期刊文献+
共找到869篇文章
< 1 2 44 >
每页显示 20 50 100
Rendered image denoising method with filtering guided by lighting information
1
作者 MA Minghui HU Xiaojuan +2 位作者 ZHANG Ripei CHEN Chunyi YU Haiyang 《Optoelectronics Letters》 2025年第4期242-248,共7页
The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions a... The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions and are easy to lose detailed information.So we propose a rendered image denoising method with filtering guided by lighting information.First,we design an image segmentation algorithm based on lighting information to segment the image into different illumination areas.Then,we establish the parameter prediction model guided by lighting information for filtering(PGLF)to predict the filtering parameters of different illumination areas.For different illumination areas,we use these filtering parameters to construct area filters,and the filters are guided by the lighting information to perform sub-area filtering.Finally,the filtering results are fused with auxiliary features to output denoised images for improving the overall denoising effect of the image.Under the physically based rendering tool(PBRT)scene and Tungsten dataset,the experimental results show that compared with other guided filtering denoising methods,our method improves the peak signal-to-noise ratio(PSNR)metrics by 4.2164 dB on average and the structural similarity index(SSIM)metrics by 7.8%on average.This shows that our method can better reduce the noise in complex lighting scenesand improvethe imagequality. 展开更多
关键词 establish paramet rendered image denoising Monte Carlo method filtering guided lighting information denoising algorithms image segmentation algorithm rendered image denoising method monte carlo methodhoweverthe
原文传递
DNEFNET: Denoising and Frequency Domain Feature Enhancement Event Fusion Network for Image Deblurring
2
作者 Kangkang Zhao Yaojie Chen Jianbo Li 《Computers, Materials & Continua》 2025年第7期745-762,共18页
Traditional cameras inevitably suffer from motion blur when facing high-speed moving objects.Event cameras,as high temporal resolution bionic cameras,record intensity changes in an asynchronous manner,and their record... Traditional cameras inevitably suffer from motion blur when facing high-speed moving objects.Event cameras,as high temporal resolution bionic cameras,record intensity changes in an asynchronous manner,and their recorded high temporal resolution information can effectively solve the problem of time information loss in motion blur.Existing event-based deblurring methods still face challenges when facing high-speed moving objects.We conducted an in-depth study of the imaging principle of event cameras.We found that the event stream contains excessive noise.The valid information is sparse.Invalid event features hinder the expression of valid features due to the uncertainty of the global threshold.To address this problem,a denoising-based long and short-term memory module(DTM)is designed in this paper.The DTM suppressed the original event information by noise reduction process.Invalid features in the event stream and solves the problem of sparse valid information in the event stream,and it also combines with the long short-term memory module(LSTM),which further enhances the event feature information in the time scale.In addition,through the in-depth understanding of the unique characteristics of event features,it is found that the high-frequency information recorded by event features does not effectively guide the fusion feature deblurring process in the spatial-domain-based feature processing,and for this reason,we introduce the residual fast fourier transform module(RES-FFT)to further enhance the high-frequency characteristics of the fusion features by performing the feature extraction of the fusion features from the perspective of the frequency domain.Ultimately,our proposed event image fusion network based on event denoising and frequency domain feature enhancement(DNEFNET)achieved Peak Signal-to-Noise Ratio(PSNR)/Structural Similarity Index Measure(SSIM)scores of 35.55/0.972 on the GoPro dataset and 38.27/0.975 on the REBlur dataset,achieving the state of the art(SOTA)effect. 展开更多
