To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework ba...To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.展开更多
Accurate prediction of landslide displacement is crucial for effective early warning of landslide disasters.While most existing prediction methods focus on time-series forecasting for individual monitoring points,ther...Accurate prediction of landslide displacement is crucial for effective early warning of landslide disasters.While most existing prediction methods focus on time-series forecasting for individual monitoring points,there is limited research on the spatiotemporal characteristics of landslide deformation.This paper proposes a novel Multi-Relation Spatiotemporal Graph Residual Network with Multi-Level Feature Attention(MFA-MRSTGRN)that effectively improves the prediction performance of landslide displacement through spatiotemporal fusion.This model integrates internal seepage factors as data feature enhancements with external triggering factors,allowing for accurate capture of the complex spatiotemporal characteristics of landslide displacement and the construction of a multi-source heterogeneous dataset.The MFA-MRSTGRN model incorporates dynamic graph theory and four key modules:multilevel feature attention,temporal-residual decomposition,spatial multi-relational graph convolution,and spatiotemporal fusion prediction.This comprehensive approach enables the efficient analyses of multi-source heterogeneous datasets,facilitating adaptive exploration of the evolving multi-relational,multi-dimensional spatiotemporal complexities in landslides.When applying this model to predict the displacement of the Liangshuijing landslide,we demonstrate that the MFA-MRSTGRN model surpasses traditional models,such as random forest(RF),long short-term memory(LSTM),and spatial temporal graph convolutional networks(ST-GCN)models in terms of various evaluation metrics including mean absolute error(MAE=1.27 mm),root mean square error(RMSE=1.49 mm),mean absolute percentage error(MAPE=0.026),and R-squared(R^(2)=0.88).Furthermore,feature ablation experiments indicate that incorporating internal seepage factors improves the predictive performance of landslide displacement models.This research provides an advanced and reliable method for landslide displacement prediction.展开更多
In endoscopic surgery,the limited field of view and the nonlinear deformation of organs caused by patient movement and respiration significantly complicate the modeling and accurate tracking of soft tissue surfaces fr...In endoscopic surgery,the limited field of view and the nonlinear deformation of organs caused by patient movement and respiration significantly complicate the modeling and accurate tracking of soft tissue surfaces from endoscopic image sequences.To address these challenges,we propose a novel Hybrid Triangular Matching(HTM)modeling framework for soft tissue feature tracking.Specifically,HTM constructs a geometric model of the detected blobs on the soft tissue surface by applying the Watershed algorithm for blob detection and integrating the Delaunay triangulation with a newly designed triangle search segmentation algorithm.By leveraging barycentric coordinate theory,HTMrapidly and accurately establishes inter-frame correspondences within the triangulated model,enabling stable feature tracking without explicit markers or extensive training data.Experimental results on endoscopic sequences demonstrate that this model-based tracking approach achieves lower computational complexity,maintains robustness against tissue deformation,and provides a scalable geometric modeling method for real-time soft tissue tracking in surgical computer vision.展开更多
In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection cr...In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection criteria contain correlation and sensitivity between the geometric parameter and the electromagnetic(EM)response.Maximal information coefficient(MIC),an exploratory data mining tool,is introduced to evaluate both linear and nonlinear correlations.The EM response range is utilized to evaluate the sensitivity.The wide response range corresponding to varying values of a parameter implies the parameter is highly sensitive and the narrow response range suggests the parameter is insensitive.Only the parameter which is highly correlative and sensitive is selected as the input of ANN,and the sampling space of the model is highly reduced.The modeling of a wideband and circularly polarized antenna is studied as an example to verify the effectiveness of the proposed method.The number of input parameters decreases from8 to 4.The testing errors of|S_(11)|and axis ratio are reduced by8.74%and 8.95%,respectively,compared with the ANN with no feature selection.展开更多
Feature modeling is the key to the realization of CAD/CAPP/CAM and the information integration of concurrent engineering. This paper describes the method for the advanced development of the parametric modeling system ...Feature modeling is the key to the realization of CAD/CAPP/CAM and the information integration of concurrent engineering. This paper describes the method for the advanced development of the parametric modeling system based on features by using I DEAS 5 system. It elaborates the modeling technique based on the features and generates the product information models based on the features providing abundant information for the process of the ensuing applications. The development of the feature modeling system on the commercial CAD software platform can take a great advantage of the solid modeling resources of the existing software, save the input of funds and shorten the development cycles of the new systems.展开更多
