期刊文献+
共找到2,152篇文章
< 1 2 108 >
每页显示 20 50 100
Quantum Algorithm for Mining Frequent Patterns for Association Rule Mining 被引量:1
1
作者 Abdirahman Alasow Marek Perkowski 《Journal of Quantum Information Science》 CAS 2023年第1期1-23,共23页
Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting corre... Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits. 展开更多
关键词 Data Mining association rule Mining Frequent Pattern Apriori algorithm Quantum Counter Quantum Comparator Grover’s Search algorithm
在线阅读 下载PDF
The Books Recommend Service System Based on Improved Algorithm for Mining Association Rules
2
作者 王萍 《魅力中国》 2009年第29期164-166,共3页
The Apriori algorithm is a classical method of association rules mining.Based on analysis of this theory,the paper provides an improved Apriori algorithm.The paper puts foward with algorithm combines HASH table techni... The Apriori algorithm is a classical method of association rules mining.Based on analysis of this theory,the paper provides an improved Apriori algorithm.The paper puts foward with algorithm combines HASH table technique and reduction of candidate item sets to enhance the usage efficiency of resources as well as the individualized service of the data library. 展开更多
关键词 association ruleS Data MINING algorithm Recommend BOOKS SERVICE Model
在线阅读 下载PDF
Ethics Lines and Machine Learning: A Design and Simulation of an Association Rules Algorithm for Exploiting the Data
3
作者 Patrici Calvo Rebeca Egea-Moreno 《Journal of Computer and Communications》 2021年第12期17-37,共21页
Data mining techniques offer great opportunities for developing ethics lines whose main aim is to ensure improvements and compliance with the values, conduct and commitments making up the code of ethics. The aim of th... Data mining techniques offer great opportunities for developing ethics lines whose main aim is to ensure improvements and compliance with the values, conduct and commitments making up the code of ethics. The aim of this study is to suggest a process for exploiting the data generated by the data generated and collected from an ethics line by extracting rules of association and applying the Apriori algorithm. This makes it possible to identify anomalies and behaviour patterns requiring action to review, correct, promote or expand them, as appropriate. 展开更多
关键词 Data Mining Ethics Lines association rules Apriori algorithm COMPANY
在线阅读 下载PDF
Application Comparison of Association Rules and C4.5 Rules in Land Evaluation 被引量:3
4
作者 李亭 杨敬锋 陈志民 《Agricultural Science & Technology》 CAS 2010年第4期144-147,共4页
Association rules and C4.5 rules can overcome the shortage of the traditional land evaluation methods and improve the intelligibility and efficiency of the land evaluation knowledge.In order to compare these two kinds... Association rules and C4.5 rules can overcome the shortage of the traditional land evaluation methods and improve the intelligibility and efficiency of the land evaluation knowledge.In order to compare these two kinds of classification rules in the application,two fuzzy classifiers were established by combining with fuzzy decision algorithm especially based on Second General Soil Survey of Guangdong Province.The results of experiments demonstrated that the fuzzy classifier based on association rules obtain a higher accuracy rate,but with more complex calculation process and more computational overhead;the fuzzy classifier based on C4.5 rules obtain a slightly lower accuracy,but with fast computation and simpler calculation. 展开更多
