期刊文献+
共找到64,574篇文章
< 1 2 250 >
每页显示 20 50 100
Design and Analysis of a Multi-Legged Robot with Pitch Adjustive Units 被引量:8
1
作者 Qiang Ruan Jianxu Wu Yan-an Yao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期226-242,共17页
The paper proposes a novel multi-legged robot with pitch adjustive units aiming at obstacle surmounting.With only 6 degrees of freedom,the robot with 16 mechanical legs walks steadily and surmounts the obstacles on th... The paper proposes a novel multi-legged robot with pitch adjustive units aiming at obstacle surmounting.With only 6 degrees of freedom,the robot with 16 mechanical legs walks steadily and surmounts the obstacles on the complex terrain.The leg unit with adjustive pitch provides a large workspace and empowers the legs to climb up obstacles in large sizes,which enhances the obstacle surmounting capability.The pitch adjustment in leg unit requires as few independent adjusting actuators as possible.Based on the kinematic analysis of the mechanical leg,the biped and quadruped leg units with adjustive pitch are analyzed and compared.The configuration of the robot is designed to obtain a compact structure and pragmatic performance.The uncertainty of the obstacle size and position in the surmounting process is taken into consideration and the parameters of the adjustments and the feasible strategies for obstacle surmounting are presented.Then the 3D virtual model and the robot prototype are built and the multi-body dynamic simulations and prototype experiments are carried out.The results from the simulations and the experiments show that the robot possesses good obstacle surmounting capabilities. 展开更多
关键词 Mechanical leg multi-legged robot Obstacle surmounting Adjustive pitch Leg unit
在线阅读 下载PDF
Free gait generation method for omnidirectional locomotion on abrupt terrain with multi-legged biomimetic robot 被引量:1
2
作者 陈甫 赵杰 +1 位作者 臧希喆 闫继宏 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第2期101-106,共6页
In order to achieve omnidirectional locomotion on rough terrain with multi-legged biomimetic robot,a free gait generation approach is proposed based on local rules.The phase coordinates of each operation leg was estab... In order to achieve omnidirectional locomotion on rough terrain with multi-legged biomimetic robot,a free gait generation approach is proposed based on local rules.The phase coordinates of each operation leg was established according to the motion task and a universal depiction of leg-end locomotion was implemented;the mathematical relation of gait pattern and walking velocity of multi-legged robot was put forward;combined polynomial curve was adopted to generate the leg-end trajectory,which was capable of accomplishing walking missions and accommodating to landform conditions;a distributed network of local rules for gait control was constructed based on a set of local rules operating between adjacent legs.In the simulation experiments,adaptive regulation of inter-leg phase sequence,omnidirectional locomotion and ground accommodation were realized.Moreover,statically stable free gait was obtained simultaneously,which provided multi-legged robot with the capability of walking on irregular terrain reliably and expeditiously. 展开更多
关键词 multi-legged robot rough terrain walking free gait local rules inter-leg phase sequence
在线阅读 下载PDF
Undulatory gait planning method of multi-legged robot with passive-spine
3
作者 Yongchen Tang Guoteng Zhang +2 位作者 Dingxin Ge Chao Ren Shugen Ma 《Biomimetic Intelligence & Robotics》 2022年第1期1-8,共8页
In this paper,we propose a new gait planning method for a multi-legged robot which has only 1 degree-of-freedom in each leg and has a passive body joint between two body segments.We firstly introduce the Finite State ... In this paper,we propose a new gait planning method for a multi-legged robot which has only 1 degree-of-freedom in each leg and has a passive body joint between two body segments.We firstly introduce the Finite State Machine(FSM)to the undulatory gait planning method of the 2n-legged robot.Then,the undulatory gait sequence for straight line motion is achieved by undulations motion.The idea that legged locomotion is achievable by less actuation of 2n-legged robot as well as the gait planning methods are verified finally by simulations and experiments. 展开更多
