A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of ...A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore,the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship,suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.展开更多
With the continuous development of economy and society and the speeding up development of industrial industry, people's living standards are gradually improving, which leads to the increasing discharge of domestic...With the continuous development of economy and society and the speeding up development of industrial industry, people's living standards are gradually improving, which leads to the increasing discharge of domestic waste and industrial waste, so the working pressure of sewage treatment plants invisibly increases. Sewage treatment plant is the concentration of waste treatment and it will produce a large number of wastes generated by the accumulation of odor, that is, waste gas, with the characteristics of strong diffusion. Therefore, if the wastewater treatment plant can not properly treat these waste gases in time, it is easy to cause large-scale air pollution. If people live in this odor environment for a long time, it will seriously harm their health. Starting from waste gas treatment methods, do multi-level deodorization and purification of waste gas, which is the key measure to effectively help improve people's quality of life.展开更多
Weight reduction has attracted much attention among ship designers and ship owners.In the present work,based on an improved bi-directional evolutionary structural optimization(BESO) method and surrogate model method,w...Weight reduction has attracted much attention among ship designers and ship owners.In the present work,based on an improved bi-directional evolutionary structural optimization(BESO) method and surrogate model method,we propose a hybrid optimization method for the structural design optimization of beam-plate structures,which covers three optimization levels:dimension optimization,topology optimization and section optimization.The objective of the proposed optimization method is to minimize the weight of design object under a group of constraints.The kernel optimization procedure(KOP) uses BESO to obtain the optimal topology from a ground structure.To deal with beam-plate structures,the traditional BESO method is improved by using cubic box as the unit cell instead of solid unit to construct periodic lattice structure.In the first optimization level,a series of ground structures are generated based on different dimensional parameter combinations,the KOP is performed to all the ground structures,the response surface model of optimal objective values and dimension parameters is created,and then the optimal dimension parameters can be obtained.In the second optimization level,the optimal topology is obtained by using the KOP according to the optimal dimension parameters.In the third optimization level,response surface method(RSM) is used to determine the section parameters.The proposed method is applied to a hatch cover structure design.The locations and shapes of all the structural members are determined from an oversized ground structure.The results show that the proposed method leads to a greater weight saving,compared with the original design and genetic algorithm(GA) based optimization results.展开更多
Phase unwrapping is a crucial process in the field of optical measurement, and the effectiveness of unwrapping directly affects the accuracy of final results. This study proposes a multi-level grid method that can eff...Phase unwrapping is a crucial process in the field of optical measurement, and the effectiveness of unwrapping directly affects the accuracy of final results. This study proposes a multi-level grid method that can efficiently achieve phase unwrapping. First, the phase image of the package to be processed is divided into small grids, and each grid is unwrapped in multiple directions. Then, a level-by-level coarse-graining mesh method is employed to eliminate the new data “faults”generated from the previous level of grid processing. Finally, the true phase results are obtained by iterating to the coarsest grid through the unwrapping process. In order to verify the effectiveness and superiority of the proposed method, a numerical simulation is first applied. Further, three typical flow fields are selected for experiments, and the results are compared with flood-fill and multi-grid methods for accuracy and efficiency. The proposed method obtains true phase information in just 0.5 s;moreover, it offers more flexibility in threshold selection compared to the flood-fill and region-growing methods.In summary, the proposed method can solve the phase unwrapping problems for moiré fringes, which could provide possibilities for the intelligent development of moiré deflection tomography.展开更多
The Distributed Propulsion Wing(DPW)presents prominent advantages in terms of energy conservation during flight,but the intense integration of propulsive internal flow with aerodynamic external flow brings significant...The Distributed Propulsion Wing(DPW)presents prominent advantages in terms of energy conservation during flight,but the intense integration of propulsive internal flow with aerodynamic external flow brings significant design challenges.To tackle this issue,this paper undertakes a comprehensive investigation of the aero-propulsive coupling performance of the DPW under both hovering and cruising conditions,and subsequently proposes a multi-level collaboration optimization design method based on the decomposition principle.Specifically,the complex 3D surfaces of DPW are systematically dissociated into simple 2D curves with inherent relationships for design.The decomposition is achieved based on the analysis results of the aero-propulsive coupling characteristics.And a DPW design case is conducted and subsequently analyzed in order to further validate the effectiveness and feasibility of the proposed design method.It is shown that a 115.75%drag reduction of DPW can be achieved at cruise under a specified thrust level.Furthermore,the DPW exhibits inherent characteristics of consistent lift-to-drag ratio with the thrust-drag balance constraint,regardless of variations in incoming flow velocity or total thrust.展开更多
The establishment of the analogy theory between optimal control and computational structural mechanics is based on the linear quadratic control problem in optimal control and the substructural chain theory in structur...The establishment of the analogy theory between optimal control and computational structural mechanics is based on the linear quadratic control problem in optimal control and the substructural chain theory in structural mechanics.When the nonlinear optimal control problem is treated by the above theory, especially展开更多
