Existing glass segmentation networks have high computational complexity and large memory occupation,leading to high hardware requirements and time overheads for model inference,which is not conducive to efficiency-see...Existing glass segmentation networks have high computational complexity and large memory occupation,leading to high hardware requirements and time overheads for model inference,which is not conducive to efficiency-seeking real-time tasks such as autonomous driving.The inefficiency of the models is mainly due to employing homogeneous modules to process features of different layers.These modules require computationally intensive convolutions and weight calculation branches with numerous parameters to accommodate the differences in information across layers.We propose an efficient glass segmentation network(EGSNet)based on multi-level heterogeneous architecture and boundary awareness to balance the model performance and efficiency.EGSNet divides the feature layers from different stages into low-level understanding,semantic-level understanding,and global understanding with boundary guidance.Based on the information differences among the different layers,we further propose the multi-angle collaborative enhancement(MCE)module,which extracts the detailed information from shallow features,and the large-scale contextual feature extraction(LCFE)module to understand semantic logic through deep features.The models are trained and evaluated on the glass segmentation datasets HSO(Home-Scene-Oriented)and Trans10k-stuff,respectively,and EGSNet achieves the best efficiency and performance compared to advanced methods.In the HSO test set results,the IoU,Fβ,MAE(Mean Absolute Error),and BER(Balance Error Rate)of EGSNet are 0.804,0.847,0.084,and 0.085,and the GFLOPs(Giga Floating Point Operations Per Second)are only 27.15.Experimental results show that EGSNet significantly improves the efficiency of the glass segmentation task with better performance.展开更多
The development of blockchain is at a nascent stage.Current research on blockchain mainly focuses on a single technology,failing to reflect the correlation between the integrated technologies due to a lack of applicat...The development of blockchain is at a nascent stage.Current research on blockchain mainly focuses on a single technology,failing to reflect the correlation between the integrated technologies due to a lack of application in the real world.In this paper,according to the function classification,we divide blockchain technology into five layers:the data layer,the network layer,the consensus layer,the contract layer,and the application layer.For each layer,we elaborate on its technical principles and the latest research status.We also provide empirical cases of blockchain application.This paper summarizes the general functional modules of the blockchain to support the rapid implementation of blockchain applications.In the end,we investigate the challenges faced by blockchain technology and present the research prospects.展开更多
With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provi...With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provides reliable support for reconfiguration optimization in urban distribution networks.Thus,this study proposed a deep reinforcement learning based multi-level dynamic reconfiguration method for urban distribution networks in a cloud-edge collaboration architecture to obtain a real-time optimal multi-level dynamic reconfiguration solution.First,the multi-level dynamic reconfiguration method was discussed,which included feeder-,transformer-,and substation-levels.Subsequently,the multi-agent system was combined with the cloud-edge collaboration architecture to build a deep reinforcement learning model for multi-level dynamic reconfiguration in an urban distribution network.The cloud-edge collaboration architecture can effectively support the multi-agent system to conduct“centralized training and decentralized execution”operation modes and improve the learning efficiency of the model.Thereafter,for a multi-agent system,this study adopted a combination of offline and online learning to endow the model with the ability to realize automatic optimization and updation of the strategy.In the offline learning phase,a Q-learning-based multi-agent conservative Q-learning(MACQL)algorithm was proposed to stabilize the learning results and reduce the risk of the next online learning phase.In the online learning phase,a multi-agent deep deterministic policy gradient(MADDPG)algorithm based on policy gradients was proposed to explore the action space and update the experience pool.Finally,the effectiveness of the proposed method was verified through a simulation analysis of a real-world 445-node system.展开更多
