Themain goal of this work is to study the ballistic performance ofmulti-layered moderately-thick metallic targets.Several target configurations have been considered in thiswork,with various types of interlayer connect...Themain goal of this work is to study the ballistic performance ofmulti-layered moderately-thick metallic targets.Several target configurations have been considered in thiswork,with various types of interlayer connection(spaced,contacted and adhesive)and the number of layers(four and eight),and the influence of target configurations on ballistic performance has been studied experimentally and numerically.In the experiments,the targets were impacted by 12.7-mm projectiles at a velocity around 820 m/s.The experimental results show that,with similar total thickness,the contacted and adhesive targets exhibit better ballistic performance than the monolithic targets,and the four-layered targets are better than the eight-layered targets with the same connection type.To explore the ballistic resistance mechanism,numerical method has been used to simulate the penetration process of each target.The numerical results indicate that petal formation and friction have significant influence on targets’ballistic performance.Friction has stronger influence on themulti-layered targets than on themonolithic ones.According to the numerical results,about 14%of projectile’s initial kinetic energy is dissipated by friction during penetrating the four-layered contacted target,which is proved to be the most effective type of target studied in thiswork.The results also indicate that,in contrast to common understanding,friction plays an important role even when the impact velocity is significantly higher than the ballistic limit.The outcome of this work may provide useful information for a better understanding of ballistic resistant mechanisms and more efficient utilization of multi-layered metallic targets in armor structural design.展开更多
In practical engineering construction,multi-layered barriers containing geomembranes are extensively applied to retard the migration of pollutants.However,the associated analytical theory on pollutants diffusion still...In practical engineering construction,multi-layered barriers containing geomembranes are extensively applied to retard the migration of pollutants.However,the associated analytical theory on pollutants diffusion still needs to be further improved.In this work,general analytical solutions are derived for one-dimensional diffusion of degradable organic contaminant(DOC)in the multi-layered media containing geomembranes under a time-varying concentration boundary condition,where the variable substitution and separated variable approaches are employed.These analytical solutions with clear expressions can be used not only to study the diffusion behaviors of DOC in bottom and vertical composite barrier systems,but also to verify other complex numerical models.The proposed general analytical solutions are then fully validated via three comparative analyses,including comparisons with the experimental measurements,an existing analytical solution,and a finite-difference solution.Ultimately,the influences of different factors on the composite cutoff wall’s(CCW,which consists of two soil-bentonite layers and a geomembrane)service performance are investigated through a composite vertical barrier system as the application example.The findings obtained from this investigation can provide scientific guidance for the barrier performance evaluation and the engineering design of CCWs.This application example also exhibits the necessity and effectiveness of the developed analytical solutions.展开更多
This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi...This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi analytical solutions of temperature increment and displacement of multi-layered composite structures are obtained by using the Laplace transform method,upon which the effects of thermal resistance coefficient,partition coefficient,thermal conductivity ratio and heat capacity ratio on the responses are studied.The results show that the generalized imperfect thermal contact model can realistically describe the imperfect thermal contact problem.Accordingly,it may degenerate into other thermal contact models by adjusting the thermal resistance coefficient and partition coefficient.展开更多
The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are the surface roughness and the error between the actual printing height and the theoretical m...The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are the surface roughness and the error between the actual printing height and the theoretical model height.The Taguchi method was employed to establish the correlations between process parameter combinations and multi-objective characterization of metal deposition morphology(height error and roughness).Results show that using the signal-to-noise ratio and grey relational analysis,the optimal parameter combination for multi-layer and multi-pass deposition is determined as follows:laser power of 800 W,powder feeding rate of 0.3 r/min,step distance of 1.6 mm,and scanning speed of 20 mm/s.Subsequently,a Genetic Bayesian-back propagation(GB-BP)network is constructed to predict multi-objective responses.Compared with the traditional back propagation network,the GB-back propagation network improves the prediction accuracy of height error and surface roughness by 43.14%and 71.43%,respectively.This network can accurately predict the multi-objective characterization of morphological quality of multi-layer and multi-pass metal deposited parts.展开更多