Hydrodynamic analysis is one of the key steps in safety assessment ot a structure m waves, lvlany optloll~ axe available for answering challenge raised from marine and offshore energy industry, from costly three dimen...Hydrodynamic analysis is one of the key steps in safety assessment ot a structure m waves, lvlany optloll~ axe available for answering challenge raised from marine and offshore energy industry, from costly three dimensional CFD to the efficient but not perfect boundary element models. Focus on the boundary element methods, analysis methods for the interaction of waves and structures are discussed. Those boundary element models cover frequency domain and time domain, linear and non-linear. Special attention is pay to the problems encountered in those models and approaches we adopted for their engineering solution.展开更多
As one of the new generation flexible AC transmission systems(FACTS)devices,the interline power flow controller(IPFC)has the significant advantage of simultaneously regulating the power flow of multiple lines.Neverthe...As one of the new generation flexible AC transmission systems(FACTS)devices,the interline power flow controller(IPFC)has the significant advantage of simultaneously regulating the power flow of multiple lines.Nevertheless,how to choose the appropriate location for the IPFC converters has not been discussed thoroughly.To solve this problem,this paper proposes a novel location method for IPFC using entropy theory.To clarify IPFC’s impact on system power flow,its operation mechanism and control strategies of different types of serial converters are discussed.Subsequently,to clarify the system power flow characteristic suitable for device location analysis,the entropy concept is introduced.In this process,the power flow distribution entropy index is used as an optimization index.Using this index as a foundation,the power flow transfer entropy index is also generated and proposed for the IPFC location determination study.Finally,electromechanical electromagnetic hybrid simulations based on ADPSS are implemented for validation.These are tested in a practical power grid with over 800 nodes.A modular multilevel converter(MMC)-based IPFC electromagnetic model is also established for precise verification.The results show that the proposed method can quickly and efficiently complete optimized IPFC location and support IPFC to determine an optimal adjustment in the N-1 fault cases.展开更多
As a core element in solar parabolic trough collector, the evaluated receiver often runs under severe thermal conditions. Worse still, the transient thermal load is more likely to cause structural deformation and dama...As a core element in solar parabolic trough collector, the evaluated receiver often runs under severe thermal conditions. Worse still, the transient thermal load is more likely to cause structural deformation and damage. This work develops an efficient transient multi-level multi-dimensional(M2) analysis method to address photo-thermal-elastic problems, thereby estimating transient thermal load and deformation for the receiver:(i) one-dimensional(1-D) thermo-hydraulic model is adopted to determine the transient thermo-hydraulic state,(ii) 3-D finite volume method(FVM) model for the receiver tube is established to obtain the real-time temperature distribution,(iii) 3-D finite element method(FEM) model is employed to make thermoelastic analysis. Based on this M2 method, the typical transient cases are conducted in cold-start, disturbed-operation and regulatedprocess. Three indicators(average temperature of the wall(ATW), radial temperature difference(RTD), circumferential temperature difference(CTD)) are defined for overall analysis of the receiver thermal load. It is found that in the transient process,receivers face response delay and endure significant thermal load fluctuation. The response time for a single HCE(heat collecting element) under lower mass flow rate(1.5 kg s-1) could sustain 280 s. During the cold-start stage(DNI=200 W m-2 to 800 W m-2), the maximum value of CTD in receiver is as high as 11.67℃, corresponding to a maximum deflection of 1.05 cm.When the mass flow rate decreases sharply by 80%, the CTD reaches 33.04℃, causing a 2.06-cm deflection. It should be pointed out that in the cold-start stage and the lower mass flow rate operation for solar parabolic trough collector, alleviating the transient thermal load and deformation is of importance for safely and efficiently running evaluated receiver.展开更多
The solution of minimum-time feedback optimal control problems is generally achieved using the dynamic programming approach,in which the value function must be computed on numerical grids with a very large number of p...The solution of minimum-time feedback optimal control problems is generally achieved using the dynamic programming approach,in which the value function must be computed on numerical grids with a very large number of points.Classical numerical strategies,such as value iteration(VI)or policy iteration(PI)methods,become very inefficient if the number of grid points is large.This is a strong limitation to their use in real-world applications.To address this problem,the authors present a novel multilevel framework,where classical VI and PI are embedded in a full-approximation storage(FAS)scheme.In fact,the authors will show that VI and PI have excellent smoothing properties,a fact that makes them very suitable for use in multilevel frameworks.Moreover,a new smoother is developed by accelerating VI using Anderson’s extrapolation technique.The effectiveness of our new scheme is demonstrated by several numerical experiments.展开更多
基金Supported by the Project of Ministry of Education and Finance(No.200512)the Project of the State Key Laboratory of ocean engineering(GKZD010053-10)
文摘A new multi-level analysis method of introducing the super-element modeling method, derived from the multi-level analysis method first proposed by O. F. Hughes, has been proposed in this paper to solve the problem of high time cost in adopting a rational-based optimal design method for ship structural design. Furthermore,the method was verified by its effective application in optimization of the mid-ship section of a container ship. A full 3-D FEM model of a ship,suffering static and quasi-static loads, was used as the analyzing object for evaluating the structural performance of the mid-ship module, including static strength and buckling performance. Research results reveal that this new method could substantially reduce the computational cost of the rational-based optimization problem without decreasing its accuracy, which increases the feasibility and economic efficiency of using a rational-based optimal design method in ship structural design.