关键词 multi-legged robot Undulatory gait FSM Gait planning Passive-spine
原文传递
Motion Error Compensation of Multi-legged Walking Robots 被引量:6
4
作者 WANG Liangwen CHEN Xuedong +3 位作者 WANG Xinjie TANG Weigang SUN Yi PAN Chunmei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期639-646,共8页
Existing errors in the structure and kinematic parameters of multi-legged walking robots,the motion trajectory of robot will diverge from the ideal sports requirements in movement.Since the existing error compensation... Existing errors in the structure and kinematic parameters of multi-legged walking robots,the motion trajectory of robot will diverge from the ideal sports requirements in movement.Since the existing error compensation is usually used for control compensation of manipulator arm,the error compensation of multi-legged robots has seldom been explored.In order to reduce the kinematic error of robots,a motion error compensation method based on the feedforward for multi-legged mobile robots is proposed to improve motion precision of a mobile robot.The locus error of a robot body is measured,when robot moves along a given track.Error of driven joint variables is obtained by error calculation model in terms of the locus error of robot body.Error value is used to compensate driven joint variables and modify control model of robot,which can drive the robots following control model modified.The model of the relation between robot's locus errors and kinematic variables errors is set up to achieve the kinematic error compensation.On the basis of the inverse kinematics of a multi-legged walking robot,the relation between error of the motion trajectory and driven joint variables of robots is discussed.Moreover,the equation set is obtained,which expresses relation among error of driven joint variables,structure parameters and error of robot's locus.Take MiniQuad as an example,when the robot MiniQuad moves following beeline tread,motion error compensation is studied.The actual locus errors of the robot body are measured before and after compensation in the test.According to the test,variations of the actual coordinate value of the robot centroid in x-direction and z-direction are reduced more than one time.The kinematic errors of robot body are reduced effectively by the use of the motion error compensation method based on the feedforward. 展开更多
关键词 multi-legged walking robot error model motion error compensation kinematic analysis motion precision
在线阅读 下载PDF
Solving position-posture deviation problem of multi-legged walking robots with semi-round rigid feet by closed-loop control 被引量:1
5
作者 陈刚 金波 陈鹰 《Journal of Central South University》 SCIE EI CAS 2014年第11期4133-4141,共9页
The semi-round rigid feet would cause position-posture deviation problem because the actual foothold position is hardly known due to the rolling effect of the semi-round rigid feet during the robot walking. The positi... The semi-round rigid feet would cause position-posture deviation problem because the actual foothold position is hardly known due to the rolling effect of the semi-round rigid feet during the robot walking. The position-posture deviation problem may harm to the stability and the harmony of the robot, or even makes the robot tip over and fail to walk forward. Focused on the position-posture deviation problem of multi-legged walking robots with semi-round rigid feet, a new method of position-posture closed-loop control is proposed to solve the position-posture deviation problem caused by semi-round rigid feet, based on the inverse velocity kinematics of the multi-legged walking robots. The position-posture closed-loop control is divided into two parts: the position closed-loop control and the posture closed-loop control. Thus, the position-posture control for the robot which is a tight coupling and nonlinear system is decoupled. Co-simulations of position-posture open-loop control and position-posture closed-loop control by MATLAB and ADAMS are implemented, respectively. The co-simulation results verify that the position-posture closed-loop control performs well in solving the position-posture deviation problem caused by semi-round rigid feet. 展开更多