The blockchain trilemma—balancing decentralization,security,and scalability—remains a critical challenge in distributed ledger technology.Despite significant advancements,achieving all three attributes simultaneousl...The blockchain trilemma—balancing decentralization,security,and scalability—remains a critical challenge in distributed ledger technology.Despite significant advancements,achieving all three attributes simultaneously continues to elude most blockchain systems,often forcing trade-offs that limit their real-world applicability.This review paper synthesizes current research efforts aimed at resolving the trilemma,focusing on innovative consensus mechanisms,sharding techniques,layer-2 protocols,and hybrid architectural models.We critically analyze recent breakthroughs,including Directed Acyclic Graph(DAG)-based structures,cross-chain interoperability frameworks,and zero-knowledge proof(ZKP)enhancements,which aimto reconcile scalability with robust security and decentralization.Furthermore,we evaluate the trade-offs inherent in these approaches,highlighting their practical implications for enterprise adoption,decentralized finance(DeFi),and Web3 ecosystems.By mapping the evolving landscape of solutions,this review identifies gaps in currentmethodologies and proposes future research directions,such as adaptive consensus algorithms and artificial intelligence-driven(AI-driven)governance models.Our analysis underscores that while no universal solution exists,interdisciplinary innovations are progressively narrowing the trilemma’s constraints,paving the way for next-generation blockchain infrastructures.展开更多
This paper deals with the security of stock market transactions within financial markets, particularly that of the West African Economic and Monetary Union (UEMOA). The confidentiality and integrity of sensitive data ...This paper deals with the security of stock market transactions within financial markets, particularly that of the West African Economic and Monetary Union (UEMOA). The confidentiality and integrity of sensitive data in the stock market being crucial, the implementation of robust systems which guarantee trust between the different actors is essential. We therefore proposed, after analyzing the limits of several security approaches in the literature, an architecture based on blockchain technology making it possible to both identify and reduce the vulnerabilities linked to the design, implementation work or the use of web applications used for transactions. Our proposal makes it possible, thanks to two-factor authentication via the Blockchain, to strengthen the security of investors’ accounts and the automated recording of transactions in the Blockchain while guaranteeing the integrity of stock market operations. It also provides an application vulnerability report. To validate our approach, we compared our results to those of three other security tools, at the level of different metrics. Our approach achieved the best performance in each case.展开更多
Traditional multi-level security(MLS)systems have the defect of centralizing authorized facilities,which is difficult to meet the security requirements of modern distributed peer-to-peer network architecture.Blockchai...Traditional multi-level security(MLS)systems have the defect of centralizing authorized facilities,which is difficult to meet the security requirements of modern distributed peer-to-peer network architecture.Blockchain is widely used in the field of access control with its decentralization,traceability and non-defective modification.Combining the blockchain technology and the Bell-LaPadula model,we propose a new access control model,named BCBLPM,for MLS environment.The“multi-chain”blockchain architecture is used for dividing resources into isolated access domains,providing a fine-grained data protection mechanism.The access control policies are implemented by smart contracts deployed in each access domain,so that the side chains of different access domains storage access records from outside and maintain the integrity of the records.Finally,we implement the BC-BLPM prototype system using the Hyperledger Fabric.The experimental and analytical results show that the model can adapt well to the needs of multi-level security environment,and it has the feasibility of application in actual scenarios.展开更多
Zero-trust security is a novel concept to cope with intricate access,which can not be handled by the conventional perimeter-based architecture anymore.The device-to-device continuous authentication protocol is one of ...Zero-trust security is a novel concept to cope with intricate access,which can not be handled by the conventional perimeter-based architecture anymore.The device-to-device continuous authentication protocol is one of the most crucial cornerstones,especially in the IoT scenario.In the zero-trust architecture,trust does not rely on any position,person or device.However,to the best of our knowledge,almost all existing device-to-device continuous authentication relies on a trust authority or a node to generate secret keys or secret values.This is betrayed by the principle of zero-trust architecture.In this paper,we employ the blockchain to eliminate the trusted node.One node is chosen to produce the public parameter and secret keys for two entities through the practical Byzantine fault tolerance consensus mechanism.Additionally,the devices are categorized into three folds:trusted device,suspected device and untrusted device.Only the first two can participate in authentication,and they have different lengths of security parameters and intervals to reach a better balance between security and efficiency.Then we prove the security of the initial authentication part in the eCK model and give an informal analysis of the continuous authentication part.Finally,we implement the proposed protocol on simulated devices.The result illustrates that our scheme is highly efficient,and the continuous authentication only costs around 0.1ms.展开更多