关键词 Image deblurring event camera denoising frequency domain algorithm 1:DNEFNET image processing
在线阅读 下载PDF
AMicroseismic Signal Denoising Algorithm Combining VMD and Wavelet Threshold Denoising Optimized by BWOA
3
作者 Dijun Rao Min Huang +2 位作者 Xiuzhi Shi Zhi Yu Zhengxiang He 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期187-217,共31页
The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized ... The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized VariationalMode Decomposition(VMD)jointWavelet Threshold Denoising(WTD)algorithm(BVW)is proposed.The BVW algorithm integrates VMD and WTD,both of which are optimized by BWOA.Specifically,this algorithm utilizes VMD to decompose the microseismic signal to be denoised into several Band-Limited IntrinsicMode Functions(BLIMFs).Subsequently,these BLIMFs whose correlation coefficients with the microseismic signal to be denoised are higher than a threshold are selected as the effective mode functions,and the effective mode functions are denoised using WTD to filter out the residual low-and intermediate-frequency noise.Finally,the denoised microseismic signal is obtained through reconstruction.The ideal values of VMD parameters and WTD parameters are acquired by searching with BWOA to achieve the best VMD decomposition performance and solve the problem of relying on experience and requiring a large workload in the application of the WTD algorithm.The outcomes of simulated experiments indicate that this algorithm is capable of achieving good denoising performance under noise of different intensities,and the denoising performance is significantly better than the commonly used VMD and Empirical Mode Decomposition(EMD)algorithms.The BVW algorithm is more efficient in filtering noise,the waveform after denoising is smoother,the amplitude of the waveform is the closest to the original signal,and the signal-to-noise ratio(SNR)and the root mean square error after denoising are more satisfying.The case based on Fankou Lead-Zinc Mine shows that for microseismic signals with different intensities of noise monitored on-site,compared with VMD and EMD,the BVW algorithm ismore efficient in filtering noise,and the SNR after denoising is higher. 展开更多
关键词 Variational mode decomposition microseismic signal denoising wavelet threshold denoising black widow optimization algorithm
在线阅读 下载PDF
Quantitatively characterizing sandy soil structure altered by MICP using multi-level thresholding segmentation algorithm 被引量:1
4
作者 Jianjun Zi Tao Liu +3 位作者 Wei Zhang Xiaohua Pan Hu Ji Honghu Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4285-4299,共15页
The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmenta... The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm. 展开更多
关键词 Soil structure MICRO-CT multi-level thresholding MICP Genetic algorithm(GA)
在线阅读 下载PDF
A Compound Algorithm of Denoising Using Second-Order and Fourth-Order Partial Differential Equations 被引量:5
5
作者 Qianshun Chang Xuecheng Tai Lily Xing 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2009年第4期353-376,共24页
In this paper, we propose a compound algorithm for the image restoration. The algorithm is a convex combination of the ROF model and the LLT model with a parameter function 0. The numerical experiments demonstrate tha... In this paper, we propose a compound algorithm for the image restoration. The algorithm is a convex combination of the ROF model and the LLT model with a parameter function 0. The numerical experiments demonstrate that our compound algorithm is efficient and preserves the main advantages of the two models. In particular, the errors of the compound algorithm in L2 norm between the exact images and corresponding restored images are the smallest among the three models. For images with strong noises, the restored images of the compound algorithm are the best in the corresponding restored images. The proposed algorithm combines the fixed point method, an improved AMG method and the Krylov acceleration. It is found that the combination of these methods is efficient and robust in the image restoration. 展开更多
关键词 algorithm of denoising image restoration total variation second-order functional.