关键词 position-posture deviation semi-round rigid feet closed-loop control multi-legged walking robots
在线阅读 下载PDF
The Kinematics and Force Analysis of a New Leg Mechanism for Multi-legged Wall-Climbing Robot
6
作者 Luo Yi Qian Jinwu Shen Yaozong Gong Zhenbang (School of Mechanical and Electronic Engineering) 《Advances in Manufacturing》 SCIE CAS 1998年第1期52-56,共5页
This paper presents a new kind of leg mechanism with which the wall climbing robot can easily perform the ground to wall transition by itself.To get its walking envelope and limit position,the forward/inverse kinem... This paper presents a new kind of leg mechanism with which the wall climbing robot can easily perform the ground to wall transition by itself.To get its walking envelope and limit position,the forward/inverse kinematics and the statics of the mechanism are solved.All of these lay the foundation for ground to wall transition gait programing,mechanism parameter selection and optimization. 展开更多
关键词 wall climbing robot leg mechanism KINEMATICS STATICS
在线阅读 下载PDF
Exploring recent breakthroughs in robotic biomechanical and electrophysiological measurement tools
7
作者 Hui-Yao Shi Si Tang +3 位作者 Jia-Lin Shi Peng Yu Chan-Min Su Lian-Qing Liu 《Biomedical Engineering Communications》 2026年第1期35-47,共13页
Single-cell biomechanics and electrophysiology measuring tools have transformed biological research over the last few decades,which enabling a comprehensive and nuanced understanding of cellular behavior and function.... Single-cell biomechanics and electrophysiology measuring tools have transformed biological research over the last few decades,which enabling a comprehensive and nuanced understanding of cellular behavior and function.Despite their high-quality information content,these single-cell measuring techniques suffer from laborious manual processing by highly skilled workers and extremely low throughput(tens of cells per day).Recently,numerous researchers have automated the measurement of cell mechanical and electrical signals through robotic localization and control processes.While these efforts have demonstrated promising progress,critical challenges persist,including human dependency,learning complexity,in-situ measurement,and multidimensional signal acquisition.To identify key limitations and highlight emerging opportunities for innovation,in this review,we comprehensively summarize the key steps of robotic technologies in single-cell biomechanics and electrophysiology.We also discussed the prospects and challenges of robotics and automation in biological research.By bridging gaps between engineering,biology,and data science,this work aims to stimulate interdisciplinary research and accelerate the translation of robotic single-cell technologies into practical applications in the life sciences and medical fields. 展开更多
关键词 BIOMECHANICS ELECTROPHYSIOLOGY micro-nano manipulation automated cell measurement robotICS
在线阅读 下载PDF
Automated Pipe Defect Identification in Underwater Robot Imagery with Deep Learning
8
作者 Mansour Taheri Andani Farhad Ameri 《哈尔滨工程大学学报(英文版)》 2026年第1期197-215,共19页
Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challeng... Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challenge due to factors such as light scattering,absorption,restricted visibility,and ambient noise.The advancement of deep learning has introduced powerful techniques for processing large amounts of unstructured and imperfect data collected from underwater environments.This study evaluated the efficacy of the You Only Look Once(YOLO)algorithm,a real-time object detection and localization model based on convolutional neural networks,in identifying and classifying various types of pipeline defects in underwater settings.YOLOv8,the latest evolution in the YOLO family,integrates advanced capabilities,such as anchor-free detection,a cross-stage partial network backbone for efficient feature extraction,and a feature pyramid network+path aggregation