关键词 Land evaluation association rules C4.5 algorithm Fuzzy decision
在线阅读 下载PDF
Database Encoding and A New Algorithm for Association Rules Mining
5
作者 Tong Wang Pilian He 《通讯和计算机(中英文版)》 2006年第3期77-81,共5页
在线阅读 下载PDF
A Developed Algorithm of Apriori Based on Association Analysis 被引量:2
6
作者 LI Pingxiang CHEN Jiangping BIAN Fuling 《Geo-Spatial Information Science》 2004年第2期108-112,116,共6页
A method for mining frequent itemsets by evaluating their probability of supports based on asso-ciation analysis is presented.This paper obtains the probability of every 1-itemset by scanning the database,then evaluat... A method for mining frequent itemsets by evaluating their probability of supports based on asso-ciation analysis is presented.This paper obtains the probability of every 1-itemset by scanning the database,then evaluates the probability of every 2-itemset,every 3-itemset,every k-itemset from the frequent 1-itemsets and gains all the candidate frequent itemsets.This paper also scans the database for verifying the support of the candidate frequent itemsets.Last,the frequent itemsets are mined.The method reduces a lot of time of scanning database and shortens the computation time of the algorithm. 展开更多
关键词 association rule algorithm apriori frequent itemset association analysis
在线阅读 下载PDF
MINING CYCLIC GENERALIZED ASSOCIATION RULES 被引量:1
7
作者 XuMin JinYuanping +1 位作者 ZhuWujia LiWenwu 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2002年第1期98-102,共5页
Discovering cyclic generalized association rules from transaction datbases can reveal the relationship of differ-ent levels of the taxonomies and display cyclic variations over time.Information about such variations i... Discovering cyclic generalized association rules from transaction datbases can reveal the relationship of differ-ent levels of the taxonomies and display cyclic variations over time.Information about such variations is great use of better identifying trends in associations and forecast-ing.Because cyclic rules are quite sensitive to a littlenoise,this paper uses the noise-ratio as the criterion of i-dentifing cydclic itemsets for dealing with the problem and utilizes the cycle-pruning technique to reduce the comput-ing time of the data mining process by exploiting the real-tionship between the cycle and generalized frequent item-sets.The paper gives the algorithm of mining cyclic gen-eralized itemsets(CGI).Experiment shows that the CGI algorithm can efficiently yield results. 展开更多
关键词 generalized association ruleS CYCLIC genera-lized association ruleS noise-ratio cycle-pruning CGI algorithm CGI算法 周期性一般关联规则 噪声比 事务数据库
在线阅读 下载PDF
A Survey on Methods and Applications of Intelligent Market Basket Analysis Based on Association Rule 被引量:1
8
作者 Monerah M.Alawadh Ahmed M.Barnawi 《Journal on Big Data》 2022年第1期1-25,共25页