在线阅读 下载PDF
Hardware Architecture Design of Block-Matching and 3D-Filtering Denoising Algorithm
6
作者 张昊 刘文江 +2 位作者 王若琳 刘涛 戎蒙恬 《Journal of Shanghai Jiaotong university(Science)》 EI 2016年第2期173-183,共11页
Block-matching and 3D-filtering(BM3D) is a state of the art denoising algorithm for image/video,which takes full advantages of the spatial correlation and the temporal correlation of the video. The algorithm performan... Block-matching and 3D-filtering(BM3D) is a state of the art denoising algorithm for image/video,which takes full advantages of the spatial correlation and the temporal correlation of the video. The algorithm performance comes at the price of more similar blocks finding and filtering which bring high computation and memory access. Area, memory bandwidth and computation are the major bottlenecks to design a feasible architecture because of large frame size and search range. In this paper, we introduce a novel structure to increase data reuse rate and reduce the internal static-random-access-memory(SRAM) memory. Our target is to design a phase alternating line(PAL) or real-time processing chip of BM3 D. We propose an application specific integrated circuit(ASIC) architecture of BM3 D for a 720 × 576 BT656 PAL format. The feature of the chip is with 100 MHz system frequency and a 166-MHz 32-bit double data rate(DDR). When noise is σ = 25, we successfully realize real-time denoising and achieve about 10 d B peak signal to noise ratio(PSNR) advance just by one iteration of the BM3 D algorithm. 展开更多
关键词 block-matching and 3D-filtering(BM3D) denoising algorithm IMPLEMENTATION BLOCK-MATCHING 3D-filtering AGGREGATION
原文传递
Implementation of Adaptive Wavelet Thresholding Denoising Algorithm Based on DSP
7
作者 张雪峰 康春霞 +1 位作者 裴峰 张志杰 《Journal of Measurement Science and Instrumentation》 CAS 2011年第3期272-275,共4页
By utilizing the capability of high-speed computing,powerful real-time processing of TMS320F2812 DSP,wavelet thresholding denoising algorithm is realized based on Digital Signal Processors.Based on the multi-resolutio... By utilizing the capability of high-speed computing,powerful real-time processing of TMS320F2812 DSP,wavelet thresholding denoising algorithm is realized based on Digital Signal Processors.Based on the multi-resolution analysis of wavelet transformation,this paper proposes a new thresholding function,to some extent,to overcome the shortcomings of discontinuity in hard-thresholding function and bias in soft-thresholding function.The threshold value can be abtained adaptively according to the characteristics of wavelet coefficients of each layer by adopting adaptive threshold algorithm and then the noise is removed.The simulation results show that the improved thresholding function and the adaptive threshold algorithm have a good effect on denoising and meet the criteria of smoothness and similarity between the original signal and denoising signal. 展开更多
关键词 Mallat algorithm wavelet denoising thresholding function adaptive threshold Digital Signal Processors
在线阅读 下载PDF
Study on the Heart Sound Signal Denoising Technology based on Integrated Filtering Algorithm
8
《International English Education Research》 2013年第12期93-95,共3页
In the previous studies of heart sounds, the calculation model of small waveform is often used, and new waveform graph is formed through the decomposition and restructuring of small waveform so as to remove the noise ... In the previous studies of heart sounds, the calculation model of small waveform is often used, and new waveform graph is formed through the decomposition and restructuring of small waveform so as to remove the noise from the new waveform. There are a lot of shortcomings in the use of such a method. The features of new waveform are difficult to be controlled, and thus the noise generated by the wave and the interference of wave will be disturbed by the filter to certain degree. In this paper, the integrated faltering algorithm is introduced, and a wave can be used in the studied use of small waveform, and also the high-order algorithm in mathematics is used, so that the frequency is controlled in a certain range, the frequency of heart sounds to be interfered is effectively reduced, and also the harmonic harm generated by the waveform is considered. After the signal sources are protected with some technologies, the effect of filtering and denoising is eventually achieved. 展开更多