The cure rate for chronic neurodegenerative diseases remains low,creating an urgent need for improved intervention methods.Recent studies have shown that enhancing mitochondrial function can mitigate the effects of th...The cure rate for chronic neurodegenerative diseases remains low,creating an urgent need for improved intervention methods.Recent studies have shown that enhancing mitochondrial function can mitigate the effects of these diseases.This paper comprehensively reviews the relationship between mitochondrial dysfunction and chronic neurodegenerative diseases,aiming to uncover the potential use of targeted mitochondrial interventions as viable therapeutic options.We detail five targeted mitochondrial intervention strategies for chronic neurodegenerative diseases that act by promoting mitophagy,inhibiting mitochondrial fission,enhancing mitochondrial biogenesis,applying mitochondria-targeting antioxidants,and transplanting mitochondria.Each method has unique advantages and potential limitations,making them suitable for various therapeutic situations.Therapies that promote mitophagy or inhibit mitochondrial fission could be particularly effective in slowing disease progression,especially in the early stages.In contrast,those that enhance mitochondrial biogenesis and apply mitochondria-targeting antioxidants may offer great benefits during the middle stages of the disease by improving cellular antioxidant capacity and energy metabolism.Mitochondrial transplantation,while still experimental,holds great promise for restoring the function of damaged cells.Future research should focus on exploring the mechanisms and effects of these intervention strategies,particularly regarding their safety and efficacy in clinical settings.Additionally,the development of innovative mitochondria-targeting approaches,such as gene editing and nanotechnology,may provide new solutions for treating chronic neurodegenerative diseases.Implementing combined therapeutic strategies that integrate multiple intervention methods could also enhance treatment outcomes.展开更多
Background:Stomach cancer(SC)is one of the most lethal malignancies worldwide due to late-stage diagnosis and limited treatment.The transcriptomic,epigenomic,and proteomic,etc.,omics datasets generated by high-through...Background:Stomach cancer(SC)is one of the most lethal malignancies worldwide due to late-stage diagnosis and limited treatment.The transcriptomic,epigenomic,and proteomic,etc.,omics datasets generated by high-throughput sequencing technology have become prominent in biomedical research,and they reveal molecular aspects of cancer diagnosis and therapy.Despite the development of advanced sequencing technology,the presence of high-dimensionality in multi-omics data makes it challenging to interpret the data.Methods:In this study,we introduce RankXLAN,an explainable ensemble-based multi-omics framework that integrates feature selection(FS),ensemble learning,bioinformatics,and in-silico validation for robust biomarker detection,potential therapeutic drug-repurposing candidates’identification,and classification of SC.To enhance the interpretability of the model,we incorporated explainable artificial intelligence(SHapley Additive exPlanations analysis),as well as accuracy,precision,F1-score,recall,cross-validation,specificity,likelihood ratio(LR)+,LR−,and Youden index results.Results:The experimental results showed that the top four FS algorithms achieved improved results when applied to the ensemble learning classification model.The proposed ensemble model produced an area under the curve(AUC)score of 0.994 for gene expression,0.97 for methylation,and 0.96 for miRNA expression data.Through the integration of bioinformatics and ML approach of the transcriptomic and epigenomic multi-omics dataset,we identified potential marker genes,namely,UBE2D2,HPCAL4,IGHA1,DPT,and FN3K.In-silico molecular docking revealed a strong binding affinity between ANKRD13C and the FDA-approved drug Everolimus(binding affinity−10.1 kcal/mol),identifying ANKRD13C as a potential therapeutic drug-repurposing target for SC.Conclusion:The proposed framework RankXLAN outperforms other existing frameworks for serum biomarker identification,therapeutic target identification,and SC classification with multi-omics datasets.展开更多
Metabolic reprogramming involving branched-chain amino acids(BCAAs)—leucine,isoleucine,and valine—is increasingly recognized as pivotal in cancer progression,metastasis,and immune modulation.This review comprehensiv...Metabolic reprogramming involving branched-chain amino acids(BCAAs)—leucine,isoleucine,and valine—is increasingly recognized as pivotal in cancer progression,metastasis,and immune modulation.This review comprehensively explores how cancer cells rewire BCAA metabolism to enhance proliferation,survival,and therapy resistance.Tumors manipulate BCAA uptake and catabolism via high expression of transporters like L-type amino acid transporter 1(LAT1)and enzymes including branched chain amino acid transaminase 1(BCAT1),branched chain amino acid transaminase 2(BCAT2),branched-chain alpha-keto acid dehydrogenase(BCKDH),and branched chain alpha-keto acid dehydrogenase kinase(BCKDK).These alterations sustain energy production,biosynthesis,redox homeostasis,and oncogenic signaling(especially mammalian target of rapamycin complex 1[mTORC1]).Crucially,tumor-driven BCAA depletion also shapes an immunosuppressive microenvironment,impairing anti-tumor immunity by limiting essential nutrients for T cells and natural killer(NK)cells.Innovative therapeutic strategies targeting BCAA pathways—ranging from selective small-molecule inhibitors(e.g.,LAT1 and BCAT1/2)to dietary modulation—have shown promising preclinical and early clinical efficacy,highlighting their potential to exploit metabolic vulnerabilities in cancer cells while bolstering immune responses.By integrating multi-omics data and precision targeting approaches,this review underscores the translational significance of BCAA metabolic reprogramming,positioning it as a novel frontier in cancer treatment.展开更多
The published article titled“MicroRNA-133b Inhibits Proliferation,Cellular Migration,and Invasion via Targeting LASP1 in Hepatocarcinoma Cells”has been retracted from Oncology Research,Vol.25,No.8,2017,pp.1269–1282.