Network marketing is a trading technique that provides companies with the opportunity to increase sales.With the increasing number of Internet-based purchases,several threats are increasingly observed in this field,su...Network marketing is a trading technique that provides companies with the opportunity to increase sales.With the increasing number of Internet-based purchases,several threats are increasingly observed in this field,such as user privacy violations,company owner(CO)fraud,the changing of sold products’information,and the scalability of selling networks.This study presents the concept of a blockchain-based market called ACR-MLM that functions based on the multi-level marketing(MLM)model,through which registered users receive anonymous and confidential rewards for their own and their subgroups’sales.Applying a public blockchain as the ACR-MLM framework’s infrastructure solves existing problems in MLM-based markets,such as CO fraud(against the government or its users),user privacy violations(obtaining their real names or subgroup users),and scalability(when vast numbers of users have been registered).To provide confidentiality and scalability to the ACR-MLM framework,hierarchical identity-based encryption(HIBE)was applied with a functional encryption(FE)scheme.Finally,the security of ACR-MLM is analyzed using the random oracle(RO)model and then evaluated.展开更多
Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems...Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems across various fields.An increasing number of users are participating in application systems that use blockchain as their underlying architecture.As the number of transactions and the capital involved in blockchain grow,ensuring information security becomes imperative.Addressing the verification of transactional information security and privacy has emerged as a critical challenge.Blockchain-based verification methods can effectively eliminate the need for centralized third-party organizations.However,the efficiency of nodes in storing and verifying blockchain data faces unprecedented challenges.To address this issue,this paper introduces an efficient verification scheme for transaction security.Initially,it presents a node evaluation module to estimate the activity level of user nodes participating in transactions,accompanied by a probabilistic analysis for all transactions.Subsequently,this paper optimizes the conventional transaction organization form,introduces a heterogeneous Merkle tree storage structure,and designs algorithms for constructing these heterogeneous trees.Theoretical analyses and simulation experiments conclusively demonstrate the superior performance of this scheme.When verifying the same number of transactions,the heterogeneous Merkle tree transmits less data and is more efficient than traditional methods.The findings indicate that the heterogeneous Merkle tree structure is suitable for various blockchain applications,including the Internet of Things.This scheme can markedly enhance the efficiency of information verification and bolster the security of distributed systems.展开更多
文摘Existing glass segmentation networks have high computational complexity and large memory occupation,leading to high hardware requirements and time overheads for model inference,which is not conducive to efficiency-seeking real-time tasks such as autonomous driving.The inefficiency of the models is mainly due to employing homogeneous modules to process features of different layers.These modules require computationally intensive convolutions and weight calculation branches with numerous parameters to accommodate the differences in information across layers.We propose an efficient glass segmentation network(EGSNet)based on multi-level heterogeneous architecture and boundary awareness to balance the model performance and efficiency.EGSNet divides the feature layers from different stages into low-level understanding,semantic-level understanding,and global understanding with boundary guidance.Based on the information differences among the different layers,we further propose the multi-angle collaborative enhancement(MCE)module,which extracts the detailed information from shallow features,and the large-scale contextual feature extraction(LCFE)module to understand semantic logic through deep features.The models are trained and evaluated on the glass segmentation datasets HSO(Home-Scene-Oriented)and Trans10k-stuff,respectively,and EGSNet achieves the best efficiency and performance compared to advanced methods.In the HSO test set results,the IoU,Fβ,MAE(Mean Absolute Error),and BER(Balance Error Rate)of EGSNet are 0.804,0.847,0.084,and 0.085,and the GFLOPs(Giga Floating Point Operations Per Second)are only 27.15.Experimental results show that EGSNet significantly improves the efficiency of the glass segmentation task with better performance.
基金Supported by the National Natural Science Foundation of China(61762049,61862033,61902162)Natural Science Foundation of Jiangxi Province(20202BABL202025,20202BABL202026,20202BAB202015)。
文摘The development of blockchain is at a nascent stage.Current research on blockchain mainly focuses on a single technology,failing to reflect the correlation between the integrated technologies due to a lack of application in the real world.In this paper,according to the function classification,we divide blockchain technology into five layers:the data layer,the network layer,the consensus layer,the contract layer,and the application layer.For each layer,we elaborate on its technical principles and the latest research status.We also provide empirical cases of blockchain application.This paper summarizes the general functional modules of the blockchain to support the rapid implementation of blockchain applications.In the end,we investigate the challenges faced by blockchain technology and present the research prospects.