文摘With the continuous development of economy and society and the speeding up development of industrial industry, people's living standards are gradually improving, which leads to the increasing discharge of domestic waste and industrial waste, so the working pressure of sewage treatment plants invisibly increases. Sewage treatment plant is the concentration of waste treatment and it will produce a large number of wastes generated by the accumulation of odor, that is, waste gas, with the characteristics of strong diffusion. Therefore, if the wastewater treatment plant can not properly treat these waste gases in time, it is easy to cause large-scale air pollution. If people live in this odor environment for a long time, it will seriously harm their health. Starting from waste gas treatment methods, do multi-level deodorization and purification of waste gas, which is the key measure to effectively help improve people's quality of life.
基金the National Natural Science Foundation of China(No.51509033)
文摘Weight reduction has attracted much attention among ship designers and ship owners.In the present work,based on an improved bi-directional evolutionary structural optimization(BESO) method and surrogate model method,we propose a hybrid optimization method for the structural design optimization of beam-plate structures,which covers three optimization levels:dimension optimization,topology optimization and section optimization.The objective of the proposed optimization method is to minimize the weight of design object under a group of constraints.The kernel optimization procedure(KOP) uses BESO to obtain the optimal topology from a ground structure.To deal with beam-plate structures,the traditional BESO method is improved by using cubic box as the unit cell instead of solid unit to construct periodic lattice structure.In the first optimization level,a series of ground structures are generated based on different dimensional parameter combinations,the KOP is performed to all the ground structures,the response surface model of optimal objective values and dimension parameters is created,and then the optimal dimension parameters can be obtained.In the second optimization level,the optimal topology is obtained by using the KOP according to the optimal dimension parameters.In the third optimization level,response surface method(RSM) is used to determine the section parameters.The proposed method is applied to a hatch cover structure design.The locations and shapes of all the structural members are determined from an oversized ground structure.The results show that the proposed method leads to a greater weight saving,compared with the original design and genetic algorithm(GA) based optimization results.
基金supported by the National Natural Science Foundation of China (No. 61975083)。
文摘Phase unwrapping is a crucial process in the field of optical measurement, and the effectiveness of unwrapping directly affects the accuracy of final results. This study proposes a multi-level grid method that can efficiently achieve phase unwrapping. First, the phase image of the package to be processed is divided into small grids, and each grid is unwrapped in multiple directions. Then, a level-by-level coarse-graining mesh method is employed to eliminate the new data “faults”generated from the previous level of grid processing. Finally, the true phase results are obtained by iterating to the coarsest grid through the unwrapping process. In order to verify the effectiveness and superiority of the proposed method, a numerical simulation is first applied. Further, three typical flow fields are selected for experiments, and the results are compared with flood-fill and multi-grid methods for accuracy and efficiency. The proposed method obtains true phase information in just 0.5 s;moreover, it offers more flexibility in threshold selection compared to the flood-fill and region-growing methods.In summary, the proposed method can solve the phase unwrapping problems for moiré fringes, which could provide possibilities for the intelligent development of moiré deflection tomography.
基金co-supported by the Equipment Advance Research Project of China(No.50911040803)the National Defense Pre-research Foundation of China(No.2021-JCJQJJ-0805)the Aeronautical Science Foundation of China(No.2024Z006053001)。
文摘The Distributed Propulsion Wing(DPW)presents prominent advantages in terms of energy conservation during flight,but the intense integration of propulsive internal flow with aerodynamic external flow brings significant design challenges.To tackle this issue,this paper undertakes a comprehensive investigation of the aero-propulsive coupling performance of the DPW under both hovering and cruising conditions,and subsequently proposes a multi-level collaboration optimization design method based on the decomposition principle.Specifically,the complex 3D surfaces of DPW are systematically dissociated into simple 2D curves with inherent relationships for design.The decomposition is achieved based on the analysis results of the aero-propulsive coupling characteristics.And a DPW design case is conducted and subsequently analyzed in order to further validate the effectiveness and feasibility of the proposed design method.It is shown that a 115.75%drag reduction of DPW can be achieved at cruise under a specified thrust level.Furthermore,the DPW exhibits inherent characteristics of consistent lift-to-drag ratio with the thrust-drag balance constraint,regardless of variations in incoming flow velocity or total thrust.
