期刊文献+
共找到398篇文章
< 1 2 20 >
每页显示 20 50 100
基于Transformer-Isolation Forest的地壳形变异常提取
1
作者 王雪鉴 王毅恒 +4 位作者 孙新坡 柳川 加明 赵超 杨超 《计算机科学》 北大核心 2025年第S1期724-729,共6页
GPS地壳变形监测在地震前兆研究中起着至关重要的作用。随着观测数据的积累,传统数据处理方法在大数据处理方面面临挑战。文中提出了一种基于Transformer网络和重构误差训练策略的算法。该算法通过训练Transformer网络学习无地震时的GP... GPS地壳变形监测在地震前兆研究中起着至关重要的作用。随着观测数据的积累,传统数据处理方法在大数据处理方面面临挑战。文中提出了一种基于Transformer网络和重构误差训练策略的算法。该算法通过训练Transformer网络学习无地震时的GPS地壳位移数据,输出正常数据,并将异常时的地震GPS地壳位移数据重构误差输入到Isolation Forest异常检测算法模型中来判别是否是地震异常前兆。从GPS地壳变形数据中提取了2个Mw>5的地震事件前异常,获得了比以往研究更全面且普遍的异常数据现象。统计分析显示,相同地区的观测站在2次地震前的GPS地壳变形数据中存在相似的异常现象,表明相同地区存在相似的地壳形变积累和释放模式。这些发现,强调了通过理解地震机制来提高地震预测和防范的必要性。 展开更多
关键词 地壳形变 异常提取 TRANSFORMER 全球定位系统 isolation forest
在线阅读 下载PDF
基于Isolation Forest算法的10 kV配电网故障自动定位研究
2
作者 蔡林宏 陆曦 《电工技术》 2025年第S1期158-159,共2页
随着电网智能化程度的提高,对配电网络进行故障诊断是一个迫切需要解决的问题。针对10 kV配电网络,以孤立森林为研究对象,研究其在故障发生前和发生后的准确定位。研究表明,在高噪音、复杂电网数据背景下,孤立森林算法具有很好的异常检... 随着电网智能化程度的提高,对配电网络进行故障诊断是一个迫切需要解决的问题。针对10 kV配电网络,以孤立森林为研究对象,研究其在故障发生前和发生后的准确定位。研究表明,在高噪音、复杂电网数据背景下,孤立森林算法具有很好的异常检测性能。 展开更多
关键词 孤立森林算法 配电网 故障定位 特征提取 智能电网
在线阅读 下载PDF
Optimizing the Isolation Forest Algorithm for Identifying Abnormal Behaviors of Students in Education Management Big Data
3
作者 Bibo Feng Lingli Zhang 《Journal of Artificial Intelligence and Technology》 2024年第1期31-39,共9页
With the changes in educational models,applying computer algorithms and artificial intelligence technologies to data analysis in universities has become a research hotspot in the field of intelligent education.In resp... With the changes in educational models,applying computer algorithms and artificial intelligence technologies to data analysis in universities has become a research hotspot in the field of intelligent education.In response to the increasing amount of student data in universities,this study proposes to use an optimized isolated forest algorithm for recognizing features to detect abnormal student behavior concealed in big data for educational management.Firstly,it uses a logistic regression algorithm to update the calculation method of isolated forest weights and then uses residual statistics to eliminate redundant forests.Finally,it utilizes discrete particle swarm optimization to optimize the isolated forest algorithm.On this basis,improvements have also been made to the traditional gated loop unit network.It merges the two improved algorithm models and builds an anomaly detection model for collecting college student education data.The experiment shows that the optimized isolated forest algorithm has a recognition accuracy of 0.986 and a training time of 1s.The recognition accuracy of the improved gated loop unit network is 0.965,and the training time is 0.16s.In summary,the constructed model can effectively identify abnormal data of college students,thereby helping educators to detect students’problems in time and helping students to improve their learning status. 展开更多
关键词 isolated forest algorithm education abnormal behavior big data DISTINGUISH
在线阅读 下载PDF
基于Isolation Forest改进的数据异常检测方法 被引量:28
4
作者 徐东 王岩俊 +1 位作者 孟宇龙 张子迎 《计算机科学》 CSCD 北大核心 2018年第10期155-159,共5页