As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods ge...As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes.展开更多
Feature selection(FS)is a pivotal pre-processing step in developing data-driven models,influencing reliability,performance and optimization.Although existing FS techniques can yield high-performance metrics for certai...Feature selection(FS)is a pivotal pre-processing step in developing data-driven models,influencing reliability,performance and optimization.Although existing FS techniques can yield high-performance metrics for certain models,they do not invariably guarantee the extraction of the most critical or impactful features.Prior literature underscores the significance of equitable FS practices and has proposed diverse methodologies for the identification of appropriate features.However,the challenge of discerning the most relevant and influential features persists,particularly in the context of the exponential growth and heterogeneity of big data—a challenge that is increasingly salient in modern artificial intelligence(AI)applications.In response,this study introduces an innovative,automated statistical method termed Farea Similarity for Feature Selection(FSFS).The FSFS approach computes a similarity metric for each feature by benchmarking it against the record-wise mean,thereby finding feature dependencies and mitigating the influence of outliers that could potentially distort evaluation outcomes.Features are subsequently ranked according to their similarity scores,with the threshold established at the average similarity score.Notably,lower FSFS values indicate higher similarity and stronger data correlations,whereas higher values suggest lower similarity.The FSFS method is designed not only to yield reliable evaluation metrics but also to reduce data complexity without compromising model performance.Comparative analyses were performed against several established techniques,including Chi-squared(CS),Correlation Coefficient(CC),Genetic Algorithm(GA),Exhaustive Approach,Greedy Stepwise Approach,Gain Ratio,and Filtered Subset Eval,using a variety of datasets such as the Experimental Dataset,Breast Cancer Wisconsin(Original),KDD CUP 1999,NSL-KDD,UNSW-NB15,and Edge-IIoT.In the absence of the FSFS method,the highest classifier accuracies observed were 60.00%,95.13%,97.02%,98.17%,95.86%,and 94.62%for the respective datasets.When the FSFS technique was integrated with data normalization,encoding,balancing,and feature importance selection processes,accuracies improved to 100.00%,97.81%,98.63%,98.94%,94.27%,and 98.46%,respectively.The FSFS method,with a computational complexity of O(fn log n),demonstrates robust scalability and is well-suited for datasets of large size,ensuring efficient processing even when the number of features is substantial.By automatically eliminating outliers and redundant data,FSFS reduces computational overhead,resulting in faster training and improved model performance.Overall,the FSFS framework not only optimizes performance but also enhances the interpretability and explainability of data-driven models,thereby facilitating more trustworthy decision-making in AI applications.展开更多
Detecting cyber attacks in networks connected to the Internet of Things(IoT)is of utmost importance because of the growing vulnerabilities in the smart environment.Conventional models,such as Naive Bayes and support v...Detecting cyber attacks in networks connected to the Internet of Things(IoT)is of utmost importance because of the growing vulnerabilities in the smart environment.Conventional models,such as Naive Bayes and support vector machine(SVM),as well as ensemble methods,such as Gradient Boosting and eXtreme gradient boosting(XGBoost),are often plagued by high computational costs,which makes it challenging for them to perform real-time detection.In this regard,we suggested an attack detection approach that integrates Visual Geometry Group 16(VGG16),Artificial Rabbits Optimizer(ARO),and Random Forest Model to increase detection accuracy and operational efficiency in Internet of Things(IoT)networks.In the suggested model,the extraction of features from malware pictures was accomplished with the help of VGG16.The prediction process is carried out by the random forest model using the extracted features from the VGG16.Additionally,ARO is used to improve the hyper-parameters of the random forest model of the random forest.With an accuracy of 96.36%,the suggested model outperforms the standard models in terms of accuracy,F1-score,precision,and recall.The comparative research highlights our strategy’s success,which improves performance while maintaining a lower computational cost.This method is ideal for real-time applications,but it is effective.展开更多
Selecting proper descriptors(also known feature selection,FS)is key in the process of establishing mechanical properties prediction model of hot-rolled microalloyed steels by using machine learning(ML)algorithm.FS met...Selecting proper descriptors(also known feature selection,FS)is key in the process of establishing mechanical properties prediction model of hot-rolled microalloyed steels by using machine learning(ML)algorithm.FS methods based on data-driving can reduce the redundancy of data features and improve the prediction accuracy of mechanical properties.Based on the collected data of hot-rolled microalloyed steels,the association rules are used to mine the correlation information between the data.High-quality feature subsets are selected by the proposed FS method(FS method based on genetic algorithm embedding,GAMIC).Compared with the common FS method,it is shown on dataset that GAMIC selects feature subsets more appropriately.Six different ML algorithms are trained and tested for mechanical properties prediction.The result shows that the root-mean-square error of yield strength,tensile strength and elongation based on limit gradient enhancement(XGBoost)algorithm is 21.95 MPa,20.85 MPa and 1.96%,the correlation coefficient(R^(2))is 0.969,0.968 and 0.830,and the mean absolute error is 16.84 MPa,15.83 MPa and 1.48%,respectively,showing the best prediction performance.Finally,SHapley Additive exPlanation is used to further explore the influence of feature variables on mechanical properties.GAMIC feature selection method proposed is universal,which provides a basis for the development of high-precision mechanical property prediction model.展开更多