network neck for robust multi-scale object detection,which make it particularly well-suited for complex underwater environments.Due to the lack of suitable open-access datasets for underwater pipeline defects,a custom dataset was captured using a remotely operated vehicle in a controlled environment.This application has the following assets available for use.Extensive experimentation demonstrated that YOLOv8 X-Large consistently outperformed other models in terms of pipe defect detection and classification and achieved a strong balance between precision and recall in identifying pipeline cracks,rust,corners,defective welds,flanges,tapes,and holes.This research establishes the baseline performance of YOLOv8 for underwater defect detection and showcases its potential to enhance the reliability and efficiency of pipeline inspection tasks in challenging underwater environments. 展开更多
关键词 YOLO8 Underwater robot Object detection Underwater pipelines Remotely operated vehicle Deep learning
在线阅读 下载PDF
Proprioceptive slip detection and state estimation of multi-legged robots in slippery scenarios
9
作者 Peng SUN Qi LI +3 位作者 Hao HU Junjie QIANG Weiwei WU Xin LUO 《Frontiers of Mechanical Engineering》 2025年第5期61-81,共21页
Real-time slip detection and state estimation are crucial for locomotion control,facilitating posture adjustment and stability recovery of multi-legged robots moving on slippery terrain.However,existing proprioceptive... Real-time slip detection and state estimation are crucial for locomotion control,facilitating posture adjustment and stability recovery of multi-legged robots moving on slippery terrain.However,existing proprioceptive methods rely on the fixed-contact assumption with fixed noise and suffer from low accuracy when multiple legs slip simultaneously.This paper proposes a novel proprioceptive approach for multi-legged robots moving in slippery scenarios to cope with slippage of multiple legs.In slip detection,the proprioceptive states of the robot are fed into a convolutional neural network to detect slip event(s)of the robot,enabling accurate identification of slipping legs even under simultaneous multi-leg slippage.For state estimation,an invariant extended Kalman filter is employed to fuse the motion information with the detected slip event(s)to obtain the robot state.By incorporating slip event(s)and foot velocity into the system motion equation of the filter,the proposed method better leverages leg odometry information and achieves more precise state estimation compared with existing methods.Simulations on a quadruped and a hexapod demonstrate the effectiveness and increased accuracy during multi-leg slippage.Experimental results for the quadruped robot show that the proposed approach achieves a 48% reduction in the root mean square error and a 47%reduction in the maximum error in velocity estimation under severe multi-leg slippage compared with the existing methods. 展开更多
关键词 multi-legged robot slip detection state estimation simultaneous multi-leg slippage proprioception
原文传递
基于RobotStudio的工业机器人弧焊焊接工作站仿真设计
10
作者 张新娟 刘向勇 李依璟 《机电工程技术》 2025年第10期70-74,共5页
通过利用RobotStudio软件的仿真功能,模拟设计一套工业机器人弧焊工作站。通过工作站的搭建、机器人系统的配置、I/O配置、参数设置、程序编写和调试等步骤,完成整个工作站设计。工作站仿真设计贴近弧焊焊接实际效果,体现ABB工业机器人A... 通过利用RobotStudio软件的仿真功能,模拟设计一套工业机器人弧焊工作站。通过工作站的搭建、机器人系统的配置、I/O配置、参数设置、程序编写和调试等步骤,完成整个工作站设计。工作站仿真设计贴近弧焊焊接实际效果,体现ABB工业机器人ArcWare弧焊包的功能和PathRecover (路径恢复)的智能,通过仿真观察各输入信号对弧焊的影响、焊接过程中输出的变化、以及焊枪工作末端的轨迹等,整个工作站仿真运行效果较好,能够有效指导真实弧焊工作站建设。 展开更多
关键词 工业机器人 弧焊工作站 仿真
在线阅读 下载PDF
基于RobotStudio的工业机器人压铸工作站仿真设计
11
作者 张新娟 刘向勇 《机电工程技术》 2025年第13期161-168,共8页
利用RobotStudio仿真软件设计一套工业机器人压铸工作站,包括工业机器人、工具、供料-传送模块、压铸模块、触摸屏(HMI)、垛盘等,工作站以虚拟PLC、HMI协同工业机器人的方式进行系统的综合调试。其中工业机器人主要完成搬运工件、码垛... 利用RobotStudio仿真软件设计一套工业机器人压铸工作站,包括工业机器人、工具、供料-传送模块、压铸模块、触摸屏(HMI)、垛盘等,工作站以虚拟PLC、HMI协同工业机器人的方式进行系统的综合调试。其中工业机器人主要完成搬运工件、码垛工件的功能,在进入压铸区间取件域时,兼具区域监测的功能。在RobotStudio软件中进行压铸工作站Smart组件设计、系统创建及IO配置、程序设计;应用博图软件实现PLC控制仿真,HMI界面设计采用Utility Manager;通过S7-PLCSIM Advanced的“本地虚拟网卡模式”创建仿真实例CPU,在RobotStudio环境下,通过组件RSConnectDIOToSnap7和RSConnectGIOToSnap7连接对应仿真实例PLC,实现各软件程序间数据的交互。经仿真分析,压铸工作站可实现夹爪工具、吸盘工具、供料-传送模块、压铸模块等模块的可见动态效果,通过各软件程序间数据交互,利用虚拟PLC、HMI协同工业机器人调试试运行,工作站系统运行效果良好。 展开更多