针对现有的基于隔离森林(Isolation Forest)的数据异常检测算法检测精度低、执行效率差和泛化能力弱等问题,提出一种改进的数据异常检测方法 SA-iForest。该方法基于模拟退火算法选择精度高和有差异性的隔离树来优化森林,同时去除冗余... 针对现有的基于隔离森林(Isolation Forest)的数据异常检测算法检测精度低、执行效率差和泛化能力弱等问题,提出一种改进的数据异常检测方法 SA-iForest。该方法基于模拟退火算法选择精度高和有差异性的隔离树来优化森林,同时去除冗余的隔离树,改进了隔离森林的森林构建。采用标准仿真数据集对所提方法进行验证,结果表明该方法与传统Isolation Forest和LOF方法相比,在准确率、执行效率和稳定性方面均有显著提高。 展开更多
关键词 隔离森林 异常检测 SA-iforest 模拟退火
在线阅读 下载PDF
基于Isolation Forest和Random Forest相结合的智能电网时间序列数据异常检测算法 被引量:11
5
作者 杨永娇 肖建毅 +1 位作者 赵创业 周开东 《计算机与现代化》 2020年第3期99-102,126,共5页
智能电网的信息系统是保障电力行业正常运行的基础,而智能电网中各种时间序列数据的分析结果是衡量信息系统稳定运行的重要依据。传统的时间序列数据异常检测算法很难同时兼顾准确性和实时性。本文引入基于Isolation Forest和Random For... 智能电网的信息系统是保障电力行业正常运行的基础,而智能电网中各种时间序列数据的分析结果是衡量信息系统稳定运行的重要依据。传统的时间序列数据异常检测算法很难同时兼顾准确性和实时性。本文引入基于Isolation Forest和Random Forest相结合的智能电网时间序列数据异常检测算法,结合无监督学习算法和有监督学习算法的优点,实现机器自动标注和自动学习阈值,人工标注少量特征值,从一定程度上提高了时间序列数据异常检查准确性和实时性,可以满足智能电网时间序列数据异常检测需求,从而达到提升智能电网信息安全的目的。 展开更多
关键词 isolation forest算法 Random forest算法 异常检测算法 时间序列数据 智能电网
在线阅读 下载PDF
Application of isolation forest to extract multivariate anomalies from geochemical exploration data 被引量:9
6
作者 WU Wei CHEN Yongliang 《Global Geology》 2018年第1期36-47,共12页
Constructing a statistical model that best fits the background is a key step in geochemical anomaly identification. But the model is hard to be constructed in situations where the sample population has unknown and/or ... Constructing a statistical model that best fits the background is a key step in geochemical anomaly identification. But the model is hard to be constructed in situations where the sample population has unknown and/or complex distribution. Isolation forest is an outlier detection approach that explicitly isolates anomaly samples rather than models the population distribution. It can extract multivariate anomalies from huge-sized high-dimensional data with unknown population distribution. For this reason,we tentatively applied the method to identify multivariate anomalies from the stream sediment survey data of the Lalingzaohuo district,an area with a complex geological setting,in Qinghai Province in China. The performance of the isolation forest algorithm in anomaly identification was compared with that of a continuous restricted Boltzmann machine. The results show that the isolation forest model performs superiorly to the continuous restricted Boltzmann machine in multivariate anomaly identification in terms of receiver operating characteristic curve,area under the curve,and data-processing efficiency. The anomalies identified by the isolation forest model occupy 19% of the study area and contain 82% of the known mineral deposits,whereas the anomalies identified by the continuous restricted Boltzmann machine occupy 35% of the study area and contain 88% of the known mineral deposits. It takes 4. 07 and 279. 36 seconds respectively handling the dataset using the two models. Therefore,isolation forest is a useful anomaly detection method that can quickly extract multivariate anomalies from geochemical exploration data. 展开更多
关键词 isolation forest continuous restricted BOLTZMANN machine receiver operating characteristic curve Youden index GEOCHEMICAL ANOMALY identification
在线阅读 下载PDF
A Multi-level Approach for Complex Fault Isolation Based on Structured Residuals 被引量:4
7
作者 叶鲁彬 石向荣 梁军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第3期462-472,共11页