The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significan...The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significant contributions to the foundational aspects of the research warranted recognition,and he has now been added as a co-author.展开更多
This paper proposes an approach of developing the feature based parametric product modeling system which is suitable for integrated engineering design in CIMS environment.The architecture of ZD--MCADII and the charact...This paper proposes an approach of developing the feature based parametric product modeling system which is suitable for integrated engineering design in CIMS environment.The architecture of ZD--MCADII and the characteristics of its each module are introduced in detail. ZD--MCADII’s product data is managed by an object--oriented database management system OSCAR, and the product model is built according to the standard STEP. The product design is established on a unified product model, and all the product data are globally associated in ZD--MCADII. ZD--MCADII provides various design features to facilitate the product design, and supports the integrity of CAD, CAPP and CAM.展开更多
Aerodynamic surrogate modeling mostly relies only on integrated loads data obtained from simulation or experiment,while neglecting and wasting the valuable distributed physical information on the surface.To make full ...Aerodynamic surrogate modeling mostly relies only on integrated loads data obtained from simulation or experiment,while neglecting and wasting the valuable distributed physical information on the surface.To make full use of both integrated and distributed loads,a modeling paradigm,called the heterogeneous data-driven aerodynamic modeling,is presented.The essential concept is to incorporate the physical information of distributed loads as additional constraints within the end-to-end aerodynamic modeling.Towards heterogenous data,a novel and easily applicable physical feature embedding modeling framework is designed.This framework extracts lowdimensional physical features from pressure distribution and then effectively enhances the modeling of the integrated loads via feature embedding.The proposed framework can be coupled with multiple feature extraction methods,and the well-performed generalization capabilities over different airfoils are verified through a transonic case.Compared with traditional direct modeling,the proposed framework can reduce testing errors by almost 50%.Given the same prediction accuracy,it can save more than half of the training samples.Furthermore,the visualization analysis has revealed a significant correlation between the discovered low-dimensional physical features and the heterogeneous aerodynamic loads,which shows the interpretability and credibility of the superior performance offered by the proposed deep learning framework.展开更多
In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel pr...In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles.展开更多
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of...Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research.展开更多
Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model ...Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones.展开更多
A unified feature definition is proposed.Feature is form-concentrated,and can be used to model product func- tionalities,assembly relations,and part geometries.The feature model is given and a feature classification i...A unified feature definition is proposed.Feature is form-concentrated,and can be used to model product func- tionalities,assembly relations,and part geometries.The feature model is given and a feature classification is introduced including functional,assembly,structural,and manufacturing features.A prototype modeling system is developed in Pro/ENGINEER that can define the assembly and user-defined form features.展开更多
This article explores the ability of multivariate autoregressive model(MAR)and scalar AR model to extract the features from two-lead electrocardiogram signals in order to classify certain cardiac arrhythmias.The class...This article explores the ability of multivariate autoregressive model(MAR)and scalar AR model to extract the features from two-lead electrocardiogram signals in order to classify certain cardiac arrhythmias.The classification performance of four different ECG feature sets based on the model coefficients are shown.The data in the analysis including normal sinus rhythm, atria premature contraction,premature ventricular contraction,ventricular tachycardia,ventricular fibrillation and superventricular tachyeardia is obtained from the MIT-BIH database.The classification is performed using a quadratic diacriminant function.The results show the MAR coefficients produce the best results among the four ECG representations and the MAR modeling is a useful classification and diagnosis tool.展开更多