关键词 工业机器人 压铸工作站 仿真设计
在线阅读 下载PDF
天玑骨科机器人Tirobot导航系统联合骨盆后环通道螺钉内固定对盆骨骨折的近远期疗效分析
12
作者 王久夏 《首都食品与医药》 2025年第2期30-33,共4页
目的探讨天玑骨科机器人Tirobot导航系统联合骨盆后环通道螺钉内固定对盆骨骨折的近远期疗效。方法选取我院2021年5月-2023年5月收治的80例盆骨骨折患者进行回顾性分析,依照手术方式不同将两组患者分为观察组与对照组,每组各40例。对照... 目的探讨天玑骨科机器人Tirobot导航系统联合骨盆后环通道螺钉内固定对盆骨骨折的近远期疗效。方法选取我院2021年5月-2023年5月收治的80例盆骨骨折患者进行回顾性分析,依照手术方式不同将两组患者分为观察组与对照组,每组各40例。对照组患者采用传统透视下骶髂螺钉内固定治疗,观察组采用天玑骨科机器人Tirobot导航系统联合骨盆后环通道螺钉内固定治疗。对比两组患者近期螺钉置入精度及骨折复位情况、围术期指标、并发症发生率,并对所有患者进行1年门诊复查随访,对比其功能恢复程度。结果两组患者骨折复位优良率对比,无显著差异(P>0.05),观察组螺钉置入精度优良率100.00%高于对照组的90.00%(P<0.05);两组患者住院时间对比,无显著差异(P>0.05),观察组导针置入次数、手术时间、术中出血量、术后1周视觉模拟量表(visual analogue scale,VAS)评分低于对照组(P<0.05);观察组并发症发生率7.50%低于对照组的25.00%(P<0.05);观察组远期疗效优良率95.00%高于对照组的80.00%(P<0.05)。结论天玑骨科机器人Tirobot导航系统联合骨盆后环通道螺钉内固定治疗盆骨骨折螺钉置入精度更高,可减少患者导针置入次数、手术时间、术中出血量及术后疼痛程度,且能够降低其术后并发症发生率,远期疗效更优。 展开更多
关键词 天玑骨科机器人 骨盆后环通道 盆骨骨折 螺钉置入精度 骨折复位
暂未订购
Robot Studio在中职工业机器人教学专业中的应用 被引量:1
13
作者 侯春娥 《模具制造》 2025年第5期117-119,共3页
Robot Studio作为一款功能强大的工业机器人仿真软件,其在教学中的应用具有重要的价值。从提升教学资源丰富度、强化学生自主学习能力和接轨行业前沿技术3个方面阐述Robot Studio在中职工业机器人教学专业中的应用价值,详细介绍虚拟仿... Robot Studio作为一款功能强大的工业机器人仿真软件,其在教学中的应用具有重要的价值。从提升教学资源丰富度、强化学生自主学习能力和接轨行业前沿技术3个方面阐述Robot Studio在中职工业机器人教学专业中的应用价值,详细介绍虚拟仿真编程教学、复杂任务模拟演练、设备拆装与调试模拟及工艺流程仿真优化等应用内容,并提出分层教学、项目驱动、校企合作和竞赛助推应用策略。 展开更多
关键词 robot Studio 中职工业机器人教学 应用价值
在线阅读 下载PDF
Large language models for robotics:Opportunities,challenges,and perspectives 被引量:4
14
作者 Jiaqi Wang Enze Shi +7 位作者 Huawen Hu Chong Ma Yiheng Liu Xuhui Wang Yincheng Yao Xuan Liu Bao Ge Shu Zhang 《Journal of Automation and Intelligence》 2025年第1期52-64,共13页
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua... Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction. 展开更多
关键词 Large language models robotICS Generative AI Embodied intelligence
在线阅读 下载PDF
Research on acupuncture robots based on the OptiTrack motion capture system and a robotic arm 被引量:2
15
作者 HE Ling YANG Hui +4 位作者 LI Kang WANG Junwen SUN Zhibo YANG Jinsheng ZHANG Jing 《Journal of Traditional Chinese Medicine》 2025年第1期201-212,共12页
OBJECTIVE:To propose an automatic acupuncture robot system for performing acupuncture operations.METHODS:The acupuncture robot system consists of three components:automatic acupoint localization,acupuncture manipulati... OBJECTIVE:To propose an automatic acupuncture robot system for performing acupuncture operations.METHODS:The acupuncture robot system consists of three components:automatic acupoint localization,acupuncture manipulations,and De Qi sensation detection.The OptiTrack motion capture system is used to locate acupoints,which are then translated into coordinates in the robot control system.A flexible collaborative robot with an intelligent gripper is then used to perform acupuncture manipulations with high precision.In addition,a De Qi sensation detection system is proposed to evaluate the effect of acupuncture.To verify the stability of the designed acupuncture robot,acupoints'coordinates localized by the acupuncture robot are compared with the Gold Standard labeled by a professional acupuncturist using significant level tests.RESULTS:Through repeated experiments for eight acupoints,the acupuncture robot achieved a positioning error within 3.3 mm,which is within the allowable range of needle extraction and acupoint insertion.During needle insertion,the robot arm followed the prescribed trajectory with a mean deviation distance of 0.02 mm and a deviation angle of less than 0.15°.The results of the lifting thrusting operation in the Xingzhen process show that the mean acupuncture depth error of the designed acupuncture robot is approximately 2 mm,which is within the recommended depth range for the Xingzhen operation.In addition,the average detection accuracy of the De Qi keywords is 94.52%,which meets the requirements of acupuncture effect testing for different dialects.CONCLUSION:The proposed acupuncture robot system streamlines the acupuncture process,increases efficiency,and reduces practitioner fatigue,while also allowing for the quantification of acupuncture manipulations and evaluation of therapeutic effects.The development of an acupuncture robot system has the potential to revolutionize low back pain treatment and improve patient outcomes. 展开更多