In industrial processes,there exist faults that have complex effect on process variables.Complex and simple faults are defined according to their effect dimensions.The conventional approaches based on structured resid... In industrial processes,there exist faults that have complex effect on process variables.Complex and simple faults are defined according to their effect dimensions.The conventional approaches based on structured residuals cannot isolate complex faults.This paper presents a multi-level strategy for complex fault isolation.An extraction procedure is employed to reduce the complex faults to simple ones and assign them to several levels.On each level,faults are isolated by their different responses in the structured residuals.Each residual is obtained insensitive to one fault but more sensitive to others.The faults on different levels are verified to have different residual responses and will not be confused.An entire incidence matrix containing residual response characteristics of all faults is obtained,based on which faults can be isolated.The proposed method is applied in the Tennessee Eastman process example,and the effectiveness and advantage are demonstrated. 展开更多
关键词 multi-level structured residuals principal component analysis complex fault isolation Tennessee Eastman process
在线阅读 下载PDF
Identification model of geochemical anomaly based on isolation forest algorithm 被引量:1
8
作者 SHANG Yinmin LU Laijun KANG Qiankun 《Global Geology》 2019年第3期159-166,共8页
The methods for geochemical anomaly detection are usually based on statistical models, and it needs to assume that the sample population satisfies a specific distribution, which may reduce the performance of geochemic... The methods for geochemical anomaly detection are usually based on statistical models, and it needs to assume that the sample population satisfies a specific distribution, which may reduce the performance of geochemical anomaly detection. In this paper, the isolation forest model is used to detect geochemical anomalies and it does not require geochemical data to satisfy a particular distribution. By constructing a tree to traverse the average path length of all data, anomaly scores are used to characterize the anomaly and background fields, and the optimal threshold is selected to identify geochemical anomalies. Taking 1∶200 000 geochemical exploration data of Fusong area in Jilin Province, NE China as an example, Fe2O3 and Pb were selected as the indicator elements to identify geochemical anomalies, and the results were compared with traditional statistical methods. The results show that the isolation forest model can effectively identify univariate geochemical anomalies, and the identified anomalies results have significant spatial correlation with known mine locations. Moreover, it can identify both high value anomalies and weak anomalies. 展开更多
关键词 isolation forest model GEOCHEMICAL ANOMALY ROC CURVE Youden index
在线阅读 下载PDF
Improved Isolation Forest Algorithm for Anomaly Test Data Detection 被引量:2
9
作者 Yupeng Xu Hao Dong +3 位作者 Mingzhu Zhou Jun Xing Xiaohui Li Jian Yu 《Journal of Computer and Communications》 2021年第8期48-60,共13页