The market trends rapidly changed over the last two decades.The primary reason is the newly created opportunities and the increased number of competitors competing to grasp market share using business analysis techniq... The market trends rapidly changed over the last two decades.The primary reason is the newly created opportunities and the increased number of competitors competing to grasp market share using business analysis techniques.Market Basket Analysis has a tangible effect in facilitating current change in the market.Market Basket Analysis is one of the famous fields that deal with Big Data and Data Mining applications.MBA initially uses Association Rule Learning(ARL)as a mean for realization.ARL has a beneficial effect in providing a plenty benefit in analyzing the market data and understanding customers’behavior.An important motive of using such techniques is maximizing the business profit as well as matching the exact customer needs as closely as possible.In this survey paper,we discussed several applications and methods of MBA based on ARL.Also,we reviewed some association rule learning measurements including trust,lift,leverage,and others.Furthermore,we discuss some open issues and future topics in the area of market basket analysis and association rule learning. 展开更多
关键词 Intelligent market basket analysis association rule learning market basket analysis apriori algorithm association rule measurements
在线阅读 下载PDF
Mining Frequent Sets Using Fuzzy Multiple-Level Association Rules
9
作者 Qiang Gao Feng-Li Zhang Run-Jin Wang 《Journal of Electronic Science and Technology》 CAS CSCD 2018年第2期145-152,共8页
At present, most of the association rules algorithms are based on the Boolean attribute and single-level association rules mining. But data of the real world has various types, the multi-level and quantitative attribu... At present, most of the association rules algorithms are based on the Boolean attribute and single-level association rules mining. But data of the real world has various types, the multi-level and quantitative attributes are got more and more attention. And the most important step is to mine frequent sets. In this paper, we propose an algorithm that is called fuzzy multiple-level association (FMA) rules to mine frequent sets. It is based on the improved Eclat algorithm that is different to many researchers’ proposed algorithms thatused the Apriori algorithm. We analyze quantitative data’s frequent sets by using the fuzzy theory, dividing the hierarchy of concept and softening the boundary of attributes’ values and frequency. In this paper, we use the vertical-style data and the improved Eclat algorithm to describe the proposed method, we use this algorithm to analyze the data of Beijing logistics route. Experiments show that the algorithm has a good performance, it has better effectiveness and high efficiency. 展开更多
关键词 association rules fuzzy multiple-level association(FMA) rules algorithm fuzzy set improved Eclat algorithm
在线阅读 下载PDF
Spatial Multidimensional Association Rules Mining in Forest Fire Data
10
作者 Imas Sukaesih Sitanggang 《Journal of Data Analysis and Information Processing》 2013年第4期90-96,共7页
Hotspots (active fires) indicate spatial distribution of fires. A study on determining influence factors for hotspot occurrence is essential so that fire events can be predicted based on characteristics of a certain a... Hotspots (active fires) indicate spatial distribution of fires. A study on determining influence factors for hotspot occurrence is essential so that fire events can be predicted based on characteristics of a certain area. This study discovers the possible influence factors on the occurrence of fire