Tau plays a crucial role in several neurodegenerative diseases,collectively referred to as tauopathies.Therefore,targeting potential pathological changes in tau could enable useful therapeutic interventions.However,ta...Tau plays a crucial role in several neurodegenerative diseases,collectively referred to as tauopathies.Therefore,targeting potential pathological changes in tau could enable useful therapeutic interventions.However,tau is not an easy target because it dynamically interacts with microtubules and other cellular components,which presents a challenge for tau-targeted drugs.New cellular models could aid the development of mechanism-based tau-targeted therapies.展开更多
Accurate time delay estimation of target echo signals is a critical component of underwater target localization.In active sonar systems,echo signal processing is vulnerable to the effects of reverberation and noise in...Accurate time delay estimation of target echo signals is a critical component of underwater target localization.In active sonar systems,echo signal processing is vulnerable to the effects of reverberation and noise in the maritime environment.This paper proposes a novel method for estimating target time delay using multi-bright spot echoes,assuming the target’s size and depth are known.Aiming to effectively enhance the extraction of geometric features from the target echoes and mitigate the impact of reverberation and noise,the proposed approach employs the fractional order Fourier transform-frequency sliced wavelet transform to extract multi-bright spot echoes.Using the highlighting model theory and the target size information,an observation matrix is constructed to represent multi-angle incident signals and obtain the theoretical scattered echo signals from different angles.Aiming to accurately estimate the target’s time delay,waveform similarity coefficients and mean square error values between the theoretical return signals and received signals are computed across various incident angles and time delays.Simulation results show that,compared to the conventional matched filter,the proposed algorithm reduces the relative error by 65.9%-91.5%at a signal-to noise ratio of-25 dB,and by 66.7%-88.9%at a signal-to-reverberation ratio of−10 dB.This algorithm provides a new approach for the precise localization of submerged targets in shallow water environments.展开更多
Three different kinds of PELE(the penetrator with lateral efficiency) were launched by ballistic artillery to impact the multi-layer spaced metal target plates.The lmpact velocities of the projectiles were measured by...Three different kinds of PELE(the penetrator with lateral efficiency) were launched by ballistic artillery to impact the multi-layer spaced metal target plates.The lmpact velocities of the projectiles were measured by the velocity measuring system.The damage degree and process of each laye r of target plate impacted by the three kinds of projectiles were analyzed.The experimental results show that all the three kinds of projectiles have the effect of expanding holes on the multi-layer spaced metal target plates.For the normal structure PELE(without layered) with tungsten alloy jacket and the radial layered PELE with tungsten alloy jacket,the diameters of holes on the seco nd layer of plates are 3.36 times and 3.76 times of the diameter of the projectile,re spectively.For radial layered PELE with W/Zr-based amorphous composite jacket,due to the large number of tungsten wires dispersed after the impact,the diameter of the holes on the four-layer spaced plates can reach 2.4 times,3.04 times,5.36 times and 2.68 times of the diameter of the projectile.Besides,the normal structure PELE with tungsten alloy jacket and the radial layered PELE whit tungsten alloy jacket formed a large number of fragments impact marks on the third target plate.Although the number of fragments penetrating the third target plate is not as large as that of the normal structure PELE,the area of dispersion of fragments impact craters on the third target plate is larger by the radial layered PELE.The radial layered PELE with W/Zr-based amorphous composite jacket released a lot of heat energy due to the impact of the matrix material,and formed a large area of ablation marks on the last three target plates.展开更多
This work aims to evaluate the feasibility of the fabrication of nanostructured Cu/Al/Ag multi-layered composites by accumulative roll bonding(ARB),and to analyze the tensile properties and electrical conductivity of ...This work aims to evaluate the feasibility of the fabrication of nanostructured Cu/Al/Ag multi-layered composites by accumulative roll bonding(ARB),and to analyze the tensile properties and electrical conductivity of the produced composites.A theoretical model using strengthening mechanisms and some structural parameters extracted from X-ray diffraction is also developed to predict the tensile strength of the composites.It was found that by progression of ARB,the experimental and calculated tensile strengths are enhanced,reach a maximum of about 450 and 510 MPa at the fifth cycle of ARB,respectively and then are reduced.The electrical conductivity decreased slightly by increasing the number of ARB cycles at initial ARB cycles,but the decrease was intensified at the final ARB cycles.In conclusion,the merit of ARB to fabricate this type of multi-layered nanocomposites and the accuracy of the developed model to predict tensile strength were realized.展开更多
In the past two decades numerous studies were made to develop and improve the theory and practical computation techniques of synthesizing theoretical seismograms for the model of multi-layered half-space. Today, synth...In the past two decades numerous studies were made to develop and improve the theory and practical computation techniques of synthesizing theoretical seismograms for the model of multi-layered half-space. Today, synthesizing theoretical seismograms in multi-layered half-space is an important tool for understanding the structure of the Earth’s interior as well as the seismic source process from well-recorded seismograms data. As part of a review of the state-of-the-art, in this article I shall present a systematic and self-contained theory of elastic waves in multi-layered half-space media based on the developments in the past two decades.展开更多