The cigarette detection data contains a large amount of true sample data and a small amount of false sample data. The false sample data is regarded as abnormal data, and anomaly detection is performed to realize the i... The cigarette detection data contains a large amount of true sample data and a small amount of false sample data. The false sample data is regarded as abnormal data, and anomaly detection is performed to realize the identification of real and fake cigarettes. Binary particle swarm optimization algorithm is used to improve the isolation forest construction process, and isolation trees with high precision and large differences are selected, which improves the accuracy and efficiency of the algorithm. The distance between the obtained anomaly score and the clustering center of the k-means algorithm is used as the threshold for anomaly judgment. The experimental results show that the accuracy of the BPSO-iForest algorithm is improved compared with the standard iForest algorithm. The experimental results of multiple brand samples also show that the method in this paper can accurately use the detection data for authenticity identification. 展开更多
关键词 isolation forest BPSO K-Means Cluster Anomaly Detection
在线阅读 下载PDF
Detection of Multivariate Geochemical Anomalies Using the Bat-Optimized Isolation Forest and Bat-Optimized Elliptic Envelope Models 被引量:1
10
作者 Yongliang Chen Shicheng Wang +1 位作者 Qingying Zhao Guosheng Sun 《Journal of Earth Science》 SCIE CAS CSCD 2021年第2期415-426,共12页
Isolation forest and elliptic envelope are used to detect geochemical anomalies,and the bat algorithm was adopted to optimize the parameters of the two models.The two bat-optimized models and their default-parameter c... Isolation forest and elliptic envelope are used to detect geochemical anomalies,and the bat algorithm was adopted to optimize the parameters of the two models.The two bat-optimized models and their default-parameter counterparts were used to detect multivariate geochemical anomalies from the stream sediment survey data of 1:50000 scale collected from the Helong district,Jilin Province,China.Based on the data modeling results,the receiver operating characteristic(ROC)curve analysis was performed to evaluate the performance of the two bat-optimized models and their default-parameter counterparts.The results show that the bat algorithm can improve the performance of the two models by optimizing their parameters in geochemical anomaly detection.The optimal threshold determined by the Youden index was used to identify geochemical anomalies from the geochemical data points.Compared with the anomalies detected by the elliptic envelope models,the anomalies detected by the isolation forest models have higher spatial relationship with the mineral occurrences discovered in the study area.According to the results of this study and previous work,it can be inferred that the background population of the study area is complex,which is not suitable for the establishment of elliptic envelope model. 展开更多
关键词 bat algorithm isolation forest elliptic envelope receiver operating characteristic curve analysis geochemical anomaly detection
原文传递
Comparative study on isolation forest, extended isolation forest and generalized isolation forest in detection of multivariate geochemical anomalies
11