events using the association rule algorithm namely Apriori in the study area of Rokan Hilir Riau Province Indonesia. The Apriori algorithm was applied on a forest fire dataset which containeddata on physical environment (land cover, river, road and city center), socio-economic (income source, population, and number of school), weather (precipitation, wind speed, and screen temperature), and peatlands. The experiment results revealed 324 multidimensional association rules indicating relationships between hotspots occurrence and other factors.The association among hotspots occurrence with other geographical objects was discovered for the minimum support of 10% and the minimum confidence of 80%. The results show that strong relations between hotspots occurrence and influence factors are found for the support about 12.42%, the confidence of 1, and the lift of 2.26. These factors are precipitation greater than or equal to 3 mm/day, wind speed in [1m/s, 2m/s), non peatland area, screen temperature in [297K, 298K), the number of school in 1 km2 less than or equal to 0.1, and the distance of each hotspot to the nearest road less than or equal to 2.5 km. 展开更多
关键词 DATA Mining SPATIAL association rule HOTSPOT OCCURRENCE APRIORI algorithm
暂未订购
Hiding Sensitive XML Association Rules With Supervised Learning Technique
11
作者 Khalid Iqbal Dr. Sohail Asghar Dr. Abdulrehman Mirza 《Intelligent Information Management》 2011年第6期219-229,共11页
In the privacy preservation of association rules, sensitivity analysis should be reported after the quantification of items in terms of their occurrence. The traditional methodologies, used for preserving confidential... In the privacy preservation of association rules, sensitivity analysis should be reported after the quantification of items in terms of their occurrence. The traditional methodologies, used for preserving confidentiality of association rules, are based on the assumptions while safeguarding susceptible information rather than recognition of insightful items. Therefore, it is time to go one step ahead in order to remove such assumptions in the protection of responsive information especially in XML association rule mining. Thus, we focus on this central and highly researched area in terms of generating XML association rule mining without arguing on the disclosure risks involvement in such mining process. Hence, we described the identification of susceptible items in order to hide the confidential information through a supervised learning technique. These susceptible items show the high dependency on other items that are measured in terms of statistical significance with Bayesian Network. Thus, we proposed two methodologies based on items probabilistic occurrence and mode of items. Additionally, all this information is modeled and named PPDM (Privacy Preservation in Data Mining) model for XARs. Furthermore, the PPDM model is helpful for sharing markets information among competitors with a lower chance of generating monopoly. Finally, PPDM model introduces great accuracy in computing sensitivity of items and opens new dimensions to the academia for the standardization of such NP-hard problems. 展开更多
关键词 XML Document association ruleS BAYESIAN Network PPDM Model NP-HARD K2 algorithm
暂未订购
Evaluation of Factors Affecting Driver’s Behaviors Using Association Rule
