Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting corre...Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits.展开更多
The Apriori algorithm is a classical method of association rules mining.Based on analysis of this theory,the paper provides an improved Apriori algorithm.The paper puts foward with algorithm combines HASH table techni...The Apriori algorithm is a classical method of association rules mining.Based on analysis of this theory,the paper provides an improved Apriori algorithm.The paper puts foward with algorithm combines HASH table technique and reduction of candidate item sets to enhance the usage efficiency of resources as well as the individualized service of the data library.展开更多
Data mining techniques offer great opportunities for developing ethics lines whose main aim is to ensure improvements and compliance with the values, conduct and commitments making up the code of ethics. The aim of th...Data mining techniques offer great opportunities for developing ethics lines whose main aim is to ensure improvements and compliance with the values, conduct and commitments making up the code of ethics. The aim of this study is to suggest a process for exploiting the data generated by the data generated and collected from an ethics line by extracting rules of association and applying the Apriori algorithm. This makes it possible to identify anomalies and behaviour patterns requiring action to review, correct, promote or expand them, as appropriate.展开更多
Association rules and C4.5 rules can overcome the shortage of the traditional land evaluation methods and improve the intelligibility and efficiency of the land evaluation knowledge.In order to compare these two kinds...Association rules and C4.5 rules can overcome the shortage of the traditional land evaluation methods and improve the intelligibility and efficiency of the land evaluation knowledge.In order to compare these two kinds of classification rules in the application,two fuzzy classifiers were established by combining with fuzzy decision algorithm especially based on Second General Soil Survey of Guangdong Province.The results of experiments demonstrated that the fuzzy classifier based on association rules obtain a higher accuracy rate,but with more complex calculation process and more computational overhead;the fuzzy classifier based on C4.5 rules obtain a slightly lower accuracy,but with fast computation and simpler calculation.展开更多
A method for mining frequent itemsets by evaluating their probability of supports based on asso-ciation analysis is presented.This paper obtains the probability of every 1-itemset by scanning the database,then evaluat...A method for mining frequent itemsets by evaluating their probability of supports based on asso-ciation analysis is presented.This paper obtains the probability of every 1-itemset by scanning the database,then evaluates the probability of every 2-itemset,every 3-itemset,every k-itemset from the frequent 1-itemsets and gains all the candidate frequent itemsets.This paper also scans the database for verifying the support of the candidate frequent itemsets.Last,the frequent itemsets are mined.The method reduces a lot of time of scanning database and shortens the computation time of the algorithm.展开更多
Discovering cyclic generalized association rules from transaction datbases can reveal the relationship of differ-ent levels of the taxonomies and display cyclic variations over time.Information about such variations i...Discovering cyclic generalized association rules from transaction datbases can reveal the relationship of differ-ent levels of the taxonomies and display cyclic variations over time.Information about such variations is great use of better identifying trends in associations and forecast-ing.Because cyclic rules are quite sensitive to a littlenoise,this paper uses the noise-ratio as the criterion of i-dentifing cydclic itemsets for dealing with the problem and utilizes the cycle-pruning technique to reduce the comput-ing time of the data mining process by exploiting the real-tionship between the cycle and generalized frequent item-sets.The paper gives the algorithm of mining cyclic gen-eralized itemsets(CGI).Experiment shows that the CGI algorithm can efficiently yield results.展开更多
The market trends rapidly changed over the last two decades.The primary reason is the newly created opportunities and the increased number of competitors competing to grasp market share using business analysis techniq...The market trends rapidly changed over the last two decades.The primary reason is the newly created opportunities and the increased number of competitors competing to grasp market share using business analysis techniques.Market Basket Analysis has a tangible effect in facilitating current change in the market.Market Basket Analysis is one of the famous fields that deal with Big Data and Data Mining applications.MBA initially uses Association Rule Learning(ARL)as a mean for realization.ARL has a beneficial effect in providing a plenty benefit in analyzing the market data and understanding customers’behavior.An important motive of using such techniques is maximizing the business profit as well as matching the exact customer needs as closely as possible.In this survey paper,we discussed several applications and methods of MBA based on ARL.Also,we reviewed some association rule learning measurements including trust,lift,leverage,and others.Furthermore,we discuss some open issues and future topics in the area of market basket analysis and association rule learning.展开更多