作者 ZHENG Chenyi ZHAO Qingying +2 位作者 FAN Guoyu ZHAO Keyu PIAO Taisheng 《Global Geology》 2023年第3期167-176,共10页
It is not easy to construct a model to describe the geochemical background in geochemical anomaly detection due to the complexity of the geological setting.Isolation forest and its improved algorithms can detect geoch... It is not easy to construct a model to describe the geochemical background in geochemical anomaly detection due to the complexity of the geological setting.Isolation forest and its improved algorithms can detect geochemical anomalies without modeling the complex geochemical background.These methods can effec-tively extract multivariate anomalies from large volume of high-dimensional geochemical data with unknown population distribution.To test the performance of these algorithms in the detection of mineralization-related geochemical anomalies,the isolation forest,extended isolation forest and generalized isolation forest models were established to detect multivariate anomalies from the stream sediment survey data collected in the Wu-laga area in Heilongjiang Province.The geochemical anomalies detected by the generalized isolation forest model account for 40%of the study area,and contain 100%of the known gold deposits.The geochemical anomalies detected by the isolation forest model account for 20%of the study area,and contain 71%of the known gold deposits.The geochemical anomalies detected by the extended isolation forest algorithm account for 34%of the study area,and contain 100%of the known gold deposits.Therefore,the isolation forest mo-del,extended isolation fo-rest model and generalized isolation forest model are comparable in geochemical anomaly detection. 展开更多
关键词 isolation forest extended isolation forest generalized isolation forest Youden index geochemi-cal anomaly identification
在线阅读 下载PDF
基于EMD-iForest的GNSS变形监测时间序列粗差探测方法
12
作者 吴明魁 尚霆锋 +2 位作者 赵文祎 王鑫宇 刘万科 《测绘地理信息》 2025年第2期67-72,共6页
受观测环境、通信链路、全球导航卫星系统(global navigation satellite system,GNSS)终端设备以及监测算法等因素影响,GNSS变形监测时间序列不可避免地存在粗差,无法准确反映监测体的真实变形特征。针对该问题,提出了基于经验模态分解... 受观测环境、通信链路、全球导航卫星系统(global navigation satellite system,GNSS)终端设备以及监测算法等因素影响,GNSS变形监测时间序列不可避免地存在粗差,无法准确反映监测体的真实变形特征。针对该问题,提出了基于经验模态分解-孤立森林(empirical mode decomposition-isolated forest,EMD-iForest)的GNSS变形监测时间序列粗差探测方法,并采用3组仿真数据评估了算法性能,结果表明:EMD-iForest方法的准确率、漏判率、误判率分别优于98.8%、15.4%、0.4%,相较于小波-孤立森林(wavelet decomposition-isolated forest,WD-iForest)算法,EMD-iForest方法可增加粗差识别准确率并减少漏判、误判。 展开更多
关键词 GNSS变形监测 经验模态分解 孤立森林 粗差探测 小波分解
原文传递
ReMass-iForest+:BDS广播星历异常检测方法
13
作者 蔡佳炜 李建文 谢胜达 《导航定位学报》 北大核心 2025年第3期85-98,共14页
针对北斗卫星导航系统(BDS)广播星历异常值检测中存在的定位异常时间不准确、异常序列辨识困难、易受阈值影响等问题,提出一种改进型孤立森林算法ReMass-iForest+:通过数据清洗去除虚假异常数据;然后,将孤立森林(iForest)与相对数据质量... 针对北斗卫星导航系统(BDS)广播星历异常值检测中存在的定位异常时间不准确、异常序列辨识困难、易受阈值影响等问题,提出一种改进型孤立森林算法ReMass-iForest+:通过数据清洗去除虚假异常数据;然后,将孤立森林(iForest)与相对数据质量(ReMass)相结合,使用超参数优化算法(GridSearchCV)寻找最优树,通过相邻点差值检测结合多尺度窗口在有效周期内对部分时间序列实施多重相对质量判定,对数据全局进行相对路径评分,并在结合阈值惩罚机制后将所得评分构建成森林集群;最后采用模型集成算法(XGBoost),使用异常权重对评分重新建模获得异常值。实验结果表明,该方法能检测传统经验阈值难以识别的轨道异常与阈值下的异常波动,准确探测到异常时间与持续时间,并定位到引发异常的参数类型;与传统iForest相比,ReMass-iForest+的检测准确性显著提高,在测试集内相比可提升9.39%的性能,降低12.53%的漏报率,在真实数据内相比提升9.05%的性能,降低15.69%的漏报率。该方法可有效消除跳变、轨道机动等单变量值波动的影响,放大区间内的微小波动;ReMass-iForest+在BDS广播星历异常检测领域具有可行性和优势。 展开更多