基金supported by the National Natural Science Foundation of China under Grant 52077146.
文摘With the construction of the power Internet of Things(IoT),communication between smart devices in urban distribution networks has been gradually moving towards high speed,high compatibility,and low latency,which provides reliable support for reconfiguration optimization in urban distribution networks.Thus,this study proposed a deep reinforcement learning based multi-level dynamic reconfiguration method for urban distribution networks in a cloud-edge collaboration architecture to obtain a real-time optimal multi-level dynamic reconfiguration solution.First,the multi-level dynamic reconfiguration method was discussed,which included feeder-,transformer-,and substation-levels.Subsequently,the multi-agent system was combined with the cloud-edge collaboration architecture to build a deep reinforcement learning model for multi-level dynamic reconfiguration in an urban distribution network.The cloud-edge collaboration architecture can effectively support the multi-agent system to conduct“centralized training and decentralized execution”operation modes and improve the learning efficiency of the model.Thereafter,for a multi-agent system,this study adopted a combination of offline and online learning to endow the model with the ability to realize automatic optimization and updation of the strategy.In the offline learning phase,a Q-learning-based multi-agent conservative Q-learning(MACQL)algorithm was proposed to stabilize the learning results and reduce the risk of the next online learning phase.In the online learning phase,a multi-agent deep deterministic policy gradient(MADDPG)algorithm based on policy gradients was proposed to explore the action space and update the experience pool.Finally,the effectiveness of the proposed method was verified through a simulation analysis of a real-world 445-node system.
文摘The blockchain trilemma—balancing decentralization,security,and scalability—remains a critical challenge in distributed ledger technology.Despite significant advancements,achieving all three attributes simultaneously continues to elude most blockchain systems,often forcing trade-offs that limit their real-world applicability.This review paper synthesizes current research efforts aimed at resolving the trilemma,focusing on innovative consensus mechanisms,sharding techniques,layer-2 protocols,and hybrid architectural models.We critically analyze recent breakthroughs,including Directed Acyclic Graph(DAG)-based structures,cross-chain interoperability frameworks,and zero-knowledge proof(ZKP)enhancements,which aimto reconcile scalability with robust security and decentralization.Furthermore,we evaluate the trade-offs inherent in these approaches,highlighting their practical implications for enterprise adoption,decentralized finance(DeFi),and Web3 ecosystems.By mapping the evolving landscape of solutions,this review identifies gaps in currentmethodologies and proposes future research directions,such as adaptive consensus algorithms and artificial intelligence-driven(AI-driven)governance models.Our analysis underscores that while no universal solution exists,interdisciplinary innovations are progressively narrowing the trilemma’s constraints,paving the way for next-generation blockchain infrastructures.
文摘This paper deals with the security of stock market transactions within financial markets, particularly that of the West African Economic and Monetary Union (UEMOA). The confidentiality and integrity of sensitive data in the stock market being crucial, the implementation of robust systems which guarantee trust between the different actors is essential. We therefore proposed, after analyzing the limits of several security approaches in the literature, an architecture based on blockchain technology making it possible to both identify and reduce the vulnerabilities linked to the design, implementation work or the use of web applications used for transactions. Our proposal makes it possible, thanks to two-factor authentication via the Blockchain, to strengthen the security of investors’ accounts and the automated recording of transactions in the Blockchain while guaranteeing the integrity of stock market operations. It also provides an application vulnerability report. To validate our approach, we compared our results to those of three other security tools, at the level of different metrics. Our approach achieved the best performance in each case.
文摘Traditional multi-level security(MLS)systems have the defect of centralizing authorized facilities,which is difficult to meet the security requirements of modern distributed peer-to-peer network architecture.Blockchain is widely used in the field of access control with its decentralization,traceability and non-defective modification.Combining the blockchain technology and the Bell-LaPadula model,we propose a new access control model,named BCBLPM,for MLS environment.The“multi-chain”blockchain architecture is used for dividing resources into isolated access domains,providing a fine-grained data protection mechanism.The access control policies are implemented by smart contracts deployed in each access domain,so that the side chains of different access domains storage access records from outside and maintain the integrity of the records.Finally,we implement the BC-BLPM prototype system using the Hyperledger Fabric.The experimental and analytical results show that the model can adapt well to the needs of multi-level security environment,and it has the feasibility of application in actual scenarios.
