic manipulating mechanism of MCCB is decomposed into three mechanisms: main switch connector mechanism, electromagnet-drawbar-jump buckle mechanism, and bimetallic strip-drawbar mechanism, which is respectively described by electro-dynamic force, electromagnet force, and bimetallic strip force. The dummy part(virtual rigid) without moment of inertia and mass is employed as intermediate to join the flexible body and rigid body. The model of rigid-flexible coupling metamorphic mechanism multi-body dynamics is built. The differential algebraic equations(DAEs) of the multibody dynamics model are converted to pure ordinary differential equations(ODEs) by coordinate partition. Order reduced integration with multi-step and variable step-size is preceded based on IRI. The non-linear algebraic equations are solved in each integration step by Newton-Rapson iteration. There is no ill-condition and singularity of Jacobian matrix when step size reduces to zero. The independent prototype design system using ACIS R13, HOOPS V11.0 and Visual C++.NET 2003 has been developed, which verifies the effectiveness of the proposed method. The proposed method enhances the current-limiting interrupting performance of MCCB, and has reference significance for multi-body dynamics design for similar flexible metamorphic mechanisms in multi-fields.展开更多
基金supported by the National Natural Science Foundation of China(52174003,52374008).
文摘The complex vibration directly affects the dynamic safety of drill string in ultra-deep wells and extra-deep wells.It is important to understand the dynamic characteristics of drill string to ensure the safety of drill string.Due to the super slenderness ratio of drill string,strong nonlinearity implied in dynamic analysis and the complex load environment,dynamic simulation of drill string faces great challenges.At present,many simulation methods have been developed to analyze drill string dynamics,and node iteration method is one of them.The node iteration method has a unique advantage in dealing with the contact characteristics between drill string and borehole wall,but its drawback is that the calculation consumes a considerable amount of time.This paper presents a dynamic simulation method of drilling string in extra-deep well based on successive over-relaxation node iterative method(SOR node iteration method).Through theoretical analysis and numerical examples,the correctness and validity of this method were verified,and the dynamics characteristics of drill string in extra-deep wells were calculated and analyzed.The results demonstrate that,in contrast to the conventional node iteration method,the SOR node iteration method can increase the computational efficiency by 48.2%while achieving comparable results.And the whirl trajectory of the extra-deep well drill string is extremely complicated,the maximum rotational speed downhole is approximately twice the rotational speed on the ground.The dynamic torque increases rapidly at the position of the bottom stabilizer,and the lateral vibration in the middle and lower parts of drill string is relatively intense.
基金supported by the National Natural Science Foundation of China(Nos.11801242,11771193,and 11901267)the Fundamental Research Funds for the Central Universities(No.lzujbky-2022-05)the Natural Science Foundation of Gansu Province of China(Grant No.23JRRA1104).
文摘In this paper,the efficient preconditioned modified Hermitian and skew-Hermitian splitting(PMHSS)iteration method is further explored and it is extended to solve more general block two-by-two linear systems with different and nonsymmetric off-diagonal blocks.With the aid of the singular value decomposition technique,the detailed analysis of the algebraic and convergence properties of the PMHSS iteration method demonstrates that it is still convergent unconditionally as when it is used to solve the well-studied case of block two-by-two linear systems with same and symmetric off-diagonal blocks.Moreover,the PMHSS preconditioned matrix is almost unitary diagonalizable with clustered eigenvalue distributions for this more general case.On account of the favorable spectral properties of the PMHSS preconditioned matrix,a parameter free Chebyshev accelerated PMHSS(CAPMHSS)method is established to further improve its convergence rate.Numerical experiments about Kroncker structured block two-by-two linear systems arising from a time-dependent PDE-constrained optimal control problem demonstrate quite satisfactory and competitive performance of the CAPMHSS method compared with some existing preconditioned Krylov subspace methods.