关键词 广播星历 机器学习 孤立森林 异常检测 多变量检测
在线阅读 下载PDF
基于MDLOF-iForest和M‑KNN‑Slope的公共 建筑负荷异常数据识别与修复 被引量:1
14
作者 刘一宁 陈柏安 +2 位作者 杜鹏程 林晓刚 江美慧 《综合智慧能源》 2025年第3期62-72,共11页
在公共建筑能耗研究中,对异常负荷值进行识别与修复是不可或缺的数据处理环节。针对现有方法的局限性,提出一种基于马氏距离局部离群因子-孤立森林(MDLOF-iForest)算法和考虑斜率的K近邻改进(M‑KNN‑Slope)算法的负荷异常数据识别与修复... 在公共建筑能耗研究中,对异常负荷值进行识别与修复是不可或缺的数据处理环节。针对现有方法的局限性,提出一种基于马氏距离局部离群因子-孤立森林(MDLOF-iForest)算法和考虑斜率的K近邻改进(M‑KNN‑Slope)算法的负荷异常数据识别与修复方法。MDLOF-iForest算法在传统局部离群因子算法中引入马氏距离,提高了模型对数据特征间关联性的感知能力,同时将MDLOF算法与iForest算法的优势相结合,快速准确识别出异常数据。M‑KNN‑Slope算法利用异常数据与正常数据负荷趋势线特征相似的邻居,得到相似趋势线斜率加权平均值,完成对异常数据的修复,减少对样本数据的依赖。通过对南宁市一栋办公和一栋商业公共建筑2024年8—11月负荷数据的验证,修复后90%左右数据与正确数据差值在10%以内,且相较一般算法,M‑KNN‑Slope算法能够获得更多误差在5%以内的数据。分别利用极端梯度提升、长短期记忆网络、反向传播神经网络、支持向量机对修复前后的数据进行预测,均方根值分别降低了5.02%~17.83%,绝对平均误差分别降低了2.44%~13.34%。 展开更多
关键词 公共建筑能耗 负荷数据集 异常数据识别 异常数据修复 马氏距离局部离群因子-孤立森林算法 考虑斜率的K近邻改进算法
在线阅读 下载PDF
GA-iForest: An Efficient Isolated Forest Framework Based on Genetic Algorithm for Numerical Data Outlier Detection 被引量:4
15
作者 LI Kexin LI Jing +3 位作者 LIU Shuji LI Zhao BO Jue LIU Biqi 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第6期1026-1038,共13页
With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorith... With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorithm is one of the more prominent numerical data outlier detection algorithms in recent years.In the process of constructing the isolation tree by the isolated forest algorithm,as the isolation tree is continuously generated,the difference of isolation trees will gradually decrease or even no difference,which will result in the waste of memory and reduced efficiency of outlier detection.And in the constructed isolation trees,some isolation trees cannot detect outlier.In this paper,an improved iForest-based method GA-iForest is proposed.This method optimizes the isolated forest by selecting some better isolation trees according to the detection accuracy and the difference of isolation trees,thereby reducing some duplicate,similar and poor detection isolation trees and improving the accuracy and stability of outlier detection.In the experiment,Ubuntu system and Spark platform are used to build the experiment environment.The outlier datasets provided by ODDS are used as test.According to indicators such as the accuracy,recall rate,ROC curves,AUC and execution time,the performance of the proposed method is evaluated.Experimental results show that the proposed method can not only improve the accuracy and stability of outlier detection,but also reduce the number of isolation trees by 20%-40%compared with the original iForest method. 展开更多
关键词 outlier detection isolation tree isolated forest genetic algorithm feature selection
在线阅读 下载PDF
Assess Medical Screening and Isolation Measures Based on Numerical Method for COVID-19 Epidemic Model in Japan 被引量:3
16
作者 Zhongxiang Chen Huijuan Zha +2 位作者 Zhiquan Shu Juyi Ye Jiaji Pan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第2期841-854,共14页