At present, most of the association rules algorithms are based on the Boolean attribute and single-level association rules mining. But data of the real world has various types, the multi-level and quantitative attribu...At present, most of the association rules algorithms are based on the Boolean attribute and single-level association rules mining. But data of the real world has various types, the multi-level and quantitative attributes are got more and more attention. And the most important step is to mine frequent sets. In this paper, we propose an algorithm that is called fuzzy multiple-level association (FMA) rules to mine frequent sets. It is based on the improved Eclat algorithm that is different to many researchers’ proposed algorithms thatused the Apriori algorithm. We analyze quantitative data’s frequent sets by using the fuzzy theory, dividing the hierarchy of concept and softening the boundary of attributes’ values and frequency. In this paper, we use the vertical-style data and the improved Eclat algorithm to describe the proposed method, we use this algorithm to analyze the data of Beijing logistics route. Experiments show that the algorithm has a good performance, it has better effectiveness and high efficiency.展开更多
Hotspots (active fires) indicate spatial distribution of fires. A study on determining influence factors for hotspot occurrence is essential so that fire events can be predicted based on characteristics of a certain a...Hotspots (active fires) indicate spatial distribution of fires. A study on determining influence factors for hotspot occurrence is essential so that fire events can be predicted based on characteristics of a certain area. This study discovers the possible influence factors on the occurrence of fire events using the association rule algorithm namely Apriori in the study area of Rokan Hilir Riau Province Indonesia. The Apriori algorithm was applied on a forest fire dataset which containeddata on physical environment (land cover, river, road and city center), socio-economic (income source, population, and number of school), weather (precipitation, wind speed, and screen temperature), and peatlands. The experiment results revealed 324 multidimensional association rules indicating relationships between hotspots occurrence and other factors.The association among hotspots occurrence with other geographical objects was discovered for the minimum support of 10% and the minimum confidence of 80%. The results show that strong relations between hotspots occurrence and influence factors are found for the support about 12.42%, the confidence of 1, and the lift of 2.26. These factors are precipitation greater than or equal to 3 mm/day, wind speed in [1m/s, 2m/s), non peatland area, screen temperature in [297K, 298K), the number of school in 1 km2 less than or equal to 0.1, and the distance of each hotspot to the nearest road less than or equal to 2.5 km.展开更多
In the privacy preservation of association rules, sensitivity analysis should be reported after the quantification of items in terms of their occurrence. The traditional methodologies, used for preserving confidential...In the privacy preservation of association rules, sensitivity analysis should be reported after the quantification of items in terms of their occurrence. The traditional methodologies, used for preserving confidentiality of association rules, are based on the assumptions while safeguarding susceptible information rather than recognition of insightful items. Therefore, it is time to go one step ahead in order to remove such assumptions in the protection of responsive information especially in XML association rule mining. Thus, we focus on this central and highly researched area in terms of generating XML association rule mining without arguing on the disclosure risks involvement in such mining process. Hence, we described the identification of susceptible items in order to hide the confidential information through a supervised learning technique. These susceptible items show the high dependency on other items that are measured in terms of statistical significance with Bayesian Network. Thus, we proposed two methodologies based on items probabilistic occurrence and mode of items. Additionally, all this information is modeled and named PPDM (Privacy Preservation in Data Mining) model for XARs. Furthermore, the PPDM model is helpful for sharing markets information among competitors with a lower chance of generating monopoly. Finally, PPDM model introduces great accuracy in computing sensitivity of items and opens new dimensions to the academia for the standardization of such NP-hard problems.展开更多
In this paper,association rule mining algorithm is utilized to analyze the correlations of various factors of causing traffic accidents,from which the relationship model of dangerous driving behaviors is established.I...In this paper,association rule mining algorithm is utilized to analyze the correlations of various factors of causing traffic accidents,from which the relationship model of dangerous driving behaviors is established.In this model,the factors and their correlations include:ability of risk control,ability of driving self-confidence,individual characteristics,and incorrect driving operations.By selecting the drivers in the city of Chengdu to be the objects of investigation,a group of valid sample data is obtained.Based on these data,the Support and Confidence for association rules are analyzed.In the analysis,the two stage computing of Apriori algorithm programming is simulated,and from which some important rules are obtained.With these rules,departments of traffic administration can focus on these key factors in their processing of traffic transactions.By the training of drivers’skills and their physical and mental behaviors,the incorrect driving operations can be greatly reduced and the traffic safety can be effectively guaranteed.展开更多
文摘Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits.