Machining process data is the core of computer aided process planning application systems.It is also provides essen- tial content for product life cycle engineering.The character of CAPP that supports product LCE and ...Machining process data is the core of computer aided process planning application systems.It is also provides essen- tial content for product life cycle engineering.The character of CAPP that supports product LCE and virtual manufacturing is an- alyzed.The structure and content of machining process data concerning green manufacturing is also examined.A logic model of Machining Process Data has been built based on an object oriented approach,using UML technology and a physical model of machin- ing process data that utilizes XML technology.To realize the integration of design and process,an approach based on graph-based volume decomposition was apposed.Instead,to solve the problem of generation in the machining process,case-based reasoning and rule-based reasoning have been applied synthetically.Finally,the integration framework and interface that deal with the CAPP integration with CAD,CAM,PDM,and ERP are discussed.展开更多
Stance detection is the task of attitude identification toward a standpoint.Previous work of stance detection has focused on feature extraction but ignored the fact that irrelevant features exist as noise during highe...Stance detection is the task of attitude identification toward a standpoint.Previous work of stance detection has focused on feature extraction but ignored the fact that irrelevant features exist as noise during higher-level abstracting.Moreover,because the target is not always mentioned in the text,most methods have ignored target information.In order to solve these problems,we propose a neural network ensemble method that combines the timing dependence bases on long short-term memory(LSTM)and the excellent extracting performance of convolutional neural networks(CNNs).The method can obtain multi-level features that consider both local and global features.We also introduce attention mechanisms to magnify target information-related features.Furthermore,we employ sparse coding to remove noise to obtain characteristic features.Performance was improved by using sparse coding on the basis of attention employment and feature extraction.We evaluate our approach on the SemEval-2016Task 6-A public dataset,achieving a performance that exceeds the benchmark and those of participating teams.展开更多
This paper presents a feature modeling approach to address the 3D structural topology design optimization withfeature constraints. In the proposed algorithm, various features are formed into searchable shape features ...This paper presents a feature modeling approach to address the 3D structural topology design optimization withfeature constraints. In the proposed algorithm, various features are formed into searchable shape features bythe feature modeling technology, and the models of feature elements are established. The feature elements thatmeet the design requirements are found by employing a feature matching technology, and the constraint factorscombined with the pseudo density of elements are initialized according to the optimized feature elements. Then,through controlling the constraint factors and utilizing the optimization criterion method along with the filteringtechnology of independent mesh, the structural design optimization is implemented. The present feature modelingapproach is applied to the feature-based structural topology optimization using empirical data. Meanwhile, theimproved mathematical model based on the density method with the constraint factors and the correspondingsolution processes are also presented. Compared with the traditional method which requires complicated constraintprocessing, the present approach is flexibly applied to the 3D structural design optimization with added holesby changing the constraint factors, thus it can design a structure with predetermined features more directly andeasily. Numerical examples show effectiveness of the proposed feature modeling approach, which is suitable for thepractical engineering design.展开更多
基金supported by the confidential research grant No.a8317。
文摘To address the issues of frequent identity switches(IDs)and degraded identification accuracy in multi object tracking(MOT)under complex occlusion scenarios,this study proposes an occlusion-robust tracking framework based on face-pedestrian joint feature modeling.By constructing a joint tracking model centered on“intra-class independent tracking+cross-category dynamic binding”,designing a multi-modal matching metric with spatio-temporal and appearance constraints,and innovatively introducing a cross-category feature mutual verification mechanism and a dual matching strategy,this work effectively resolves performance degradation in traditional single-category tracking methods caused by short-term occlusion,cross-camera tracking,and crowded environments.Experiments on the Chokepoint_Face_Pedestrian_Track test set demonstrate that in complex scenes,the proposed method improves Face-Pedestrian Matching F1 area under the curve(F1 AUC)by approximately 4 to 43 percentage points compared to several traditional methods.The joint tracking model achieves overall performance metrics of IDF1:85.1825%and MOTA:86.5956%,representing improvements of 0.91 and 0.06 percentage points,respectively,over the baseline model.Ablation studies confirm the effectiveness of key modules such as the Intersection over Area(IoA)/Intersection over Union(IoU)joint metric and dynamic threshold adjustment,validating the significant role of the cross-category identity matching mechanism in enhancing tracking stability.Our_model shows a 16.7%frame per second(FPS)drop vs.fairness of detection and re-identification in multiple object tracking(FairMOT),with its cross-category binding module adding aboute 10%overhead,yet maintains near-real-time performance for essential face-pedestrian tracking at small resolutions.