关键词 Integrated Filtering algorithm Heart Sounds denoising Technology Filtering algorithm
在线阅读 下载PDF
The Algorithm of Balanced Orthogonal Multiwavelets and Its Application in Denoising
9
作者 QIU Ai-zhong 《International Journal of Plant Engineering and Management》 2011年第4期221-224,共4页
In order to extract fault features of a weak signal from the strong noise and maintain signal smoothness, a new method of denoising based on the algorithm of balanced orthogonal multiwavelets is proposed. Multiwavelet... In order to extract fault features of a weak signal from the strong noise and maintain signal smoothness, a new method of denoising based on the algorithm of balanced orthogonal multiwavelets is proposed. Multiwavelets have several scaling functions and wavelet functions, and possess excellent properties that a scalar wavelet cannot satisfy simultaneously, and match the different characteristics of signals. Moreover, the balanced orthogonal multiwavelets can avoid the Gibbs phenomena and their processes have the advantages in denoising. Therefore, the denoising based on the algorithm of balanced orthogonal multiwavelets is introduced into the signal process. The algorithm of bal- anced orthogonal multiwavelet and the implementation steps of this denoising are described. The experimental compar- ison of the denoising effect between this algorithm and the traditional multiwavelet algorithm was done. The experi- ments indieate that this method is effective and feasible to extract the fault feature submerged in heavy noise. 展开更多
关键词 balanced orthogonal multiwavelets wavelet algorithm signal denoising extracting signal features fault diagnosis
在线阅读 下载PDF
An effective multi-level algorithm based on ant colony optimization for graph bipartitioning 被引量:3
10
作者 冷明 郁松年 +1 位作者 丁旺 郭强 《Journal of Shanghai University(English Edition)》 CAS 2008年第5期426-432,共7页
Partitioning is a fundamental problem with applications to many areas including data mining, parellel processing and Very-large-scale integration (VLSI) design. An effective multi-level algorithm for bisecting graph... Partitioning is a fundamental problem with applications to many areas including data mining, parellel processing and Very-large-scale integration (VLSI) design. An effective multi-level algorithm for bisecting graph is proposed. During its coarsening phase, an improved matching approach based on the global information of the graph core is developed with its guidance function. During the refinement phase, the vertex gain is exploited as ant's heuristic information and a positive feedback method based on pheromone trails is used to find the global approximate bipartitioning. It is implemented with American National Standards Institute (ANSI) C and compared to MeTiS. The experimental evaluation shows that it performs well and produces encouraging solutions on 18 different graphs benchmarks. 展开更多
关键词 rain-cut GRAPH bipartitioning multi-level algorithm ant colony optimization (ACO)
在线阅读 下载PDF
New Wavelet Threshold Denoising Method in Noisy Blind Source Separation 被引量:1
11
作者 Xuan-Sen He Tian-Jiao Zhao 《Journal of Electronic Science and Technology》 CAS 2010年第4期356-361,共6页
In general conditions, most blind source separation algorithms are established on noisy-free model and ignore the noise that affects the quality of separated sources. Firstly, this paper introduces an improved natural... In general conditions, most blind source separation algorithms are established on noisy-free model and ignore the noise that affects the quality of separated sources. Firstly, this paper introduces an improved natural gradient algorithm based on bias removal technology to estimate the demixing matrix under noisy environment. Then the discrete wavelet transform technology is applied to the separated signals to further remove noise. In order to improve the separation effect, this paper analyzes the deficiency of hard threshold and soft threshold, and proposes a new wavelet threshold function based on the wavelet decomposition and reconfiguration. The simulations have verified that this method improves the signal noise ratio (SNR) of the separation results and the separation precision. 展开更多
关键词 Bias removal blind source separation gradient algorithm wavelet threshold denoising.