文摘The Apriori algorithm is a classical method of association rules mining.Based on analysis of this theory,the paper provides an improved Apriori algorithm.The paper puts foward with algorithm combines HASH table technique and reduction of candidate item sets to enhance the usage efficiency of resources as well as the individualized service of the data library.
文摘Data mining techniques offer great opportunities for developing ethics lines whose main aim is to ensure improvements and compliance with the values, conduct and commitments making up the code of ethics. The aim of this study is to suggest a process for exploiting the data generated by the data generated and collected from an ethics line by extracting rules of association and applying the Apriori algorithm. This makes it possible to identify anomalies and behaviour patterns requiring action to review, correct, promote or expand them, as appropriate.
基金Supported by Science and Technology Plan Project of Guangdong Province (2009B010900026,2009CD058,2009CD078,2009CD079,2009CD080)Special Funds for Support Program of Development of Modern Information Service Industry of Guangdong Province(06120840B0370124)Funded Fund Project of South China Agricultural University (2007K017)~~
文摘Association rules and C4.5 rules can overcome the shortage of the traditional land evaluation methods and improve the intelligibility and efficiency of the land evaluation knowledge.In order to compare these two kinds of classification rules in the application,two fuzzy classifiers were established by combining with fuzzy decision algorithm especially based on Second General Soil Survey of Guangdong Province.The results of experiments demonstrated that the fuzzy classifier based on association rules obtain a higher accuracy rate,but with more complex calculation process and more computational overhead;the fuzzy classifier based on C4.5 rules obtain a slightly lower accuracy,but with fast computation and simpler calculation.
基金Funded by the National 973 Project(No.2003CB415205).
文摘A method for mining frequent itemsets by evaluating their probability of supports based on asso-ciation analysis is presented.This paper obtains the probability of every 1-itemset by scanning the database,then evaluates the probability of every 2-itemset,every 3-itemset,every k-itemset from the frequent 1-itemsets and gains all the candidate frequent itemsets.This paper also scans the database for verifying the support of the candidate frequent itemsets.Last,the frequent itemsets are mined.The method reduces a lot of time of scanning database and shortens the computation time of the algorithm.
文摘Discovering cyclic generalized association rules from transaction datbases can reveal the relationship of differ-ent levels of the taxonomies and display cyclic variations over time.Information about such variations is great use of better identifying trends in associations and forecast-ing.Because cyclic rules are quite sensitive to a littlenoise,this paper uses the noise-ratio as the criterion of i-dentifing cydclic itemsets for dealing with the problem and utilizes the cycle-pruning technique to reduce the comput-ing time of the data mining process by exploiting the real-tionship between the cycle and generalized frequent item-sets.The paper gives the algorithm of mining cyclic gen-eralized itemsets(CGI).Experiment shows that the CGI algorithm can efficiently yield results.
文摘The market trends rapidly changed over the last two decades.The primary reason is the newly created opportunities and the increased number of competitors competing to grasp market share using business analysis techniques.Market Basket Analysis has a tangible effect in facilitating current change in the market.Market Basket Analysis is one of the famous fields that deal with Big Data and Data Mining applications.MBA initially uses Association Rule Learning(ARL)as a mean for realization.ARL has a beneficial effect in providing a plenty benefit in analyzing the market data and understanding customers’behavior.An important motive of using such techniques is maximizing the business profit as well as matching the exact customer needs as closely as possible.In this survey paper,we discussed several applications and methods of MBA based on ARL.Also,we reviewed some association rule learning measurements including trust,lift,leverage,and others.Furthermore,we discuss some open issues and future topics in the area of market basket analysis and association rule learning.