基金the funding support from the National Natural Science Foundation of China(Grant No.52308340)Chongqing Talent Innovation and Entrepreneurship Demonstration Team Project(Grant No.cstc2024ycjh-bgzxm0012)the Science and Technology Projects supported by China Coal Technology and Engineering Chongqing Design and Research Institute(Group)Co.,Ltd.(Grant No.H20230317).
文摘Accurate prediction of landslide displacement is crucial for effective early warning of landslide disasters.While most existing prediction methods focus on time-series forecasting for individual monitoring points,there is limited research on the spatiotemporal characteristics of landslide deformation.This paper proposes a novel Multi-Relation Spatiotemporal Graph Residual Network with Multi-Level Feature Attention(MFA-MRSTGRN)that effectively improves the prediction performance of landslide displacement through spatiotemporal fusion.This model integrates internal seepage factors as data feature enhancements with external triggering factors,allowing for accurate capture of the complex spatiotemporal characteristics of landslide displacement and the construction of a multi-source heterogeneous dataset.The MFA-MRSTGRN model incorporates dynamic graph theory and four key modules:multilevel feature attention,temporal-residual decomposition,spatial multi-relational graph convolution,and spatiotemporal fusion prediction.This comprehensive approach enables the efficient analyses of multi-source heterogeneous datasets,facilitating adaptive exploration of the evolving multi-relational,multi-dimensional spatiotemporal complexities in landslides.When applying this model to predict the displacement of the Liangshuijing landslide,we demonstrate that the MFA-MRSTGRN model surpasses traditional models,such as random forest(RF),long short-term memory(LSTM),and spatial temporal graph convolutional networks(ST-GCN)models in terms of various evaluation metrics including mean absolute error(MAE=1.27 mm),root mean square error(RMSE=1.49 mm),mean absolute percentage error(MAPE=0.026),and R-squared(R^(2)=0.88).Furthermore,feature ablation experiments indicate that incorporating internal seepage factors improves the predictive performance of landslide displacement models.This research provides an advanced and reliable method for landslide displacement prediction.
基金Support by Sichuan Science and Technology Program[2023YFSY0026,2023YFH0004].
文摘In endoscopic surgery,the limited field of view and the nonlinear deformation of organs caused by patient movement and respiration significantly complicate the modeling and accurate tracking of soft tissue surfaces from endoscopic image sequences.To address these challenges,we propose a novel Hybrid Triangular Matching(HTM)modeling framework for soft tissue feature tracking.Specifically,HTM constructs a geometric model of the detected blobs on the soft tissue surface by applying the Watershed algorithm for blob detection and integrating the Delaunay triangulation with a newly designed triangle search segmentation algorithm.By leveraging barycentric coordinate theory,HTMrapidly and accurately establishes inter-frame correspondences within the triangulated model,enabling stable feature tracking without explicit markers or extensive training data.Experimental results on endoscopic sequences demonstrate that this model-based tracking approach achieves lower computational complexity,maintains robustness against tissue deformation,and provides a scalable geometric modeling method for real-time soft tissue tracking in surgical computer vision.
基金National Natural Science Foundation of China(62161048)Sichuan Science and Technology Program(2022NSFSC0547,2022ZYD0109)。
文摘In this paper,a feature selection method for determining input parameters in antenna modeling is proposed.In antenna modeling,the input feature of artificial neural network(ANN)is geometric parameters.The selection criteria contain correlation and sensitivity between the geometric parameter and the electromagnetic(EM)response.Maximal information coefficient(MIC),an exploratory data mining tool,is introduced to evaluate both linear and nonlinear correlations.The EM response range is utilized to evaluate the sensitivity.The wide response range corresponding to varying values of a parameter implies the parameter is highly sensitive and the narrow response range suggests the parameter is insensitive.Only the parameter which is highly correlative and sensitive is selected as the input of ANN,and the sampling space of the model is highly reduced.The modeling of a wideband and circularly polarized antenna is studied as an example to verify the effectiveness of the proposed method.The number of input parameters decreases from8 to 4.The testing errors of|S_(11)|and axis ratio are reduced by8.74%and 8.95%,respectively,compared with the ANN with no feature selection.