The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-s...The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-space.The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces,which are then applied to the total system with the opposite sign.By adding solutions restricted in the loaded layer to solutions from the reaction forces,the global solutions in the wavenumber domain are obtained,and the dynamic Green’s functions in the space domain are recovered by the inverse Fourier transform.The presented formulations can be reduced to the isotropic case developed by Wolf(1985),and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI halfspace subjected to horizontally distributed loads which are special cases of the more general problem addressed.The deduced Green’s functions,in conjunction with boundary element methods,will lead to significant advances in the investigation of a variety of wave scattering,wave radiation and soil-structure interaction problems in a layered TI site.Selected numerical results are given to investigate the influence of material anisotropy,frequency of excitation,inclination angle and layered on the responses of displacement and stress,and some conclusions are drawn.展开更多
We present a design method for calculating and optimizing sound absorption coefficient of multi-layered porous fibrous metals (PFM) in the low frequency range. PFM is simplified as an equivalent idealized sheet with...We present a design method for calculating and optimizing sound absorption coefficient of multi-layered porous fibrous metals (PFM) in the low frequency range. PFM is simplified as an equivalent idealized sheet with all metallic fibers aligned in one direction and distributed in periodic hexagonal patterns. We use a phenomenological model in the literature to investigate the effects of pore geometrical parameters (fiber diameter and gap) on sound absorption performance. The sound absorption coefficient of multi- layered PFMs is calculated using impedance translation theorem, To demonstrate the validity of the present model, we compare the predicted results with the experimental data. With the average sound absorption (low frequency range) as the objective function and the fiber gaps as the design variables, an optimization method for multi-layered fibrous metals is proposed. A new fibrous layout with given porosity of multi-layered fibrous metals is suggested to achieve optimal low frequency sound absorption. The sound absorption coefficient of the optimal multi-layered fibrous metal is higher than the single- layered fibrous metal, and a significant effect of the fibrous material on sound absorption is found due to the surface Dorosity of the multi-layered fibrous.展开更多
Lithium-sulfur(Li-S)batteries with lithium sulfide(Li2S)as cathode have attracted great attention recently,because of high specific capacity(1166 mA h g^-1)of Li2S and potential safety of using Li metal-free anode.Li2...Lithium-sulfur(Li-S)batteries with lithium sulfide(Li2S)as cathode have attracted great attention recently,because of high specific capacity(1166 mA h g^-1)of Li2S and potential safety of using Li metal-free anode.Li2S cathode has lower volume expansion and higher thermal stability than the traditional sulfur cathode.However,the problems of"shuttle effect"and poor electrical conductivity of the cathode material still need to be overcome.In this work,multi-layered Ti3C2/Li2S(ML-Ti3C2/Li2S)composite has been prepared and applied as a cathode in advanced Li-S batteries.The unique multi-layer sheet structure of Ti3 C2 provides space for the storage of Li2S,and its good conductivity greatly enhances the usage ratio of Li2 S and improves the conductivity of the whole Li2S cathode.Compared with commonly used graphene,ML-Ti3C2 can trap polysulfides effectively by chemical adsorption and also activate the reaction of Li2S to polysulfides by forming Ti-S bond.As a result,during the cycling of the batteries with ML-Ti3C2/Li2S cathodes,the activation voltage barrier of the first cycle has decreased to 2.8 V,and the"shuttle effect"has been suppressed effectively.The cycling and rate performances of the ML-Ti3C2/Li2S cathodes have been significantly improved compared to that of graphene/Li2 S cathodes.They maintain a capacity of 450 mAh g^-1 at 0.2 C after 100 cycles,and deliver attractive rate performances of 750,630,540,470 and 360 mAh g^-1 at 0.1 C,0.2 C,0.5 C,1 C,and 2 C,respectively.展开更多
Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of ...Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of shallow strips and circular plate anchors in multi-layered soils.The nonlinear strength criterion and non-associated flow rule of geotechnical materials were introduced to investigate the influence of nonuniformity on the pullout performance and failure mechanism of shallow plate anchors.The expressions of the detaching curves or surfaces were obtained to reflect the failure mechanism,which can be used to figure out the ultimate uplift capacity and failure range.The results are generally in agreement with the numerical simulations and previous research.The effects of various parameters on the ultimate uplift capacity and failure mechanism of plate anchors in multi-layered soils were investigated,and it is found that the ultimate uplift capacity and failure range of shallow anchors increase with the increase of initial cohesion and dilatancy coefficient,but decrease with the unit weight,axial tensile stress and nonlinear coefficient.展开更多
Various nanostructured architectures have been demonstrated to be effective to address the issues of high capacity Si anodes. However, the scale-up of these nano-Si materials is still a critical obstacle for commercia...Various nanostructured architectures have been demonstrated to be effective to address the issues of high capacity Si anodes. However, the scale-up of these nano-Si materials is still a critical obstacle for commercialization. Herein, we use industrial ferrosilicon as low-cost Si source and introduce a facile and scalable method to fabricate a micrometer-sized ferrosilicon/C composite anode, in which ferrosilicon microparticles are wrapped with multi-layered carbon nanosheets. The multi-layered carbon nanosheets could effectively buffer the volume variation of Si as well as create an abundant and reliable conductivity framework, ensuring fast transport of electrons. As a result, the micrometer-sized ferrosilicon/C anode achieves a stable cycling with 805.9 m Ah g-1 over 200 cycles at 500 mA g-1 and a good rate capability of455.6 mAh g-1 at 10 A g-1. Therefore, our approach based on ferrosilicon provides a new opportunity in fabricating cost-effective, pollution-free, and large-scale Si electrode materials for high energy lithium-ion batteries.展开更多
基金This work was supported by the National Natural Science Foundation of China[Grant Nos.12102023 and 12072011].