基金supported by the Fundamental Research Funds for the Central Universities under Grants No.ZYGX2014J051 and No.ZYGX2014J066Science and Technology Projects in Sichuan Province under Grants No.2015JY0178,No.2016FZ0002,No.2014GZ0109,No.2015KZ002 and No.2015JY0030China Postdoctoral Science Foundation under Grant No.2015M572464
文摘At present, most of the association rules algorithms are based on the Boolean attribute and single-level association rules mining. But data of the real world has various types, the multi-level and quantitative attributes are got more and more attention. And the most important step is to mine frequent sets. In this paper, we propose an algorithm that is called fuzzy multiple-level association (FMA) rules to mine frequent sets. It is based on the improved Eclat algorithm that is different to many researchers’ proposed algorithms thatused the Apriori algorithm. We analyze quantitative data’s frequent sets by using the fuzzy theory, dividing the hierarchy of concept and softening the boundary of attributes’ values and frequency. In this paper, we use the vertical-style data and the improved Eclat algorithm to describe the proposed method, we use this algorithm to analyze the data of Beijing logistics route. Experiments show that the algorithm has a good performance, it has better effectiveness and high efficiency.
文摘Hotspots (active fires) indicate spatial distribution of fires. A study on determining influence factors for hotspot occurrence is essential so that fire events can be predicted based on characteristics of a certain area. This study discovers the possible influence factors on the occurrence of fire events using the association rule algorithm namely Apriori in the study area of Rokan Hilir Riau Province Indonesia. The Apriori algorithm was applied on a forest fire dataset which containeddata on physical environment (land cover, river, road and city center), socio-economic (income source, population, and number of school), weather (precipitation, wind speed, and screen temperature), and peatlands. The experiment results revealed 324 multidimensional association rules indicating relationships between hotspots occurrence and other factors.The association among hotspots occurrence with other geographical objects was discovered for the minimum support of 10% and the minimum confidence of 80%. The results show that strong relations between hotspots occurrence and influence factors are found for the support about 12.42%, the confidence of 1, and the lift of 2.26. These factors are precipitation greater than or equal to 3 mm/day, wind speed in [1m/s, 2m/s), non peatland area, screen temperature in [297K, 298K), the number of school in 1 km2 less than or equal to 0.1, and the distance of each hotspot to the nearest road less than or equal to 2.5 km.
文摘In the privacy preservation of association rules, sensitivity analysis should be reported after the quantification of items in terms of their occurrence. The traditional methodologies, used for preserving confidentiality of association rules, are based on the assumptions while safeguarding susceptible information rather than recognition of insightful items. Therefore, it is time to go one step ahead in order to remove such assumptions in the protection of responsive information especially in XML association rule mining. Thus, we focus on this central and highly researched area in terms of generating XML association rule mining without arguing on the disclosure risks involvement in such mining process. Hence, we described the identification of susceptible items in order to hide the confidential information through a supervised learning technique. These susceptible items show the high dependency on other items that are measured in terms of statistical significance with Bayesian Network. Thus, we proposed two methodologies based on items probabilistic occurrence and mode of items. Additionally, all this information is modeled and named PPDM (Privacy Preservation in Data Mining) model for XARs. Furthermore, the PPDM model is helpful for sharing markets information among competitors with a lower chance of generating monopoly. Finally, PPDM model introduces great accuracy in computing sensitivity of items and opens new dimensions to the academia for the standardization of such NP-hard problems.
文摘In this paper,association rule mining algorithm is utilized to analyze the correlations of various factors of causing traffic accidents,from which the relationship model of dangerous driving behaviors is established.In this model,the factors and their correlations include:ability of risk control,ability of driving self-confidence,individual characteristics,and incorrect driving operations.By selecting the drivers in the city of Chengdu to be the objects of investigation,a group of valid sample data is obtained.Based on these data,the Support and Confidence for association rules are analyzed.In the analysis,the two stage computing of Apriori algorithm programming is simulated,and from which some important rules are obtained.With these rules,departments of traffic administration can focus on these key factors in their processing of traffic transactions.By the training of drivers’skills and their physical and mental behaviors,the incorrect driving operations can be greatly reduced and the traffic safety can be effectively guaranteed.