文摘Feature modeling is the key to the realization of CAD/CAPP/CAM and the information integration of concurrent engineering. This paper describes the method for the advanced development of the parametric modeling system based on features by using I DEAS 5 system. It elaborates the modeling technique based on the features and generates the product information models based on the features providing abundant information for the process of the ensuing applications. The development of the feature modeling system on the commercial CAD software platform can take a great advantage of the solid modeling resources of the existing software, save the input of funds and shorten the development cycles of the new systems.
基金National Natural Science Foundation of China(Nos.42301473,42271424,42171397)Chinese Postdoctoral Innovation Talents Support Program(No.BX20230299)+2 种基金China Postdoctoral Science Foundation(No.2023M742884)Natural Science Foundation of Sichuan Province(Nos.24NSFSC2264,2025ZNSFSC0322)Key Research and Development Project of Sichuan Province(No.24ZDYF0633).
文摘As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes.
文摘Feature selection(FS)is a pivotal pre-processing step in developing data-driven models,influencing reliability,performance and optimization.Although existing FS techniques can yield high-performance metrics for certain models,they do not invariably guarantee the extraction of the most critical or impactful features.Prior literature underscores the significance of equitable FS practices and has proposed diverse methodologies for the identification of appropriate features.However,the challenge of discerning the most relevant and influential features persists,particularly in the context of the exponential growth and heterogeneity of big data—a challenge that is increasingly salient in modern artificial intelligence(AI)applications.In response,this study introduces an innovative,automated statistical method termed Farea Similarity for Feature Selection(FSFS).The FSFS approach computes a similarity metric for each feature by benchmarking it against the record-wise mean,thereby finding feature dependencies and mitigating the influence of outliers that could potentially distort evaluation outcomes.Features are subsequently ranked according to their similarity scores,with the threshold established at the average similarity score.Notably,lower FSFS values indicate higher similarity and stronger data correlations,whereas higher values suggest lower similarity.The FSFS method is designed not only to yield reliable evaluation metrics but also to reduce data complexity without compromising model performance.Comparative analyses were performed against several established techniques,including Chi-squared(CS),Correlation Coefficient(CC),Genetic Algorithm(GA),Exhaustive Approach,Greedy Stepwise Approach,Gain Ratio,and Filtered Subset Eval,using a variety of datasets such as the Experimental Dataset,Breast Cancer Wisconsin(Original),KDD CUP 1999,NSL-KDD,UNSW-NB15,and Edge-IIoT.In the absence of the FSFS method,the highest classifier accuracies observed were 60.00%,95.13%,97.02%,98.17%,95.86%,and 94.62%for the respective datasets.When the FSFS technique was integrated with data normalization,encoding,balancing,and feature importance selection processes,accuracies improved to 100.00%,97.81%,98.63%,98.94%,94.27%,and 98.46%,respectively.The FSFS method,with a computational complexity of O(fn log n),demonstrates robust scalability and is well-suited for datasets of large size,ensuring efficient processing even when the number of features is substantial.By automatically eliminating outliers and redundant data,FSFS reduces computational overhead,resulting in faster training and improved model performance.Overall,the FSFS framework not only optimizes performance but also enhances the interpretability and explainability of data-driven models,thereby facilitating more trustworthy decision-making in AI applications.
基金funded by Institutional Fund Projects under grant no.(IFPDP-261-22)。
文摘Detecting cyber attacks in networks connected to the Internet of Things(IoT)is of utmost importance because of the growing vulnerabilities in the smart environment.Conventional models,such as Naive Bayes and support vector machine(SVM),as well as ensemble methods,such as Gradient Boosting and eXtreme gradient boosting(XGBoost),are often plagued by high computational costs,which makes it challenging for them to perform real-time detection.In this regard,we suggested an attack detection approach that integrates Visual Geometry Group 16(VGG16),Artificial Rabbits Optimizer(ARO),and Random Forest Model to increase detection accuracy and operational efficiency in Internet of Things(IoT)networks.In the suggested model,the extraction of features from malware pictures was accomplished with the help of VGG16.The prediction process is carried out by the random forest model using the extracted features from the VGG16.Additionally,ARO is used to improve the hyper-parameters of the random forest model of the random forest.With an accuracy of 96.36%,the suggested model outperforms the standard models in terms of accuracy,F1-score,precision,and recall.The comparative research highlights our strategy’s success,which improves performance while maintaining a lower computational cost.This method is ideal for real-time applications,but it is effective.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB3702404)the National Natural Science Foundation of China(Grant No.52104370)+4 种基金the Reviving-Liaoning Excellence Plan(XLYC2203186)Science and Technology Special Projects of Liaoning Province(Grant No.2022JH25/10200001)the Postdoctoral Research Fund for Northeastern(Grant No.20210203)Independent Projects of Basic Scientific Research(ZZ2021005)CITIC Niobium Steel Development Award Fund(2022-M1824).