在线阅读 下载PDF
Improving Mutual Coherence with Non-Uniform Discretization of Orthogonal Function for Image Denoising Application 被引量:1
12
作者 Hani Nozari Alireza Siamy 《Journal of Signal and Information Processing》 2011年第3期184-189,共6页
This paper presented a novel method on designing redundant dictionary from known orthogonal functions. Usual way of discretization of continuous functions is uniform sampling. Our experiments show that dividing the fu... This paper presented a novel method on designing redundant dictionary from known orthogonal functions. Usual way of discretization of continuous functions is uniform sampling. Our experiments show that dividing the function definition interval with non-uniform measure makes the redundant dictionary sparser and it is suitable for image denoising via sparse and redundant dictionary. In this case the problem is to find an appropriate measure in order to make each atom of dictionary. It has shown that in sparse approximation context, incoherent dictionary is suitable for sparse approximation method. According to this fact we define some optimization problems to find the best parameter of distribution measure (in our study normal distribution). For better convergence to optimum point we used Genetic Algorithm (GA) with enough diversity on initial population. We show the effect of this type of dictionary design on exact sparse recovery support. Our results also show the advantage of this design method on image denoising task. 展开更多
关键词 Grassmaniann FRAMES Normal Distribution Mutual COHERENCE Genetic algorithm Image denoising
在线阅读 下载PDF
A Sobel-TV Based Hybrid Model for Robust Image Denoising
13
作者 Jihui Tu Bin Yang 《Applied Mathematics》 2014年第8期1310-1316,共7页
The traditional Total-Variation algorithm has a good result to de-noise for noise image of small scale details, but it easily losses the details for the image with rich texture and tiny boundary. In order to solve thi... The traditional Total-Variation algorithm has a good result to de-noise for noise image of small scale details, but it easily losses the details for the image with rich texture and tiny boundary. In order to solve this problem, this paper proposes a Sobel-TV model algorithm for image