基金Supported by National Key R&D Program of China(Grant No.2019YFE0121300)。
文摘Meshing temperature analyses of polymer gears reported in the literature mainly concern the effects of various material combinations and loading conditions,as their impacts could be seen in the first few meshing cycles.However,the effects of tooth geometry parameters could manifest as the meshing cycles increase.This study investigated the effects of tooth geometry parameters on the multi-cycle meshing temperature of polyoxymethylene(POM)worm gears,aiming to control the meshing temperature elevation by tuning the tooth geometry.Firstly,a finite element(FE)model capable of separately calculating the heat generation and simulating the heat propagation was established.Moreover,an adaptive iteration algorithm was proposed within the FE framework to capture the influence of the heat generation variation from cycle to cycle.This algorithm proved to be feasible and highly efficient compared with experimental results from the literature and simulated results via the full-iteration algorithm.Multi-cycle meshing temperature analyses were conducted on a series of POM worm gears with different tooth geometry parameters.The results reveal that,within the range of 14.5°to 25°,a pressure angle of 25°is favorable for reducing the peak surface temperature and overall body temperature of POM worm gears,which influence flank wear and load-carrying capability,respectively.However,addendum modification should be weighed because it helps with load bearing but increases the risk of severe flank wear.This paper proposes an efficient iteration algorithm for multi-cycle meshing temperature analysis of polymer gears and proves the feasibility of controlling the meshing temperature elevation during multiple cycles by tuning tooth geometry.
基金supported by the Aeronautical Science Foundation of China(20220001057001)an Open Project of the National Key Laboratory of Air-based Information Perception and Fusion(202437)
文摘In this paper,a distributed adaptive dynamic programming(ADP)framework based on value iteration is proposed for multi-player differential games.In the game setting,players have no access to the information of others'system parameters or control laws.Each player adopts an on-policy value iteration algorithm as the basic learning framework.To deal with the incomplete information structure,players collect a period of system trajectory data to compensate for the lack of information.The policy updating step is implemented by a nonlinear optimization problem aiming to search for the proximal admissible policy.Theoretical analysis shows that by adopting proximal policy searching rules,the approximated policies can converge to a neighborhood of equilibrium policies.The efficacy of our method is illustrated by three examples,which also demonstrate that the proposed method can accelerate the learning process compared with the centralized learning framework.
基金supported by the National Key Research and Development Program of China(2023YFF0906502)the Postgraduate Research and Innovation Project of Hunan Province under Grant(CX20240473).
文摘Due to the digital transformation tendency among cultural institutions and the substantial influence of the social media platform,the demands of visual communication keep increasing for promoting traditional cultural artifacts online.As an effective medium,posters serve to attract public attention and facilitate broader engagement with cultural artifacts.However,existing poster generation methods mainly rely on fixed templates and manual design,which limits their scalability and adaptability to the diverse visual and semantic features of the artifacts.Therefore,we propose CAPGen,an automated aesthetic Cultural Artifacts Poster Generation framework built on a Multimodal Large Language Model(MLLM)with integrated iterative optimization.During our research,we collaborated with designers to define principles of graphic design for cultural artifact posters,to guide the MLLM in generating layout parameters.Later,we generated these parameters into posters.Finally,we refined the posters using an MLLM integrated with a multi-round iterative optimization mechanism.Qualitative results show that CAPGen consistently outperforms baseline methods in both visual quality and aesthetic performance.Furthermore,ablation studies indicate that the prompt,iterative optimization mechanism,and design principles significantly enhance the effectiveness of poster generation.