文摘Themain goal of this work is to study the ballistic performance ofmulti-layered moderately-thick metallic targets.Several target configurations have been considered in thiswork,with various types of interlayer connection(spaced,contacted and adhesive)and the number of layers(four and eight),and the influence of target configurations on ballistic performance has been studied experimentally and numerically.In the experiments,the targets were impacted by 12.7-mm projectiles at a velocity around 820 m/s.The experimental results show that,with similar total thickness,the contacted and adhesive targets exhibit better ballistic performance than the monolithic targets,and the four-layered targets are better than the eight-layered targets with the same connection type.To explore the ballistic resistance mechanism,numerical method has been used to simulate the penetration process of each target.The numerical results indicate that petal formation and friction have significant influence on targets’ballistic performance.Friction has stronger influence on themulti-layered targets than on themonolithic ones.According to the numerical results,about 14%of projectile’s initial kinetic energy is dissipated by friction during penetrating the four-layered contacted target,which is proved to be the most effective type of target studied in thiswork.The results also indicate that,in contrast to common understanding,friction plays an important role even when the impact velocity is significantly higher than the ballistic limit.The outcome of this work may provide useful information for a better understanding of ballistic resistant mechanisms and more efficient utilization of multi-layered metallic targets in armor structural design.
基金Project(2023YFC3707800)supported by the National Key Research and Development Program of China。
文摘In practical engineering construction,multi-layered barriers containing geomembranes are extensively applied to retard the migration of pollutants.However,the associated analytical theory on pollutants diffusion still needs to be further improved.In this work,general analytical solutions are derived for one-dimensional diffusion of degradable organic contaminant(DOC)in the multi-layered media containing geomembranes under a time-varying concentration boundary condition,where the variable substitution and separated variable approaches are employed.These analytical solutions with clear expressions can be used not only to study the diffusion behaviors of DOC in bottom and vertical composite barrier systems,but also to verify other complex numerical models.The proposed general analytical solutions are then fully validated via three comparative analyses,including comparisons with the experimental measurements,an existing analytical solution,and a finite-difference solution.Ultimately,the influences of different factors on the composite cutoff wall’s(CCW,which consists of two soil-bentonite layers and a geomembrane)service performance are investigated through a composite vertical barrier system as the application example.The findings obtained from this investigation can provide scientific guidance for the barrier performance evaluation and the engineering design of CCWs.This application example also exhibits the necessity and effectiveness of the developed analytical solutions.
基金Projects(42477162,52108347,52178371,52168046,52178321,52308383)supported by the National Natural Science Foundation of ChinaProjects(2023C03143,2022C01099,2024C01219,2022C03151)supported by the Zhejiang Key Research and Development Plan,China+6 种基金Project(LQ22E080010)supported by the Exploring Youth Project of Zhejiang Natural Science Foundation,ChinaProject(LR21E080005)supported by the Outstanding Youth Project of Natural Science Foundation of Zhejiang Province,ChinaProject(2022M712964)supported by the Postdoctoral Science Foundation of ChinaProject(2023AFB008)supported by the Natural Science Foundation of Hubei Province for Youth,ChinaProject(202203)supported by Engineering Research Centre of Rock-Soil Drilling&Excavation and Protection,Ministry of Education,ChinaProject(202305-2)supported by the Science and Technology Project of Zhejiang Provincial Communication Department,ChinaProject(2021K256)supported by the Construction Research Founds of Department of Housing and Urban-Rural Development of Zhejiang Province,China。
文摘This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi analytical solutions of temperature increment and displacement of multi-layered composite structures are obtained by using the Laplace transform method,upon which the effects of thermal resistance coefficient,partition coefficient,thermal conductivity ratio and heat capacity ratio on the responses are studied.The results show that the generalized imperfect thermal contact model can realistically describe the imperfect thermal contact problem.Accordingly,it may degenerate into other thermal contact models by adjusting the thermal resistance coefficient and partition coefficient.
基金National Natural Science Foundation of China(52175237)。
文摘The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are the surface roughness and the error between the actual printing height and the theoretical model height.The Taguchi method was employed to establish the correlations between process parameter combinations and multi-objective characterization of metal deposition morphology(height error and roughness).Results show that using the signal-to-noise ratio and grey relational analysis,the optimal parameter combination for multi-layer and multi-pass deposition is determined as follows:laser power of 800 W,powder feeding rate of 0.3 r/min,step distance of 1.6 mm,and scanning speed of 20 mm/s.Subsequently,a Genetic Bayesian-back propagation(GB-BP)network is constructed to predict multi-objective responses.Compared with the traditional back propagation network,the GB-back propagation network improves the prediction accuracy of height error and surface roughness by 43.14%and 71.43%,respectively.This network can accurately predict the multi-objective characterization of morphological quality of multi-layer and multi-pass metal deposited parts.
基金partly supported by the Yan’an University Qin Chuanyuan“Scientist+Engineer”Team Special Fund,No.2023KXJ-012(to YL)Yan’an University Transformation of Scientific and Technological Achievements Fund,No.2023CGZH-001(to YL)+2 种基金College Students Innovation and Entrepreneurship Training Program,Nos.D2023158,202410719056(to XS,JM)Yan’an University Production and Cultivation Project,No.CXY202001(to YL)Kweichow Moutai Hospital Research and Talent Development Fund Project,No.MTyk2022-25(to XO)。
文摘The cure rate for chronic neurodegenerative diseases remains low,creating an urgent need for improved intervention methods.Recent studies have shown that enhancing mitochondrial function can mitigate the effects of these diseases.This paper comprehensively reviews the relationship between mitochondrial dysfunction and chronic neurodegenerative diseases,aiming to uncover the potential use of targeted mitochondrial interventions as viable therapeutic options.We detail five targeted mitochondrial intervention strategies for chronic neurodegenerative diseases that act by promoting mitophagy,inhibiting mitochondrial fission,enhancing mitochondrial biogenesis,applying mitochondria-targeting antioxidants,and transplanting mitochondria.Each method has unique advantages and potential limitations,making them suitable for various therapeutic situations.Therapies that promote mitophagy or inhibit mitochondrial fission could be particularly effective in slowing disease progression,especially in the early stages.In contrast,those that enhance mitochondrial biogenesis and apply mitochondria-targeting antioxidants may offer great benefits during the middle stages of the disease by improving cellular antioxidant capacity and energy metabolism.Mitochondrial transplantation,while still experimental,holds great promise for restoring the function of damaged cells.Future research should focus on exploring the mechanisms and effects of these intervention strategies,particularly regarding their safety and efficacy in clinical settings.Additionally,the development of innovative mitochondria-targeting approaches,such as gene editing and nanotechnology,may provide new solutions for treating chronic neurodegenerative diseases.Implementing combined therapeutic strategies that integrate multiple intervention methods could also enhance treatment outcomes.