基金supported in part by the National Science Foundation Project of China(No.61931001)the Scientific and Technological Innovation Foundation of Foshan,USTB(No.BK20AF003).
文摘Zero-trust security is a novel concept to cope with intricate access,which can not be handled by the conventional perimeter-based architecture anymore.The device-to-device continuous authentication protocol is one of the most crucial cornerstones,especially in the IoT scenario.In the zero-trust architecture,trust does not rely on any position,person or device.However,to the best of our knowledge,almost all existing device-to-device continuous authentication relies on a trust authority or a node to generate secret keys or secret values.This is betrayed by the principle of zero-trust architecture.In this paper,we employ the blockchain to eliminate the trusted node.One node is chosen to produce the public parameter and secret keys for two entities through the practical Byzantine fault tolerance consensus mechanism.Additionally,the devices are categorized into three folds:trusted device,suspected device and untrusted device.Only the first two can participate in authentication,and they have different lengths of security parameters and intervals to reach a better balance between security and efficiency.Then we prove the security of the initial authentication part in the eCK model and give an informal analysis of the continuous authentication part.Finally,we implement the proposed protocol on simulated devices.The result illustrates that our scheme is highly efficient,and the continuous authentication only costs around 0.1ms.
文摘Network marketing is a trading technique that provides companies with the opportunity to increase sales.With the increasing number of Internet-based purchases,several threats are increasingly observed in this field,such as user privacy violations,company owner(CO)fraud,the changing of sold products’information,and the scalability of selling networks.This study presents the concept of a blockchain-based market called ACR-MLM that functions based on the multi-level marketing(MLM)model,through which registered users receive anonymous and confidential rewards for their own and their subgroups’sales.Applying a public blockchain as the ACR-MLM framework’s infrastructure solves existing problems in MLM-based markets,such as CO fraud(against the government or its users),user privacy violations(obtaining their real names or subgroup users),and scalability(when vast numbers of users have been registered).To provide confidentiality and scalability to the ACR-MLM framework,hierarchical identity-based encryption(HIBE)was applied with a functional encryption(FE)scheme.Finally,the security of ACR-MLM is analyzed using the random oracle(RO)model and then evaluated.
基金funded by the National Natural Science Foundation of China(62072056,62172058)the Researchers Supporting Project Number(RSP2023R102)King Saud University,Riyadh,Saudi Arabia+4 种基金funded by the Hunan Provincial Key Research and Development Program(2022SK2107,2022GK2019)the Natural Science Foundation of Hunan Province(2023JJ30054)the Foundation of State Key Laboratory of Public Big Data(PBD2021-15)the Young Doctor Innovation Program of Zhejiang Shuren University(2019QC30)Postgraduate Scientific Research Innovation Project of Hunan Province(CX20220940,CX20220941).
文摘Blockchain can realize the reliable storage of a large amount of data that is chronologically related and verifiable within the system.This technology has been widely used and has developed rapidly in big data systems across various fields.An increasing number of users are participating in application systems that use blockchain as their underlying architecture.As the number of transactions and the capital involved in blockchain grow,ensuring information security becomes imperative.Addressing the verification of transactional information security and privacy has emerged as a critical challenge.Blockchain-based verification methods can effectively eliminate the need for centralized third-party organizations.However,the efficiency of nodes in storing and verifying blockchain data faces unprecedented challenges.To address this issue,this paper introduces an efficient verification scheme for transaction security.Initially,it presents a node evaluation module to estimate the activity level of user nodes participating in transactions,accompanied by a probabilistic analysis for all transactions.Subsequently,this paper optimizes the conventional transaction organization form,introduces a heterogeneous Merkle tree storage structure,and designs algorithms for constructing these heterogeneous trees.Theoretical analyses and simulation experiments conclusively demonstrate the superior performance of this scheme.When verifying the same number of transactions,the heterogeneous Merkle tree transmits less data and is more efficient than traditional methods.The findings indicate that the heterogeneous Merkle tree structure is suitable for various blockchain applications,including the Internet of Things.This scheme can markedly enhance the efficiency of information verification and bolster the security of distributed systems.