文摘The establishment of the analogy theory between optimal control and computational structural mechanics is based on the linear quadratic control problem in optimal control and the substructural chain theory in structural mechanics.When the nonlinear optimal control problem is treated by the above theory, especially
文摘Hydrodynamic analysis is one of the key steps in safety assessment ot a structure m waves, lvlany optloll~ axe available for answering challenge raised from marine and offshore energy industry, from costly three dimensional CFD to the efficient but not perfect boundary element models. Focus on the boundary element methods, analysis methods for the interaction of waves and structures are discussed. Those boundary element models cover frequency domain and time domain, linear and non-linear. Special attention is pay to the problems encountered in those models and approaches we adopted for their engineering solution.
基金supported by the Natural Science Foundation of Sichuan Province of China(No.2022NSFSC0262)the Fundamental Research Funds for the Central Universities(No.2022SCU12005).
文摘As one of the new generation flexible AC transmission systems(FACTS)devices,the interline power flow controller(IPFC)has the significant advantage of simultaneously regulating the power flow of multiple lines.Nevertheless,how to choose the appropriate location for the IPFC converters has not been discussed thoroughly.To solve this problem,this paper proposes a novel location method for IPFC using entropy theory.To clarify IPFC’s impact on system power flow,its operation mechanism and control strategies of different types of serial converters are discussed.Subsequently,to clarify the system power flow characteristic suitable for device location analysis,the entropy concept is introduced.In this process,the power flow distribution entropy index is used as an optimization index.Using this index as a foundation,the power flow transfer entropy index is also generated and proposed for the IPFC location determination study.Finally,electromechanical electromagnetic hybrid simulations based on ADPSS are implemented for validation.These are tested in a practical power grid with over 800 nodes.A modular multilevel converter(MMC)-based IPFC electromagnetic model is also established for precise verification.The results show that the proposed method can quickly and efficiently complete optimized IPFC location and support IPFC to determine an optimal adjustment in the N-1 fault cases.
基金supported by the National Natural Science Foundation of China (Grant No. 51776156)the Key Project of National Natural Science Foundation of China (Grant No. 51436007)+1 种基金111 Project (Grant No.B16038)the Fundamental Research Funds for the Central Universities(Grant No. xjj2018195)。
文摘As a core element in solar parabolic trough collector, the evaluated receiver often runs under severe thermal conditions. Worse still, the transient thermal load is more likely to cause structural deformation and damage. This work develops an efficient transient multi-level multi-dimensional(M2) analysis method to address photo-thermal-elastic problems, thereby estimating transient thermal load and deformation for the receiver:(i) one-dimensional(1-D) thermo-hydraulic model is adopted to determine the transient thermo-hydraulic state,(ii) 3-D finite volume method(FVM) model for the receiver tube is established to obtain the real-time temperature distribution,(iii) 3-D finite element method(FEM) model is employed to make thermoelastic analysis. Based on this M2 method, the typical transient cases are conducted in cold-start, disturbed-operation and regulatedprocess. Three indicators(average temperature of the wall(ATW), radial temperature difference(RTD), circumferential temperature difference(CTD)) are defined for overall analysis of the receiver thermal load. It is found that in the transient process,receivers face response delay and endure significant thermal load fluctuation. The response time for a single HCE(heat collecting element) under lower mass flow rate(1.5 kg s-1) could sustain 280 s. During the cold-start stage(DNI=200 W m-2 to 800 W m-2), the maximum value of CTD in receiver is as high as 11.67℃, corresponding to a maximum deflection of 1.05 cm.When the mass flow rate decreases sharply by 80%, the CTD reaches 33.04℃, causing a 2.06-cm deflection. It should be pointed out that in the cold-start stage and the lower mass flow rate operation for solar parabolic trough collector, alleviating the transient thermal load and deformation is of importance for safely and efficiently running evaluated receiver.
文摘The solution of minimum-time feedback optimal control problems is generally achieved using the dynamic programming approach,in which the value function must be computed on numerical grids with a very large number of points.Classical numerical strategies,such as value iteration(VI)or policy iteration(PI)methods,become very inefficient if the number of grid points is large.This is a strong limitation to their use in real-world applications.To address this problem,the authors present a novel multilevel framework,where classical VI and PI are embedded in a full-approximation storage(FAS)scheme.In fact,the authors will show that VI and PI have excellent smoothing properties,a fact that makes them very suitable for use in multilevel frameworks.Moreover,a new smoother is developed by accelerating VI using Anderson’s extrapolation technique.The effectiveness of our new scheme is demonstrated by several numerical experiments.