文摘Selecting proper descriptors(also known feature selection,FS)is key in the process of establishing mechanical properties prediction model of hot-rolled microalloyed steels by using machine learning(ML)algorithm.FS methods based on data-driving can reduce the redundancy of data features and improve the prediction accuracy of mechanical properties.Based on the collected data of hot-rolled microalloyed steels,the association rules are used to mine the correlation information between the data.High-quality feature subsets are selected by the proposed FS method(FS method based on genetic algorithm embedding,GAMIC).Compared with the common FS method,it is shown on dataset that GAMIC selects feature subsets more appropriately.Six different ML algorithms are trained and tested for mechanical properties prediction.The result shows that the root-mean-square error of yield strength,tensile strength and elongation based on limit gradient enhancement(XGBoost)algorithm is 21.95 MPa,20.85 MPa and 1.96%,the correlation coefficient(R^(2))is 0.969,0.968 and 0.830,and the mean absolute error is 16.84 MPa,15.83 MPa and 1.48%,respectively,showing the best prediction performance.Finally,SHapley Additive exPlanation is used to further explore the influence of feature variables on mechanical properties.GAMIC feature selection method proposed is universal,which provides a basis for the development of high-precision mechanical property prediction model.
文摘The authors regret that the original publication of this paper did not include Jawad Fayaz as a co-author.After further discussions and a thorough review of the research contributions,it was agreed that his significant contributions to the foundational aspects of the research warranted recognition,and he has now been added as a co-author.
文摘This paper proposes an approach of developing the feature based parametric product modeling system which is suitable for integrated engineering design in CIMS environment.The architecture of ZD--MCADII and the characteristics of its each module are introduced in detail. ZD--MCADII’s product data is managed by an object--oriented database management system OSCAR, and the product model is built according to the standard STEP. The product design is established on a unified product model, and all the product data are globally associated in ZD--MCADII. ZD--MCADII provides various design features to facilitate the product design, and supports the integrity of CAD, CAPP and CAM.
基金supported by the National Natural Science Foundation of China(Nos.92152301,12072282)。
文摘Aerodynamic surrogate modeling mostly relies only on integrated loads data obtained from simulation or experiment,while neglecting and wasting the valuable distributed physical information on the surface.To make full use of both integrated and distributed loads,a modeling paradigm,called the heterogeneous data-driven aerodynamic modeling,is presented.The essential concept is to incorporate the physical information of distributed loads as additional constraints within the end-to-end aerodynamic modeling.Towards heterogenous data,a novel and easily applicable physical feature embedding modeling framework is designed.This framework extracts lowdimensional physical features from pressure distribution and then effectively enhances the modeling of the integrated loads via feature embedding.The proposed framework can be coupled with multiple feature extraction methods,and the well-performed generalization capabilities over different airfoils are verified through a transonic case.Compared with traditional direct modeling,the proposed framework can reduce testing errors by almost 50%.Given the same prediction accuracy,it can save more than half of the training samples.Furthermore,the visualization analysis has revealed a significant correlation between the discovered low-dimensional physical features and the heterogeneous aerodynamic loads,which shows the interpretability and credibility of the superior performance offered by the proposed deep learning framework.
基金Project(51209167) supported by Youth Project of the National Natural Science Foundation of ChinaProject(2012JM8026) supported by Shaanxi Provincial Natural Science Foundation, China
文摘In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles.
基金supported in part by the National Natural Science Foundation of China(82072019)the Shenzhen Basic Research Program(JCYJ20210324130209023)+5 种基金the Shenzhen-Hong Kong-Macao S&T Program(Category C)(SGDX20201103095002019)the Mainland-Hong Kong Joint Funding Scheme(MHKJFS)(MHP/005/20),the Project of Strategic Importance Fund(P0035421)the Projects of RISA(P0043001)from the Hong Kong Polytechnic University,the Natural Science Foundation of Jiangsu Province(BK20201441)the Provincial and Ministry Co-constructed Project of Henan Province Medical Science and Technology Research(SBGJ202103038,SBGJ202102056)the Henan Province Key R&D and Promotion Project(Science and Technology Research)(222102310015)the Natural Science Foundation of Henan Province(222300420575),and the Henan Province Science and Technology Research(222102310322).