基金supported by the National Natural Science Foundation of China(Nos.41274119,41174080,and 41004041)the 863 Program of China(No.2012AA09A20103)
文摘In seismic prospecting, fi eld conditions and other factors hamper the recording of the complete seismic wavefi eld; thus, data interpolation is critical in seismic data processing. Especially, in complex conditions, prestack missing data affect the subsequent highprecision data processing workfl ow. Compressive sensing is an effective strategy for seismic data interpolation by optimally representing the complex seismic wavefi eld and using fast and accurate iterative algorithms. The seislet transform is a sparse multiscale transform well suited for representing the seismic wavefield, as it can effectively compress seismic events. Furthermore, the Bregman iterative algorithm is an efficient algorithm for sparse representation in compressive sensing. Seismic data interpolation methods can be developed by combining seismic dynamic prediction, image transform, and compressive sensing. In this study, we link seismic data interpolation and constrained optimization. We selected the OC-seislet sparse transform to represent complex wavefields and used the Bregman iteration method to solve the hybrid norm inverse problem under the compressed sensing framework. In addition, we used an H-curve method to choose the threshold parameter in the Bregman iteration method. Thus, we achieved fast and accurate reconstruction of the seismic wavefi eld. Model and fi eld data tests demonstrate that the Bregman iteration method based on the H-curve norm in the sparse transform domain can effectively reconstruct missing complex wavefi eld data.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90111011 and 10471039), the National Key Basic Research Special Foundation of China (Grant Nos 2003CB415101-03 and 2004CB418304), the Key Basic Research Foundation of the Chinese Academy of Sciences (Grant No KZCX3-SW-221) and in part by E-Institutes of Shanghai Municipal Education Commission (Grant No N.E03004).
文摘A class of coupled system for the E1 Nifio-Southern Oscillation (ENSO) mechanism is studied. Using the method of variational iteration for perturbation theory, the asymptotic expansions of the solution for ENSO model are obtained and the asymptotic behaviour of solution for corresponding problem is considered.
文摘A class of E1 Niйo atmospheric physics oscillation model is considered. The E1 Niйo atmospheric physics oscillation is an abnormal phenomenon involved in the tropical Pacific ocean-atmosphere interactions. The conceptual oscillator model should consider the variations of both the eastern and western Pacific anomaly patterns. An E1 Niйo atmospheric physics model is proposed using a method for the variational iteration theory. Using the variational iteration method, the approximate expansions of the solution of corresponding problem are constructed. That is, firstly, introducing a set of functional and accounting their variationals, the Lagrange multiplicators are counted, and then the variational iteration is defined, finally, the approximate solution is obtained. From approximate expansions of the solution, the zonal sea surface temperature anomaly in the equatorial eastern Pacific and the thermocline depth anomaly of the sea-air oscillation for E1 Niйo atmospheric physics model can be analyzed. E1 Niйo is a very complicated natural phenomenon. Hence basic models need to be reduced for the sea-air oscillator and are solved. The variational iteration is a simple and valid approximate method.
基金Supported by the Natural Science Foundation of Zhejiang Province (Y605144)the XNF of Zhejiang University of Media and Communications (XN080012008034)
文摘The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.
基金supported by the Development of airborne gravity gradiometer(No.2017YFC0601601)open subject of Key Laboratory of Petroleum Resources Research,Institute of Geology and Geophysics,Chinese Academy of Sciences(No.KLOR2018-8)
文摘This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zero norm solution. The inversion approach mainly employs forward modeling; a depth weight function is introduced into the objective function of the zero norms. Sparse inversion results are obtained by the corresponding optimal mathematical method. To achieve the practical geophysical and geological significance of the results, penalty function is applied to constrain the density values. Results obtained by proposed provide clear boundary depth and density contrast distribution information. The method's accuracy, validity, and reliability are verified by comparing its results with those of synthetic models. To further explain its reliability, a practical gravity data is obtained for a region in Texas, USA is applied. Inversion results for this region are compared with those of previous studies, including a research of logging data in the same area. The depth of salt dome obtained by the inversion method is 4.2 km, which is in good agreement with the 4.4 km value from the logging data. From this, the practicality of the inversion method is also validated.
文摘Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.
基金Supported by the National Natural Science Foundation of China under Grant No. 40876010the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No. KZCX2-YW-Q03-08+3 种基金the R & D Special Fund for Public Welfare Industry (meteorology) under Grant No. GYHY200806010the LASG State Key Laboratory Special Fundthe E-Institutes of Shanghai Municipal Education Commission under Grant No. E03004the Natural Science Foundation of Zhejiang Province under Grant No. Y6090164
文摘The corresponding solution for a class of disturbed KdV equation is considered using the analytic method. From the generalized variational iteration theory, the problem of solving soliton for the corresponding equation translates into the problem of variational iteration. And then the approximate solution of the soliton for the equation is obtained.