基金the Deanship of Research and Graduate Studies at King Khalid University,KSA,for funding this work through the Large Research Project under grant number RGP2/164/46.
文摘Background:Stomach cancer(SC)is one of the most lethal malignancies worldwide due to late-stage diagnosis and limited treatment.The transcriptomic,epigenomic,and proteomic,etc.,omics datasets generated by high-throughput sequencing technology have become prominent in biomedical research,and they reveal molecular aspects of cancer diagnosis and therapy.Despite the development of advanced sequencing technology,the presence of high-dimensionality in multi-omics data makes it challenging to interpret the data.Methods:In this study,we introduce RankXLAN,an explainable ensemble-based multi-omics framework that integrates feature selection(FS),ensemble learning,bioinformatics,and in-silico validation for robust biomarker detection,potential therapeutic drug-repurposing candidates’identification,and classification of SC.To enhance the interpretability of the model,we incorporated explainable artificial intelligence(SHapley Additive exPlanations analysis),as well as accuracy,precision,F1-score,recall,cross-validation,specificity,likelihood ratio(LR)+,LR−,and Youden index results.Results:The experimental results showed that the top four FS algorithms achieved improved results when applied to the ensemble learning classification model.The proposed ensemble model produced an area under the curve(AUC)score of 0.994 for gene expression,0.97 for methylation,and 0.96 for miRNA expression data.Through the integration of bioinformatics and ML approach of the transcriptomic and epigenomic multi-omics dataset,we identified potential marker genes,namely,UBE2D2,HPCAL4,IGHA1,DPT,and FN3K.In-silico molecular docking revealed a strong binding affinity between ANKRD13C and the FDA-approved drug Everolimus(binding affinity−10.1 kcal/mol),identifying ANKRD13C as a potential therapeutic drug-repurposing target for SC.Conclusion:The proposed framework RankXLAN outperforms other existing frameworks for serum biomarker identification,therapeutic target identification,and SC classification with multi-omics datasets.
基金supported by a grant from the Dalian Science and Technology Innovation Fund Program(No.2024JJ13PT070)United Foundation for Dalian Institute of Chemical Physics,Chinese Academy of Sciences and the Second Hospital of Dalian Medical University(No.DMU-2&DICP UN202410)Dalian Life and Health Field Guidance Program Project(No.2024ZDJH01PT084).
文摘Metabolic reprogramming involving branched-chain amino acids(BCAAs)—leucine,isoleucine,and valine—is increasingly recognized as pivotal in cancer progression,metastasis,and immune modulation.This review comprehensively explores how cancer cells rewire BCAA metabolism to enhance proliferation,survival,and therapy resistance.Tumors manipulate BCAA uptake and catabolism via high expression of transporters like L-type amino acid transporter 1(LAT1)and enzymes including branched chain amino acid transaminase 1(BCAT1),branched chain amino acid transaminase 2(BCAT2),branched-chain alpha-keto acid dehydrogenase(BCKDH),and branched chain alpha-keto acid dehydrogenase kinase(BCKDK).These alterations sustain energy production,biosynthesis,redox homeostasis,and oncogenic signaling(especially mammalian target of rapamycin complex 1[mTORC1]).Crucially,tumor-driven BCAA depletion also shapes an immunosuppressive microenvironment,impairing anti-tumor immunity by limiting essential nutrients for T cells and natural killer(NK)cells.Innovative therapeutic strategies targeting BCAA pathways—ranging from selective small-molecule inhibitors(e.g.,LAT1 and BCAT1/2)to dietary modulation—have shown promising preclinical and early clinical efficacy,highlighting their potential to exploit metabolic vulnerabilities in cancer cells while bolstering immune responses.By integrating multi-omics data and precision targeting approaches,this review underscores the translational significance of BCAA metabolic reprogramming,positioning it as a novel frontier in cancer treatment.
文摘The published article titled“MicroRNA-133b Inhibits Proliferation,Cellular Migration,and Invasion via Targeting LASP1 in Hepatocarcinoma Cells”has been retracted from Oncology Research,Vol.25,No.8,2017,pp.1269–1282.
文摘Tau plays a crucial role in several neurodegenerative diseases,collectively referred to as tauopathies.Therefore,targeting potential pathological changes in tau could enable useful therapeutic interventions.However,tau is not an easy target because it dynamically interacts with microtubules and other cellular components,which presents a challenge for tau-targeted drugs.New cellular models could aid the development of mechanism-based tau-targeted therapies.