文摘Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research.
基金Supported partially by the Post Doctoral Natural Science Foundation of China(2013M532118,2015T81082)the National Natural Science Foundation of China(61573364,61273177,61503066)+2 种基金the State Key Laboratory of Synthetical Automation for Process Industriesthe National High Technology Research and Development Program of China(2015AA043802)the Scientific Research Fund of Liaoning Provincial Education Department(L2013272)
文摘Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones.
文摘A unified feature definition is proposed.Feature is form-concentrated,and can be used to model product func- tionalities,assembly relations,and part geometries.The feature model is given and a feature classification is introduced including functional,assembly,structural,and manufacturing features.A prototype modeling system is developed in Pro/ENGINEER that can define the assembly and user-defined form features.
基金Supported by Natural Science Foundation of Zhejiang Province of P.R.China(Y104284)
文摘This article explores the ability of multivariate autoregressive model(MAR)and scalar AR model to extract the features from two-lead electrocardiogram signals in order to classify certain cardiac arrhythmias.The classification performance of four different ECG feature sets based on the model coefficients are shown.The data in the analysis including normal sinus rhythm, atria premature contraction,premature ventricular contraction,ventricular tachycardia,ventricular fibrillation and superventricular tachyeardia is obtained from the MIT-BIH database.The classification is performed using a quadratic diacriminant function.The results show the MAR coefficients produce the best results among the four ECG representations and the MAR modeling is a useful classification and diagnosis tool.
文摘Machining process data is the core of computer aided process planning application systems.It is also provides essen- tial content for product life cycle engineering.The character of CAPP that supports product LCE and virtual manufacturing is an- alyzed.The structure and content of machining process data concerning green manufacturing is also examined.A logic model of Machining Process Data has been built based on an object oriented approach,using UML technology and a physical model of machin- ing process data that utilizes XML technology.To realize the integration of design and process,an approach based on graph-based volume decomposition was apposed.Instead,to solve the problem of generation in the machining process,case-based reasoning and rule-based reasoning have been applied synthetically.Finally,the integration framework and interface that deal with the CAPP integration with CAD,CAM,PDM,and ERP are discussed.
基金This work is supported by the Fundamental Research Funds for the Central Universities(Grant No.2572019BH03).
文摘Stance detection is the task of attitude identification toward a standpoint.Previous work of stance detection has focused on feature extraction but ignored the fact that irrelevant features exist as noise during higher-level abstracting.Moreover,because the target is not always mentioned in the text,most methods have ignored target information.In order to solve these problems,we propose a neural network ensemble method that combines the timing dependence bases on long short-term memory(LSTM)and the excellent extracting performance of convolutional neural networks(CNNs).The method can obtain multi-level features that consider both local and global features.We also introduce attention mechanisms to magnify target information-related features.Furthermore,we employ sparse coding to remove noise to obtain characteristic features.Performance was improved by using sparse coding on the basis of attention employment and feature extraction.We evaluate our approach on the SemEval-2016Task 6-A public dataset,achieving a performance that exceeds the benchmark and those of participating teams.
基金This work is supported by the National Natural Science Foundation of China(12002218)the Youth Foundation of Education Department of Liaoning Province(JYT19034).These supports are gratefully acknowledged.
文摘This paper presents a feature modeling approach to address the 3D structural topology design optimization withfeature constraints. In the proposed algorithm, various features are formed into searchable shape features bythe feature modeling technology, and the models of feature elements are established. The feature elements thatmeet the design requirements are found by employing a feature matching technology, and the constraint factorscombined with the pseudo density of elements are initialized according to the optimized feature elements. Then,through controlling the constraint factors and utilizing the optimization criterion method along with the filteringtechnology of independent mesh, the structural design optimization is implemented. The present feature modelingapproach is applied to the feature-based structural topology optimization using empirical data. Meanwhile, theimproved mathematical model based on the density method with the constraint factors and the correspondingsolution processes are also presented. Compared with the traditional method which requires complicated constraintprocessing, the present approach is flexibly applied to the 3D structural design optimization with added holesby changing the constraint factors, thus it can design a structure with predetermined features more directly andeasily. Numerical examples show effectiveness of the proposed feature modeling approach, which is suitable for thepractical engineering design.