12
作者 Jingdian Yang 《现代交通(中英文版)》 2020年第1期1-9,共9页
In this paper,association rule mining algorithm is utilized to analyze the correlations of various factors of causing traffic accidents,from which the relationship model of dangerous driving behaviors is established.I... In this paper,association rule mining algorithm is utilized to analyze the correlations of various factors of causing traffic accidents,from which the relationship model of dangerous driving behaviors is established.In this model,the factors and their correlations include:ability of risk control,ability of driving self-confidence,individual characteristics,and incorrect driving operations.By selecting the drivers in the city of Chengdu to be the objects of investigation,a group of valid sample data is obtained.Based on these data,the Support and Confidence for association rules are analyzed.In the analysis,the two stage computing of Apriori algorithm programming is simulated,and from which some important rules are obtained.With these rules,departments of traffic administration can focus on these key factors in their processing of traffic transactions.By the training of drivers’skills and their physical and mental behaviors,the incorrect driving operations can be greatly reduced and the traffic safety can be effectively guaranteed. 展开更多
关键词 Driving Technique Traffic Safety Big Data association rules Apriori algorithm
在线阅读 下载PDF
利用模糊关联规则挖掘和遗传算法的工业产品设计优化方法
13
作者 张晴 李丛 高广银 《西南大学学报(自然科学版)》 北大核心 2025年第7期207-218,共12页
在工业产品开发流程的初始阶段,需要处理大量的多维度工业数据。然而,这个过程中的复杂性和不确定性容易导致模糊前端(FFE)问题,增加产品设计的难度。为解决这一问题,避免产品设计中的缺陷,提出一种多层人工智能产品设计方法,该方法结... 在工业产品开发流程的初始阶段,需要处理大量的多维度工业数据。然而,这个过程中的复杂性和不确定性容易导致模糊前端(FFE)问题,增加产品设计的难度。为解决这一问题,避免产品设计中的缺陷,提出一种多层人工智能产品设计方法,该方法结合了多层人工智能技术:大数据分析、基于递归关联规则的模糊推理系统(RAFIS)以及Mamdani模糊推理系统。所提出的方法通过将模糊关联规则挖掘(FARM)和遗传算法(GA)纳入RAFIS,以缩小客户属性和设计参数之间的差距。首先,在FFE阶段,组织数据收集和管理,然后将数据集输入FARM和GA以获取最佳模糊规则和隶属函数。随后,利用这些结果建立用于定制产品设计特征的Mamdani模糊推理系统。通过优化Mamdani推理系统中的参数(包括隶属函数的类型、分区和范围),实现产品定制设计。实验以电动滑板车为例进行应用分析,并采用模糊综合评价方法评估设计方案。结果表明两种设计方案均获得较高满意度,验证了该方法的有效性和可行性。 展开更多
关键词 人工智能 产品设计 模糊关联规则挖掘 遗传算法 大数据分析
原文传递
基于Apriori算法的供电公司营销数据挖掘系统设计
14
作者 张剑 刘畅 +3 位作者 杨逸 魏昕喆 张浩 王旭 《兵工自动化》 北大核心 2025年第7期97-101,共5页
为解决供电公司营销数据量大,影响数据频繁项集处理效率的问题,设计一种基于Apriori算法的供电公司营销数据挖掘系统。硬件设计通过营销数据挖掘系统物理架构部署,搭建系统硬件环境,实现数据库信息的同步;软件方面设计电力营销数据仓库... 为解决供电公司营销数据量大,影响数据频繁项集处理效率的问题,设计一种基于Apriori算法的供电公司营销数据挖掘系统。硬件设计通过营销数据挖掘系统物理架构部署,搭建系统硬件环境,实现数据库信息的同步;软件方面设计电力营销数据仓库,采用Apriori算法通过映射剪枝处理频繁项集,挖掘关联规则,建立多维数据挖掘模型,实现系统的数据挖掘功能。经实验论证分析,结果表明:该系统在电力负荷预测应用中的预测结果与实际值相差较小,在最小支持度和事务数据量条件下,数据挖掘执行时间分别在2和10 s以下,具有较高的执行效率,说明该系统是可行的。 展开更多
关键词 APRIORI算法 供电公司 服务器 营销数据挖掘系统 关联规则 数据仓库
在线阅读 下载PDF
基于矩阵关联规则算法的个性化广告推送实现策略
15
作者 杨韵芳 《黎明职业大学学报》 2025年第1期88-95,共8页
通过对用户历史行为数据的收集与预处理,构建出用户行为数据库;运用改进关联规则挖掘算法,构建用户行为数据的关联矩阵,分析用户兴趣偏好与广告内容之间的潜在关系,并以此构建个性化广告推送策略,实现精准推送。实验结果表明:利用矩阵... 通过对用户历史行为数据的收集与预处理,构建出用户行为数据库;运用改进关联规则挖掘算法,构建用户行为数据的关联矩阵,分析用户兴趣偏好与广告内容之间的潜在关系,并以此构建个性化广告推送策略,实现精准推送。实验结果表明:利用矩阵关联规则算法实现的个性化广告推送策略,能够显著提高广告的点击率,降低广告成本,提升用户满意度。 展开更多
关键词 个性化广告 关联规则算法 矩阵 推送策略
在线阅读 下载PDF
基于隐结构模型和关联规则分析缺血性脑卒中的方药规律 被引量:1
16
作者 平兴枫 黄宗轩 +2 位作者 李凯 谢广敏 吕军影 《中国组织工程研究》 北大核心 2025年第29期6277-6284,共8页