关键词 acupuncture robot acupuncture quantification acupoint location De Qi detection
原文传递
A novel single-port robotic system in urology:A prospective multicenter single-arm clinical trial evaluating feasibility and efficacy of first 50 cases 被引量:2
16
作者 Zheng Wang Chao Zhang +16 位作者 Taile Jing Yong Wei Chengwu Xiao Yang Wang Yu Fang Xiaofeng Wu Shouyan Tang Hong Xu Yi Liu Bo Yang Shuo Wang Bin Xu Qingyi Zhu Dan Xia Zhenjie Wu Xiaofeng Gao Linhui Wang 《Asian Journal of Urology》 2025年第2期152-161,共10页
Objective:This study aimed to assess the feasibility and safety of the SHURUI single-port robotic surgical system for a range of major urological surgeries.Methods:In this prospective,multicenter clinical trial,we exa... Objective:This study aimed to assess the feasibility and safety of the SHURUI single-port robotic surgical system for a range of major urological surgeries.Methods:In this prospective,multicenter clinical trial,we examined the effectiveness of the SHURUI single-port robotic surgical system in urological interventions.The first 50 patients from four centers in China underwent single-port surgeries including partial nephrectomy,radical prostatectomy,partial adrenalectomy,and pyeloureteroplasty,exclusively by the SHURUI single-port robotic surgical system.The study's primary endpoints focused on the success of surgeries,defined as no deviations from planned procedures,no need for more than one port,and no re-operations within 24 h after surgery.Secondary endpoints encompassed a range of surgical metrics,functional outcomes,and patient demographic data.Clinical assessments were conducted before surgery,before discharge,and 1 month after discharge.Results:The surgical procedures were executed successfully without requiring intraoperative conversions or transfusions.Both estimated blood loss and operation durations were maintained within satisfactory limits.For each type of surgery,the mean console times and estimated blood loss were 179.8(standard deviation[SD]39.4)min and 125.6(SD 126.0)mL for radical prostatectomy,126.7(SD 47.8)min and 39.2(SD 54.4)mL for partial nephrectomy,112.6(SD 37.4)min and 20.0(SD 13.2)mL for partial adrenalectomy,and 148.0(SD 18.2)min and 18.0(SD 17.9)mL for pyeloureteroplasty,respectively.Across the cohort,17 patients experienced a total of 25 adverse events,while 10 postoperative complications,all rated as Clavien-Dindo grade I,were encountered by eight patients.All patients had shown recovery or improvement from these events before the end of this trial.Conclusion:The SHURUI single-port robotic surgical system demonstrated feasibility and safety in the performance of major urological surgeries.These initial findings highlight the system's potential,though further research and longer follow-up are required to assess long-term outcomes. 展开更多
关键词 Laparoendoscopic single-site surgery SINGLE-PORT robotic surgery Prostatectomy NEPHRECTOMY ADRENALECTOMY Pyeloureteroplasty Clinical trial
暂未订购
FURobot:A software control platform for construction robots for large-scale construction
17
作者 LU Ming Philip F.YUAN 《土木与环境工程学报(中英文)》 北大核心 2025年第5期1-11,共11页
The advent of parametric design has resulted in a marked increase in the complexity of building.Unfortunately,traditional construction methods make it difficult to meet the needs.Therefore,construction robots have bec... The advent of parametric design has resulted in a marked increase in the complexity of building.Unfortunately,traditional construction methods make it difficult to meet the needs.Therefore,construction robots have become a pivotal production tool in this context.Since the arm span of a single robot usually does not exceed 3 meters,it is not competent for producing large-scale building components.Accordingly,the extension of the robot,s working range is often achieved by external axes.Nevertheless,the coupling control of external axes and robots and their kinematic solution have become key challenges.The primary technical difficulties include customized construction robots,automatic solutions for external axes,fixed axis joints,and specific motion mode control.This paper proposes solutions to these difficulties,introduces the relevant basic concepts and algorithms in detail,and encapsulates these robotics principles and algorithm processes into the Grasshopper plug-in commonly used by architects to form the FURobot software platform.This platform effectively solves the above problems,lowers the threshold for architects,and improves production efficiency.The effectiveness of the algorithm and software in this paper is verified through simulation experiments. 展开更多