文摘In this paper, equivalence between the Mann and Ishikawa iterations for a generalized contraction mapping in cone subset of a real Banach space is discussed.
基金supported by the National Hightech R&D Program of China(2014AA01A704)the Natural Science Foundation of China(61201135)111 Project(B08038)
文摘Minimum mean square error(MMSE) detection algorithm can achieve nearly optimal performance when the number of antennas at the base station(BS) is large enough compared to the number of users. But the traditional MMSE involves complicated matrix inversion. In this paper, we propose a modified MMSE algorithm which exploits the channel characteristics occurring in massive multiple-input multipleoutput(MIMO) channels and the relaxation iteration(RI) method to avoid the matrix inversion. A proper initial solution is given to accelerate the convergence speed. In addition, we point out that the channel estimation scheme used in channel hardening-exploiting message passing(CHEMP) receiver is very appropriate for our proposed detection algorithm. Simulation results verify that the proposed algorithm can achieve very close performance of the traditional MMSE algorithm with a small number of iterations.
文摘In this paper, Aitken’s extrapolation normally applied to convergent fixed point iteration is extended to extrapolate the solution of a divergent iteration. In addition, higher order Aitken extrapolation is introduced that enables successive decomposition of high Eigen values of the iteration matrix to enable convergence. While extrapolation of a convergent fixed point iteration using a geometric series sum is a known form of Aitken acceleration, it is shown that in this paper, the same formula can be used to estimate the solution of sets of linear equations from diverging Gauss-Seidel iterations. In both convergent and divergent iterations, the ratios of differences among the consecutive values of iteration eventually form a convergent (divergent) series with a factor equal to the largest Eigen value of the iteration matrix. Higher order Aitken extrapolation is shown to eliminate the influence of dominant Eigen values of the iteration matrix in successive order until the iteration is determined by the lowest possible Eigen values. For the convergent part of the Gauss-Seidel iteration, further acceleration is made possible by coupling of the extrapolation technique with the successive over relaxation (SOR) method. Application examples from both convergent and divergent iterations have been provided. Coupling of the extrapolation with the SOR technique is also illustrated for a steady state two dimensional heat flow problem which was solved using MATLAB programming.
文摘The dynamic differential equation of a multibody System can be presented inthe form of Aq= B. Calculating the inverse of matrix A is a simple way to solve this kindof differential equatbo. Matrix A will be in the ill condition if the system is configured asa main they with small mass appendages. A hierarchical iteration method is given in thispaper to avoid the problem of the inverse of an ill condition matrix calculatbo. It is pont-ed out that the stability of the system input and output is the suffcient condition of itera-tion convergence. The method omits a series formula expanding step. It is also useful toreduce the immuence of the stiff problem. The calculation progress i8 modular and structural.
基金supported by National Natural Science Foundation of China(Nos.61374102,61433002 and 61120106009)High Education Science&Technology Fund Planning Project of Shandong Province of China(No.J14LN30)
文摘Terminal iterative learning control(TILC) is developed to reduce the error between system output and a fixed desired point at the terminal end of operation interval over iterations under strictly identical initial conditions. In this work, the initial states are not required to be identical further but can be varying from iteration to iteration. In addition, the desired terminal point is not fixed any more but is allowed to change run-to-run. Consequently, a new adaptive TILC is proposed with a neural network initial state learning mechanism to achieve the learning objective over iterations. The neural network is used to approximate the effect of iteration-varying initial states on the terminal output and the neural network weights are identified iteratively along the iteration axis.A dead-zone scheme is developed such that both learning and adaptation are performed only if the terminal tracking error is outside a designated error bound. It is shown that the proposed approach is able to track run-varying terminal desired points fast with a specified tracking accuracy beyond the initial state variance.