背景:目前中医药治疗缺血性脑卒中积累了丰富的经验,应用隐结构结合关联规则分析深入挖掘及总结“药-方-证”规律,有利于促进缺血性脑卒中防治策略的优化。目的:探讨中医药治疗缺血性脑卒中的方药规律,为临床辨证论治缺血性脑卒中提供... 背景:目前中医药治疗缺血性脑卒中积累了丰富的经验,应用隐结构结合关联规则分析深入挖掘及总结“药-方-证”规律,有利于促进缺血性脑卒中防治策略的优化。目的:探讨中医药治疗缺血性脑卒中的方药规律,为临床辨证论治缺血性脑卒中提供借鉴。方法:系统检索中国知网(CNKI)、万方(Wanfang)、维普(VIP)、中国生物医学文献服务系统(SinoMed)中关于中医药治疗缺血性脑卒中的临床研究文献,检索时限:1990-01-01/2024-08-15。筛选文献并提取相关资料导入Excel 2019软件建立数据库,统计分析中药频次、性味归经、功效类别及证型,使用Lantern 5.0及Rstudio软件对使用频率≥4%的高频中药进行隐结构模型、综合聚类及关联规则分析,总结缺血性脑卒中的用药规律及推测中医证型。结果与结论:①共纳入文献231篇,涉及中药203味,累计使用频次2524次;②高频中药有川芎、地龙、当归、黄芪、丹参、赤芍、红花、水蛭、桃仁、半夏等,药性主要为温、寒、平性,药味以苦、甘、辛味为主,药物主要归肝、脾、心经,功效以活血化瘀药、补虚药、平肝息风药及化痰止咳平喘药使用频次较高;③隐结构模型分析共获得7个隐变量、14个隐类,6个综合聚类模型,19个核心方剂,推测缺血性脑卒中主要中医证型为气虚血瘀证、风痰阻络证、痰瘀阻络证、痰热腑实证;④关联规则分析共筛选出29条强关联规则,其中2项关联规则2条,3项关联规则27条,支持度最高为当归-川芎,置信度最高为当归+甘草-川芎。结果表明,缺血性脑卒中是以气血亏虚、肝肾阴虚为本,风、痰、瘀、火为标的本虚标实之证,治则以益气扶正、活血化瘀为主,结合“痰热”“气滞”“阴虚”“肝火”等病理因素,辅以清热化痰、行气通滞、滋养肝肾、清肝泻火等治法。 展开更多
关键词 缺血性脑卒中 隐结构模型 关联规则 方药规律 综合聚类 数据挖掘 LTM-EAST算法 中医药
暂未订购
基于改进Apriori算法的地下综合管廊火灾预警技术研究 被引量:1
17
作者 崔涵 魏立明 《消防科学与技术》 北大核心 2025年第2期250-255,共6页
随着城市的快速发展,城市地下综合管廊得以快速建设。由于其主要用于承载城市的电、气、热等资源,因而导致火灾风险大。针对此问题,本文提出一种基于改进Apriori算法的地下综合管廊火灾预警技术。该技术以STM32单片机为主控器,并且采用... 随着城市的快速发展,城市地下综合管廊得以快速建设。由于其主要用于承载城市的电、气、热等资源,因而导致火灾风险大。针对此问题,本文提出一种基于改进Apriori算法的地下综合管廊火灾预警技术。该技术以STM32单片机为主控器,并且采用多种传感器获取管廊内数据。上位机方面采用LabView软件为用户端提供实时的数据监测画面以及报警信息显示。通过试验数据验证所提出的改进算法能够较原算法节省约60%的时间,并且其精确度可以保持在90%以上。针对不同类型火灾需要不同数据挖掘关联规则,本文以地下管廊电气线缆火灾为例,通过PyroSim软件建立火灾模型获取的火灾数据由本文所提算法进行关联规则挖掘,最后得到早期线缆火灾的3个特征,即线缆火灾的预警依据。 展开更多
关键词 综合管廊 火灾预警 关联规则 APRIORI算法 PyroSim
在线阅读 下载PDF
时空约束下的道路交通事故与违法行为关联规则研究 被引量:1
18
作者 方腾源 徐峰祥 +1 位作者 朱其茂 邹震 《交通运输系统工程与信息》 北大核心 2025年第3期246-254,287,共10页
为研究道路交通违法行为与交通事故之间的关联性,本文构建时空双维度约束方法,分析不同违法行为对交通事故的诱发特性。以2023—2024年北京市城区的交通事故数据为基础,结合电子执法系统违法数据,关联出2338条与交通事故相关的违法行为... 为研究道路交通违法行为与交通事故之间的关联性,本文构建时空双维度约束方法,分析不同违法行为对交通事故的诱发特性。以2023—2024年北京市城区的交通事故数据为基础,结合电子执法系统违法数据,关联出2338条与交通事故相关的违法行为数据,避免了传统报告中对违法行为的主观判断带来的偏差,并通过FP-growth(Frequent Pattern growth)算法挖掘出涉及5类交通事故和4类交通违法行为的18条强关联规则。研究结果表明:交通事故和违法行为的关联数据在空间上分布较为均匀,时间上主要集中在7:30-22:30,并在早晚高峰期间达到峰值;机动车与机动车事故多由在雨天、拥堵环境和高峰时段的闯红灯行为引起,其置信度高达1.000,提升度为1.689;机动车与非机动车事故多发生于教育区和居民区,受违停行为影响显著,置信度为0.495,提升度达2.578;机动车单方事故同样主要与违停行为相关,其提升度高达8.696。关联规则可为优化执法措施、智能信号控制、道路规划优化等提供决策支持,并为其他城市交通管理提供参考,提升道路安全水平。 展开更多
关键词 城市交通 关联规则 FP-GROWTH算法 交通事故数据 交通违法
在线阅读 下载PDF
基于PSO算法的煤矿瓦斯事故致因分析 被引量:1
19
作者 张洽 憨瑞东 陈涛 《中国安全科学学报》 北大核心 2025年第2期104-110,共7页
为科学防治煤矿瓦斯事故,系统分析我国煤矿瓦斯事故风险因素以及因素耦合关系,采用Python软件,建立基于粒子群优化(PSO)算法的关联规则挖掘模型,并进行验证;结合人因分析与分类系统(HFACS)事故风险模型,对煤矿瓦斯事故风险因素进行分类... 为科学防治煤矿瓦斯事故,系统分析我国煤矿瓦斯事故风险因素以及因素耦合关系,采用Python软件,建立基于粒子群优化(PSO)算法的关联规则挖掘模型,并进行验证;结合人因分析与分类系统(HFACS)事故风险模型,对煤矿瓦斯事故风险因素进行分类,并使用PSO-频繁模式增长(FP-growth)算法挖掘煤矿瓦斯事故调查报告的关联规则。结果表明:PSO-FP-growth算法相较于PSO-Apriori算法运行速度及关联规则效果更优;根据瓦斯事故风险因素关联规则可视化及高支持度关联因素显示,我国煤矿瓦斯事故发生的主要风险因素是煤矿企业安全监督管理存在缺陷、瓦斯防治技术不到位、员工安全意识淡薄以及现场管理人员管理意识和技术不到位造成的。 展开更多
关键词 粒子群优化(PSO)算法 煤矿瓦斯事故 事故致因 关联规则 人因分析与分类系统(HFACS)
原文传递
基于优化FP⁃Growth算法的滑坡频繁因素组合挖掘
20
作者 李佳颖 郝彬超 +4 位作者 王卫东 王智超 曹禄来 韩征 朱崇政 《防灾减灾工程学报》 北大核心 2025年第3期532-541,共10页
滑坡影响因素复杂多样,挖掘滑坡的频繁因素组合能宏观快速地初步判识滑坡易发区域。以四川省凉山彝族自治州内586处滑坡灾害为样本数据,从地质条件、水文条件、地形条件、气象条件和人类工程活动五个方面收集12个滑坡影响因素,基于卡方... 滑坡影响因素复杂多样,挖掘滑坡的频繁因素组合能宏观快速地初步判识滑坡易发区域。以四川省凉山彝族自治州内586处滑坡灾害为样本数据,从地质条件、水文条件、地形条件、气象条件和人类工程活动五个方面收集12个滑坡影响因素,基于卡方检验剔除与滑坡灾害弱相关的影响因素,耦合分析滑坡区域与影响因素区划,针对大数据挖掘算法仅能以历史滑坡次数等离散型变量为挖掘依据的局限性,引入特征参数优化频繁模式树(FPGrowth)算法,使其能以历史滑坡面积和历史滑坡密度等连续型变量为挖掘依据,挖掘滑坡频繁二级因素组合,利用卡方检验与频率比检验挖掘结果准确性。结果表明:基于历史滑坡密度的优化关联规则算法能更好地挖掘滑坡频繁二级因素组合,其中,“高程<1769 m、地表起伏度62~140 m”的区域滑坡最频繁,需要对滑坡灾害重点关注与防治。针对原始关联规则算法仅能以滑坡次数为挖掘依据的局限,优化算法以考虑滑坡范围的影响,深入研究多种影响因素对滑坡的综合作用,为滑坡灾害的快速判识与防灾减灾提供参考。 展开更多
关键词 大数据挖掘技术 优化关联规则算法 FP-GROWTH算法 滑坡影响因素 频繁组合挖掘
原文传递
上一页 1 2 108 下一页 到第
使用帮助 返回顶部