This study aims to improve control schemes for COVID-19 by a numerical model with estimation of parameters.We established a multi-level and multi-objective nonlinear SEIDR model to simulate the virus transmission.The ... This study aims to improve control schemes for COVID-19 by a numerical model with estimation of parameters.We established a multi-level and multi-objective nonlinear SEIDR model to simulate the virus transmission.The early spread in Japan was adopted as a case study.The first 96 days since the infection were divided into five stages with parameters estimated.Then,we analyzed the trend of the parameter value,age structure ratio,and the defined PCR test index(standardization of the scale of PCR tests).It was discovered that the self-healing rate and confirmed rate were linear with the age structure ratio and the PCR test index using the stepwise regression method.The transmission rates were related to the age structure ratio,PCR test index,and isolation efficiency.Both isolation measures and PCR test medical screening can effectively reduce the number of infected cases based on the simulation results.However,the strategy of increasing PCR test medical screening would encountered a bottleneck effect on the virus control when the index reached 0.3.The effectiveness of the policy would decrease and the basic reproduction number reached the extreme value at 0.6.This study gave a feasible combination for isolation and PCR test by simulation.The isolation intensity could be adjusted to compensate the insufficiency of PCR test to control the pandemic. 展开更多
关键词 SEIDR epidemic model multi-level and multi-objective problem PCR test index age structure isolation measure
在线阅读 下载PDF
基于局部离群因子与隔离森林的激光超声缺陷检测
17
作者 李阳 朱文博 +4 位作者 静丰羽 叶中飞 马云瑞 周洋 邹云 《郑州大学学报(工学版)》 CAS 北大核心 2025年第1期105-112,共8页
针对激光超声(LU)缺陷检测中最大振幅图存在伪像的问题,结合主成分分析(PCA)和两种无监督的机器学习算法局部离群因子(LOF)与隔离森林(IF),以实现对LU数据的无监督异常检测。首先,利用PCA算法对LU数据进行降维处理,减轻了LU数据的复杂度... 针对激光超声(LU)缺陷检测中最大振幅图存在伪像的问题,结合主成分分析(PCA)和两种无监督的机器学习算法局部离群因子(LOF)与隔离森林(IF),以实现对LU数据的无监督异常检测。首先,利用PCA算法对LU数据进行降维处理,减轻了LU数据的复杂度;其次,利用LOF算法和IF算法进行了数据异常值的识别分析,并利用累积分布函数和核密度估计确定异常值的阈值大小;最后,对比了LOF算法、IF算法以及最大振幅图的检测结果。结果表明:LOF算法有更优的缺陷识别精度和更低的误判率。 展开更多
关键词 激光超声 缺陷检测 主成分分析 局部离群因子 隔离森林 铝合金
在线阅读 下载PDF
云南省森林防火隔离带发展对策研究 被引量:1
18
作者 叶彪 陈启良 +3 位作者 王劲 马诚 王秋华 吴兴兴 《森林防火》 2025年第1期46-50,共5页
介绍了云南省森林防火隔离带发展历程,探讨了云南省森林防火隔离带发展状况,对存在问题提出一些建议,根据云南省实际情况,因地制宜采取有效措施,加强森林防火隔离带建设和管护,从而更好地保护森林资源。
关键词 森林防火 隔离带 林火管理 路网密度 云南省
在线阅读 下载PDF
基于改进孤立森林的大规模网络入侵攻击检测研究
19
作者 徐伟 冷静 《现代电子技术》 北大核心 2025年第15期98-102,共5页
针对网络规模较大导致的检测过程性能波动大、潜在攻击行为识别精度较差等问题,文中提出基于改进孤立森林的大规模网络入侵攻击检测方法。构建大规模网络入侵攻击检测框架,采集并预处理大规模网络数据,基于关联的特征选择方法提取大规... 针对网络规模较大导致的检测过程性能波动大、潜在攻击行为识别精度较差等问题,文中提出基于改进孤立森林的大规模网络入侵攻击检测方法。构建大规模网络入侵攻击检测框架,采集并预处理大规模网络数据,基于关联的特征选择方法提取大规模网络流量特征,输送至入侵攻击检测模块。入侵攻击检测模块采用改进孤立森林算法,通过隔离树遍历网络流量特征数据计算特征数据异常得分,准确隔离异常数据点,实现攻击检测。一旦检测出异常点,日志告警模块发送警报,并在规则库中记录相应的规则。实验结果证明,该方法的异常分值计算结果均在0.79~0.99,能够准确识别入侵攻击流量,并且检测准确率均超过99%。 展开更多
关键词 改进孤立森林 大规模网络 入侵攻击 分割点 流量特征 异常得分 特征选择
在线阅读 下载PDF
基于CoAtNet-LSTM模型的多传感器信息融合刀具磨损预测
20
作者 李亚 尚轩丞 +1 位作者 王海瑞 朱贵富 《计量学报》 北大核心 2025年第10期1433-1445,共13页
基于长短时记忆网络(LSTM)与CoAtNet网络,提出了一种刀具磨损预测CoAtNet-LSTM模型。在时域、频域、时频域中提取传感器信号特征,并通过孤立森林算法进行信号特征异常值处理,再将其输入预测模型中获得刀具磨损预测值并通过Hyperband算... 基于长短时记忆网络(LSTM)与CoAtNet网络,提出了一种刀具磨损预测CoAtNet-LSTM模型。在时域、频域、时频域中提取传感器信号特征,并通过孤立森林算法进行信号特征异常值处理,再将其输入预测模型中获得刀具磨损预测值并通过Hyperband算法优化模型超参数。应用PHM2010数控铣床刀具数据集验证训练模型的预测精度。实验结果表明,该模型的决定系数相较于原CoAtNet和LSTM网络模型平均提升了12.73%、16.44%。 展开更多
关键词 几何量计量 刀具磨损 CoAtNet-LSTM模型 长短期时间记忆网络 Hyperband算法 孤立森林算法
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部