文摘Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N) steps of distance computing between two vectors. The quantum VQ iteration and corresponding quantum VQ encoding algorithm that takes O(√N) steps are presented in this paper. The unitary operation of distance computing can be performed on a number of vectors simultaneously because the quantum state exists in a superposition of states. The quantum VQ iteration comprises three oracles, by contrast many quantum algorithms have only one oracle, such as Shor's factorization algorithm and Grover's algorithm. Entanglement state is generated and used, by contrast the state in Grover's algorithm is not an entanglement state. The quantum VQ iteration is a rotation over subspace, by contrast the Grover iteration is a rotation over global space. The quantum VQ iteration extends the Grover iteration to the more complex search that requires more oracles. The method of the quantum VQ iteration is universal.
基金supported by the National Natural Science Foundation of China(11402295)the Science Project of National University of Defense Technology(JC14-01-05)the Hunan Provincial Natural Science Foundation of China(2015JJ3020)
文摘This paper studies the problem of the space station short-term mission planning, which aims to allocate the executing time of missions effectively, schedule the corresponding resources reasonably and arrange the time of the astronauts properly. A domain model is developed by using the ontology theory to describe the concepts, constraints and relations of the planning domain formally, abstractly and normatively. A method based on time iteration is adopted to solve the short-term planning problem. Meanwhile, the resolving strategies are proposed to resolve different kinds of conflicts induced by the constraints of power, heat, resource, astronaut and relationship. The proposed approach is evaluated in a test case with fifteen missions, thirteen resources and three astronauts. The results show that the developed domain ontology model is reasonable, and the time iteration method using the proposed resolving strategies can successfully obtain the plan satisfying all considered constraints.
基金supported by National Basic Research Program of China(973 Program, Grant No. 2011CB706506)National S&T Great Special of China(Grant Nos. 2012ZX04010011, 2011ZX04014-131)+1 种基金National Science Foundation for Young Scholars of China(Grant No. 51005204)Postdoctoral Fund of China(Grant No. 20100471000)
文摘The present research on moulded case circuit breaker(MCCB) focuses on the enhancement of current-limiting interrupting performance during short circuit, overload, under voltage and phase failure, involving electrics, magnetic, mechanics, thermal, material, friction, arc extinguishing, impact vibration, skin effect, etc. The rigid-flexible coupling of the parts and components of the metamorphic manipulating mechanism in multi-fields leads to the non-rigid, high frequency, high damping, singularity of the Euler-Lagrange equations which represents the multi-body dynamics. The small step iteration which is used for obtaining the instantaneous and short time critical interrupting performance of metamorphic mechanism appears inaccuracy. It is difficult to realize top-down design by existing CAD systems. Therefore, a metamorphic manipulating mechanism design method for MCCB using index reduced iteration(IRI) is put forward. The metamorphic manipulating mechanism of MCCB is decomposed into three mechanisms: main switch connector mechanism, electromagnet-drawbar-jump buckle mechanism, and bimetallic strip-drawbar mechanism, which is respectively described by electro-dynamic force, electromagnet force, and bimetallic strip force. The dummy part(virtual rigid) without moment of inertia and mass is employed as intermediate to join the flexible body and rigid body. The model of rigid-flexible coupling metamorphic mechanism multi-body dynamics is built. The differential algebraic equations(DAEs) of the multibody dynamics model are converted to pure ordinary differential equations(ODEs) by coordinate partition. Order reduced integration with multi-step and variable step-size is preceded based on IRI. The non-linear algebraic equations are solved in each integration step by Newton-Rapson iteration. There is no ill-condition and singularity of Jacobian matrix when step size reduces to zero. The independent prototype design system using ACIS R13, HOOPS V11.0 and Visual C++.NET 2003 has been developed, which verifies the effectiveness of the proposed method. The proposed method enhances the current-limiting interrupting performance of MCCB, and has reference significance for multi-body dynamics design for similar flexible metamorphic mechanisms in multi-fields.