denoising. It uses TV model to de-noise and uses Sobel algorithm to control smoothness of image, which not only efficiently removes image noise but also simultaneously retail information, such as edge and texture. The experiments demonstrate that the proposed algorithm is simple, practical and generates better SNR, which is an important value to preprocess image. 展开更多
关键词 TV MODEL SOBEL algorithm Sobel-TV MODEL IMAGE denoising
在线阅读 下载PDF
面向轴承故障诊断的无监督噪声自适应匹配追踪算法展开去噪网络 被引量:1
14
作者 秦毅 杨瑞 +1 位作者 赵丽娟 毛永芳 《机械工程学报》 北大核心 2025年第12期26-38,共13页
滚动轴承是重要的支撑部件,容易发生故障,迫切需要对其进行故障诊断。但是采集的轴承振动信号中存在噪声,制约了诊断精度的提升。针对基于信号处理、深度学习及稀疏算法展开的去噪方法存在的自适应性差、可解释性低、有监督训练等问题,... 滚动轴承是重要的支撑部件,容易发生故障,迫切需要对其进行故障诊断。但是采集的轴承振动信号中存在噪声,制约了诊断精度的提升。针对基于信号处理、深度学习及稀疏算法展开的去噪方法存在的自适应性差、可解释性低、有监督训练等问题,设计DCT-Laplace字典以表示信号的谐波和冲击成分;提出去冲击区域的小波变换噪声估计方法以确定噪声的标准差;然后通过比较噪声和重构残差的功率自适应地确定稀疏算法展开网络的展开数,进而构建一种无监督噪声自适应的匹配追踪算法展开去噪网络;最后将去噪结果输入到多层迭代软阈值算法网络实现轴承的故障诊断。将所提方法应用于两个滚动轴承故障诊断试验,并与其他典型去噪方法进行对比。试验结果验证了所提方法能有效地去除信号中的噪声及保留故障特征,因而提高了噪声下故障诊断的精度。 展开更多
关键词 稀疏表示 算法展开 信号去噪 可解释网络 故障诊断
原文传递
基于改进神经网络的医院通信安全态势感知方法 被引量:4
15
作者 邓从香 《电子设计工程》 2025年第1期166-170,175,共6页
针对医院通信安全态势感知不及时,易导致医院信息系统重要信息受到损害的问题,提出基于改进神经网络的医院通信安全态势感知方法。使用基于小波消噪的通信信号去除噪声并保留关键信息,输入基于改进RBF神经网络的医院通信安全态势感知模... 针对医院通信安全态势感知不及时,易导致医院信息系统重要信息受到损害的问题,提出基于改进神经网络的医院通信安全态势感知方法。使用基于小波消噪的通信信号去除噪声并保留关键信息,输入基于改进RBF神经网络的医院通信安全态势感知模型。利用花朵授粉算法完成改进RBF神经网络训练。通过径向基函数对输入数据进行非线性变换,将得到的权值进行加权求和,得到当前通信网络信号的安全态势预测结果。实验结果显示,应用该文方法的医院通信网络异常信息可在1 s内完成感知。 展开更多
关键词 改进神经网络 医院通信 安全态势 小波消噪 信号去噪 花朵授粉算法
在线阅读 下载PDF
基于参数优化变分模态分解的信号降噪方法 被引量:1
16
作者 何玉洁 李新娥 贺俊 《现代电子技术》 北大核心 2025年第2期70-76,共7页
针对心电信号中肌电干扰噪声难以去除的问题,提出一种基于参数优化变分模态分解(VMD)的信号降噪方法。通过设计动态边界策略和反向种群生成方式,对白鲸优化(BWO)算法进行改进;采用改进白鲸优化算法对VMD参数自适应寻优,确定分解层数K与... 针对心电信号中肌电干扰噪声难以去除的问题,提出一种基于参数优化变分模态分解(VMD)的信号降噪方法。通过设计动态边界策略和反向种群生成方式,对白鲸优化(BWO)算法进行改进;采用改进白鲸优化算法对VMD参数自适应寻优,确定分解层数K与惩罚因子α;对含噪心电信号进行分解,得到k个本征模态函数(IMF)分量,同时采用相关系数法进行有效模态和含噪模态识别;对噪声主导的模态分量采用小波阈值降噪,并重构信号主导模态与降噪后模态。对仿真信号与含真实肌电干扰的心电信号进行降噪处理,实验结果表明,所提方法去噪效果优于小波阈值去噪法、EMD法、EMD-小波阈值去噪法,真实含噪的心电信号经该方法去噪后自相关系数可达0.91以上。 展开更多
关键词 变分模态分解 信号降噪 参数优化 改进白鲸优化算法 心电信号 IMF分量 小波阈值降噪 肌电干扰
在线阅读 下载PDF
基于小波降噪与WOA⁃Bi⁃LSTM的短时交通流预测 被引量:1
17
作者 贾现广 苏治文 +1 位作者 冯超琴 吕英英 《现代电子技术》 北大核心 2025年第14期77-84,共8页