基金Supported by the State Key Laboratory of Acoustics and Marine Information Chinese Academy of Sciences(SKL A202507).
文摘Accurate time delay estimation of target echo signals is a critical component of underwater target localization.In active sonar systems,echo signal processing is vulnerable to the effects of reverberation and noise in the maritime environment.This paper proposes a novel method for estimating target time delay using multi-bright spot echoes,assuming the target’s size and depth are known.Aiming to effectively enhance the extraction of geometric features from the target echoes and mitigate the impact of reverberation and noise,the proposed approach employs the fractional order Fourier transform-frequency sliced wavelet transform to extract multi-bright spot echoes.Using the highlighting model theory and the target size information,an observation matrix is constructed to represent multi-angle incident signals and obtain the theoretical scattered echo signals from different angles.Aiming to accurately estimate the target’s time delay,waveform similarity coefficients and mean square error values between the theoretical return signals and received signals are computed across various incident angles and time delays.Simulation results show that,compared to the conventional matched filter,the proposed algorithm reduces the relative error by 65.9%-91.5%at a signal-to noise ratio of-25 dB,and by 66.7%-88.9%at a signal-to-reverberation ratio of−10 dB.This algorithm provides a new approach for the precise localization of submerged targets in shallow water environments.
基金supported by National Natural Science Foundation of China(Grant No.11802141)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX18_0465)。
文摘Three different kinds of PELE(the penetrator with lateral efficiency) were launched by ballistic artillery to impact the multi-layer spaced metal target plates.The lmpact velocities of the projectiles were measured by the velocity measuring system.The damage degree and process of each laye r of target plate impacted by the three kinds of projectiles were analyzed.The experimental results show that all the three kinds of projectiles have the effect of expanding holes on the multi-layer spaced metal target plates.For the normal structure PELE(without layered) with tungsten alloy jacket and the radial layered PELE with tungsten alloy jacket,the diameters of holes on the seco nd layer of plates are 3.36 times and 3.76 times of the diameter of the projectile,re spectively.For radial layered PELE with W/Zr-based amorphous composite jacket,due to the large number of tungsten wires dispersed after the impact,the diameter of the holes on the four-layer spaced plates can reach 2.4 times,3.04 times,5.36 times and 2.68 times of the diameter of the projectile.Besides,the normal structure PELE with tungsten alloy jacket and the radial layered PELE whit tungsten alloy jacket formed a large number of fragments impact marks on the third target plate.Although the number of fragments penetrating the third target plate is not as large as that of the normal structure PELE,the area of dispersion of fragments impact craters on the third target plate is larger by the radial layered PELE.The radial layered PELE with W/Zr-based amorphous composite jacket released a lot of heat energy due to the impact of the matrix material,and formed a large area of ablation marks on the last three target plates.
文摘This work aims to evaluate the feasibility of the fabrication of nanostructured Cu/Al/Ag multi-layered composites by accumulative roll bonding(ARB),and to analyze the tensile properties and electrical conductivity of the produced composites.A theoretical model using strengthening mechanisms and some structural parameters extracted from X-ray diffraction is also developed to predict the tensile strength of the composites.It was found that by progression of ARB,the experimental and calculated tensile strengths are enhanced,reach a maximum of about 450 and 510 MPa at the fifth cycle of ARB,respectively and then are reduced.The electrical conductivity decreased slightly by increasing the number of ARB cycles at initial ARB cycles,but the decrease was intensified at the final ARB cycles.In conclusion,the merit of ARB to fabricate this type of multi-layered nanocomposites and the accuracy of the developed model to predict tensile strength were realized.
文摘In the past two decades numerous studies were made to develop and improve the theory and practical computation techniques of synthesizing theoretical seismograms for the model of multi-layered half-space. Today, synthesizing theoretical seismograms in multi-layered half-space is an important tool for understanding the structure of the Earth’s interior as well as the seismic source process from well-recorded seismograms data. As part of a review of the state-of-the-art, in this article I shall present a systematic and self-contained theory of elastic waves in multi-layered half-space media based on the developments in the past two decades.
基金National Natural Science Foundation of China under grant No.51578373 and 51578372the Natural Science Foundation of Tianjin Municipality under Grant No.16JCYBJC21600
文摘The dynamic stiffness method combined with the Fourier transform is utilized to derive the in-plane Green’s functions for inclined and uniformly distributed loads in a multi-layered transversely isotropic(TI)half-space.The loaded layer is fixed to obtain solutions restricted in it and the corresponding reactions forces,which are then applied to the total system with the opposite sign.By adding solutions restricted in the loaded layer to solutions from the reaction forces,the global solutions in the wavenumber domain are obtained,and the dynamic Green’s functions in the space domain are recovered by the inverse Fourier transform.The presented formulations can be reduced to the isotropic case developed by Wolf(1985),and are further verified by comparisons with existing solutions in a uniform isotropic as well as a layered TI halfspace subjected to horizontally distributed loads which are special cases of the more general problem addressed.The deduced Green’s functions,in conjunction with boundary element methods,will lead to significant advances in the investigation of a variety of wave scattering,wave radiation and soil-structure interaction problems in a layered TI site.Selected numerical results are given to investigate the influence of material anisotropy,frequency of excitation,inclination angle and layered on the responses of displacement and stress,and some conclusions are drawn.