关键词 construction robots CUSTOMIZATION CONSTRUCTION robotICS KINEMATICS SOFTWARE
在线阅读 下载PDF
Compliant actuators that mimic biological muscle performance with applications in a highly biomimetic robotic arm 被引量:1
18
作者 Haosen Yang Guowu Wei +2 位作者 Lei Ren Lingyun Yan Darwin Caldwell 《Advanced Bionics》 2025年第1期2-18,共17页
This paper endeavours to bridge the existing gap in muscular actuator design for ligament-skeletal-inspired robots,thereby fostering the evolution of these robotic systems.We introduce two novel compliant actuators,na... This paper endeavours to bridge the existing gap in muscular actuator design for ligament-skeletal-inspired robots,thereby fostering the evolution of these robotic systems.We introduce two novel compliant actuators,namely the Internal Torsion Spring Compliant Actuator(ICA)and the External Spring Compliant Actuator(ECA),and present a comparative analysis against the previously conceived Magnet Integrated Soft Actuator(MISA)through computational and experimental results.These actuators,employing a motor-tendon system,emulate biological muscle-like forms,enhancing artificial muscle technology.Then,applications of the proposed actuators in a robotic arm inspired by the human musculoskeletal system are presented.Experiments demonstrate satisfactory power in tasks like lifting dumbbells(peak power:36 W),playing table tennis(end-effector speed:3.2 m/s),and door opening,without compromising biomimetic aesthetics.Compared to other linear stiffness serial elastic actuators(SEAs),ECA and ICA exhibit high power-to-volume(361×10^(3)W/m^(3))and power-to-mass(111.6 W/kg)ratios respectively,endorsing the biomimetic design’s promise in robotic development. 展开更多
关键词 Artificial muscle Compact compliant actuator Series elastic actuator Biomimetic robots
在线阅读 下载PDF
Fault Detection of Industrial Robot Drive Systems:An Enhanced Unscented Kalman Filter Approach 被引量:1
19
作者 LIU Chen ZHU Chenyang 《Wuhan University Journal of Natural Sciences》 2025年第4期313-320,共8页
Fault detection in industrial robot drive systems is a critical aspect of ensuring operational reliability and efficiency.To address the challenge of balancing accuracy and robustness in existing fault detection metho... Fault detection in industrial robot drive systems is a critical aspect of ensuring operational reliability and efficiency.To address the challenge of balancing accuracy and robustness in existing fault detection methods,this paper proposes an enhanced fault detection method based on the unscented Kalman filter(UKF).A comprehensive mathematical model of the brushless DC motor drive system is developed to provide a theoretical foundation for the design of subsequent fault detection methods.The conventional UKF estimation process is detailed,and its limitations in balancing estimation accuracy and robustness are addressed by introducing a dynamic,time-varying boundary layer.To further enhance detection performance,the method incorporates residual analysis using improved z-score and signal-tonoise ratio(SNR)metrics.Numerical simulations under both fault-free and faulty conditions demonstrate that the proposed approach achieves lower root mean square error(RMSE)in fault-free scenarios and provides reliable fault detection.These results highlight the potential of the proposed method to enhance the reliability and robustness of fault detection in industrial robot drive systems. 展开更多
关键词 fault detection industrial robot enhanced unscented Kalman filter(UKF)
原文传递
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
20
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部