交通流数据中异常数据波动作为噪声,会对模型训练收敛以及预测精度产生不利影响。为解决该问题,引入两种不同阈值函数的小波阈值去噪方法对交通流数据进行降噪处理,将小波阈值去噪(WD)、鲸鱼优化算法(WOA)和双向长短期记忆网络(Bi-LSTM... 交通流数据中异常数据波动作为噪声,会对模型训练收敛以及预测精度产生不利影响。为解决该问题,引入两种不同阈值函数的小波阈值去噪方法对交通流数据进行降噪处理,将小波阈值去噪(WD)、鲸鱼优化算法(WOA)和双向长短期记忆网络(Bi-LSTM)相结合,提出一种WD-WOA-Bi-LSTM方法。首先,将两种方法降噪后的交通流数据进行对比,并将降噪效果更好的数据进行归一化处理、数据集划分以及数据维度转换;然后,通过WOA对Bi-LSTM部分超参数进行寻优,迭代至最优适应度的超参数组合,并用于构建Bi-LSTM;最后,应用英格兰公路交通流数据验证所提模型。结果表明:WDWOA-Bi-LSTM方法相较WOA-Bi-LSTM和WD-Bi-LSTM,RMSE降低12.5004%和3.9789%;MAE降低21.7350%和4.7225%;MAPE降低38.5647%和10.8652%。该模型相比其他模型评价指标均为最低,具有较高的预测精度,可以为高精度的短时交通流预测提供参考。 展开更多
关键词 智能交通 短时交通流预测 小波阈值去噪 鲸鱼优化算法 双向长短期记忆网络 深度学习 超参数寻优
在线阅读 下载PDF
改进EMD的断路器机械振动信号去噪处理方法
18
作者 周光祥 李鹏 王宽田 《机械设计与制造》 北大核心 2025年第9期368-373,共6页
为有效诊断断路器故障,保障机械安全稳定运行,提出了基于改进EMD的断路器机械振动信号去噪方法。使用基于ARM与FPGA的机械振动信号采集技术,获取断路器机械振动信号。利用EMD算法,将采集到的断路器机械振动信号分解为各个尺度的机械振... 为有效诊断断路器故障,保障机械安全稳定运行,提出了基于改进EMD的断路器机械振动信号去噪方法。使用基于ARM与FPGA的机械振动信号采集技术,获取断路器机械振动信号。利用EMD算法,将采集到的断路器机械振动信号分解为各个尺度的机械振动信号IMF分量与趋势项。对EMD噪声去除方法加以改进,应用交叉证认方法,获取机械振动信号IMF分量中的噪声和信号的主导分量。求解各分量阈值,并应用小波阈值方法去除机械振动信号中的噪声主导分量,获取有用振动信息。经各分量重构处理后,得到去除噪声的断路器机械振动信号。实验结果表明,该方法的断路器机械振动信号去噪效果较好,能够有效提高断路器机械故障诊断的准确性。 展开更多
关键词 FPGA技术 ARM技术 改进EMD算法 断路器 机械振动信号 信号去噪
在线阅读 下载PDF
基于改进WKNN的CSI被动室内指纹定位方法
19
作者 邵小强 马博 +3 位作者 韩泽辉 杨永德 原泽文 李鑫 《吉林大学学报(工学版)》 北大核心 2025年第7期2444-2454,共11页
针对幅值和相位构造包含干扰过多导致定位精度低的问题,提出了一种基于改进加权K最近邻算法的信道状态信息被动室内定位方法。离线阶段,采用隔离森林法,改进阈值的小波域去噪和线性变换法对采集到的信道状态信息进行预处理,将处理后的... 针对幅值和相位构造包含干扰过多导致定位精度低的问题,提出了一种基于改进加权K最近邻算法的信道状态信息被动室内定位方法。离线阶段,采用隔离森林法,改进阈值的小波域去噪和线性变换法对采集到的信道状态信息进行预处理,将处理后的幅相信息共同作为指纹数据,构造与参考点位置信息相关的稳定指纹数据库。在线阶段,提出改进的加权K近邻算法,对估计坐标进行重复匹配,该算法在一次匹配中得到位置坐标后,求该位置坐标在K个近邻点间的欧氏距离,并使用高斯变换对K个距离值进行权重计算,完成人员的定位。分别在教室和大厅进行实验模拟测试,实验结果表明:采用本文算法约81%的测试位置误差控制在1 m以内,可以有效提高定位精度。 展开更多
关键词 室内定位 信道状态信息 被动定位 改进阈值的小波域去噪 改进的加权K近邻算法 高斯变换
原文传递
GA-2D-VMD联合FNLM的医学超声图像去噪方法研究
20
作者 闫洪波 那毅然 +1 位作者 沈雅楠 徐洋 《机械设计与制造》 北大核心 2025年第2期375-379,384,共6页
医学超声成像过程中出现的斑点噪声,降低了图像的可视性,传统算法在去噪后可能会出现图像边缘细节模糊、去噪效果不佳等问题。针对于此,提出了基于遗传算法优化的2D-VMD与FNLM相结合的方法。首先利用遗传算法对2D-VMD的两个参数同时进... 医学超声成像过程中出现的斑点噪声,降低了图像的可视性,传统算法在去噪后可能会出现图像边缘细节模糊、去噪效果不佳等问题。针对于此,提出了基于遗传算法优化的2D-VMD与FNLM相结合的方法。首先利用遗传算法对2D-VMD的两个参数同时进行自适应寻优,接着采用优化2D-VMD分解噪声图像,并借助相关系数筛选有效分量,然后使用FNLM滤波去噪,最后将去噪后的子模态重构完成去噪。实验结果证明,该方法具有优秀的去噪效果和保留图像边缘细节信息的能力,客观评价指标亦有明显的提升。 展开更多
关键词 斑点噪声 遗传算法 二维变分模态分解 参数优化 快速非局部均值 图像去噪
在线阅读 下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部