基金the support of the National Basic Research Program(973 Program)of China(Grant No.2011CB610304)the National Natural Science Foundation of China(Grant Nos.11332004 and 11402046)+2 种基金China Postdoctoral Science Foundation(No.2015M571296)the 111 Project(B14013)the CATIC Industrial Production Projects(Grant No.CXY2013DLLG32)
文摘We present a design method for calculating and optimizing sound absorption coefficient of multi-layered porous fibrous metals (PFM) in the low frequency range. PFM is simplified as an equivalent idealized sheet with all metallic fibers aligned in one direction and distributed in periodic hexagonal patterns. We use a phenomenological model in the literature to investigate the effects of pore geometrical parameters (fiber diameter and gap) on sound absorption performance. The sound absorption coefficient of multi- layered PFMs is calculated using impedance translation theorem, To demonstrate the validity of the present model, we compare the predicted results with the experimental data. With the average sound absorption (low frequency range) as the objective function and the fiber gaps as the design variables, an optimization method for multi-layered fibrous metals is proposed. A new fibrous layout with given porosity of multi-layered fibrous metals is suggested to achieve optimal low frequency sound absorption. The sound absorption coefficient of the optimal multi-layered fibrous metal is higher than the single- layered fibrous metal, and a significant effect of the fibrous material on sound absorption is found due to the surface Dorosity of the multi-layered fibrous.
基金financially supported by the National Natural Science Foundation of China(21606065,51372060,and 21676067)Anhui Provincial Natural Science Foundation(1708085QE98)+1 种基金the Fundamental Research Funds for the Central Universities(JZ2017HGTB0198,JZ2018HGBZ0138)the Opening Project of CAS Key Laboratory of Materials for Energy Conversion(KF2018003)
文摘Lithium-sulfur(Li-S)batteries with lithium sulfide(Li2S)as cathode have attracted great attention recently,because of high specific capacity(1166 mA h g^-1)of Li2S and potential safety of using Li metal-free anode.Li2S cathode has lower volume expansion and higher thermal stability than the traditional sulfur cathode.However,the problems of"shuttle effect"and poor electrical conductivity of the cathode material still need to be overcome.In this work,multi-layered Ti3C2/Li2S(ML-Ti3C2/Li2S)composite has been prepared and applied as a cathode in advanced Li-S batteries.The unique multi-layer sheet structure of Ti3 C2 provides space for the storage of Li2S,and its good conductivity greatly enhances the usage ratio of Li2 S and improves the conductivity of the whole Li2S cathode.Compared with commonly used graphene,ML-Ti3C2 can trap polysulfides effectively by chemical adsorption and also activate the reaction of Li2S to polysulfides by forming Ti-S bond.As a result,during the cycling of the batteries with ML-Ti3C2/Li2S cathodes,the activation voltage barrier of the first cycle has decreased to 2.8 V,and the"shuttle effect"has been suppressed effectively.The cycling and rate performances of the ML-Ti3C2/Li2S cathodes have been significantly improved compared to that of graphene/Li2 S cathodes.They maintain a capacity of 450 mAh g^-1 at 0.2 C after 100 cycles,and deliver attractive rate performances of 750,630,540,470 and 360 mAh g^-1 at 0.1 C,0.2 C,0.5 C,1 C,and 2 C,respectively.
基金Project(51874202) supported by the National Natural Science Foundation of ChinaProject(2017JQ0003) supported by the Sichuan Youth Fund,China。
文摘Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of shallow strips and circular plate anchors in multi-layered soils.The nonlinear strength criterion and non-associated flow rule of geotechnical materials were introduced to investigate the influence of nonuniformity on the pullout performance and failure mechanism of shallow plate anchors.The expressions of the detaching curves or surfaces were obtained to reflect the failure mechanism,which can be used to figure out the ultimate uplift capacity and failure range.The results are generally in agreement with the numerical simulations and previous research.The effects of various parameters on the ultimate uplift capacity and failure mechanism of plate anchors in multi-layered soils were investigated,and it is found that the ultimate uplift capacity and failure range of shallow anchors increase with the increase of initial cohesion and dilatancy coefficient,but decrease with the unit weight,axial tensile stress and nonlinear coefficient.
基金the National Natural Science Foundation of China(No:21703285)。
文摘Various nanostructured architectures have been demonstrated to be effective to address the issues of high capacity Si anodes. However, the scale-up of these nano-Si materials is still a critical obstacle for commercialization. Herein, we use industrial ferrosilicon as low-cost Si source and introduce a facile and scalable method to fabricate a micrometer-sized ferrosilicon/C composite anode, in which ferrosilicon microparticles are wrapped with multi-layered carbon nanosheets. The multi-layered carbon nanosheets could effectively buffer the volume variation of Si as well as create an abundant and reliable conductivity framework, ensuring fast transport of electrons. As a result, the micrometer-sized ferrosilicon/C anode achieves a stable cycling with 805.9 m Ah g-1 over 200 cycles at 500 mA g-1 and a good rate capability of455.6 mAh g-1 at 10 A g-1. Therefore, our approach based on ferrosilicon provides a new opportunity in fabricating cost-effective, pollution-free, and large-scale Si electrode materials for high energy lithium-ion batteries.