The explosive reaction degree and protection from explosions are concerns in the military field.In this work,the reaction degree of the composition B explosive was investigated experimentally.Multi-layered compound st...The explosive reaction degree and protection from explosions are concerns in the military field.In this work,the reaction degree of the composition B explosive was investigated experimentally.Multi-layered compound structures were used as barriers to weaken the blast loads.A comprehensive experiment using a high-speed camera and image processing techniques,side witness plates,and bottom witness plates was presented.Using the experimental fragment velocities,fragment piercing patterns,and damage characteristics,the reaction degree of the explosive impeded by different multi-layered compound structures could be precisely differentiated.Reaction parameters of the explosive obstructed by compound structures were obtained by theoretical analysis and numerical simulations.Unlike the common method in which the explosive reaction degree is only distinguished based on the initial pressure amplitude transmitted into the explosive,a following shock wave reflected from the side steel casing was also considered.Different detonation growth paths in the explosive formed.Therefore,all these shock wave propagation characteristics must be considered to analyze the explosive response impeded by compound structures.展开更多
[Objective] The aim was to study the effect of tomato yellow leaf curl virus (TYLCV) infection on leaf anatomical structure and protective enzyme system of tomato. [Method] The anatomical structure of infected and h...[Objective] The aim was to study the effect of tomato yellow leaf curl virus (TYLCV) infection on leaf anatomical structure and protective enzyme system of tomato. [Method] The anatomical structure of infected and healthy leaves of tomato were observed and compared by using paraffin section method. The activity changes of SOD, POD and CAT in the infected leaves of tomato were determined. [ Result] The results revealed that there were some differences in anatomical structure between healthy and infected leaves. Some cells of infected leaves were damaged so that the leaves curled and became yellow, which affected the normal function of organs. Compared with control, enzyme activities in the tomato plants infected by TYLCV were enhanced at the early periods and higher than that in control, then started to decline at the middle and late periods but lower than that in control.[ Conclusion] After infection by TYLCV, the leaf anatomical structure of tomato was changed greatly and the protective enzyme system was damaged severely, and affected the normal physJological metabolic functions of tissues and organs in tomato in further.展开更多
Transportation structures such as composite pavements and railway foundations typically consist of multi-layered media designed to withstand high bearing capacity.A theoretical understanding of load transfer mechanism...Transportation structures such as composite pavements and railway foundations typically consist of multi-layered media designed to withstand high bearing capacity.A theoretical understanding of load transfer mechanisms in these multi-layer composites is essential,as it offers intuitive insights into parametric influences and facilitates enhanced structural performance.This paper employs an improved transfer matrix method to address the limitations of existing theoretical approaches for analyzing multi-layer composite structures.By establishing a twodimensional composite pavement model,it investigates load transfer characteristics and validates the accuracy through finite element simulation.The proposed method offers a straightforward analytical approach for examining internal interactions between structural layers.Case studies indicate that the concrete surface layer is the main load-bearing layer for most vertical normal and shear stresses.The soil base layer reduces the overall mechanical response of the substructure,while horizontal actions increase the risk of interfacial slip and cracking.Structural optimization analysis demonstrates that increasing the thickness of the concrete surface layer,enhancing the thickness and stiffness of the soil base layer,or incorporating gradient layers can significantly mitigate these risks of interfacial slip and cracking.The findings of this study can guide the optimization design,parameter analysis,and damage prevention of multi-layer composite structures.展开更多
Beach groynes are structures for erosion protection along sandy coasts near inlets and can reduce the coastal erosion substantially,but open groynes cannot stop erosion completely because sand can be removed from the ...Beach groynes are structures for erosion protection along sandy coasts near inlets and can reduce the coastal erosion substantially,but open groynes cannot stop erosion completely because sand can be removed from the groyne compartments by cross-shore processes.Beach groynes should be designed with sufficient bypassing of sand to minimise erosion.Regular beach maintenance is required to keep a sufficient beach width for recreational purposes.The effectiveness of groyne compartments can be significantly improved by using T-head groynes or by using a submerged sill or breakwater in between the groynes.An economic evaluation shows that the beach maintenance costs over 50 years may be substantially higher than the construction costs of a submerged breakwater.An important parameter to be studied is the longshore transport,which requires detailed information of the wave climate,preferably based on measured data(offshore buoys)in combination with deep water wave modelling.Various models have been used to determine the net longshore sand transport and coastline changes.The design of groynes to reduce coastal erosion is illustrated by three field cases(Atlantic coast near Soulac,France;Lagos coast,Nigeria and Black Sea coast,Romania).These example cases show that beach groynes are effective structures,but sufficient bypassing of longshore sand transport is essential to minimise erosion.Regular beach fills in the groyne compartments may be required at high-energy(exposed)coasts.A submerged or emerged breakwater can be built between the groynes to protect the beach in the groyne compartments against erosion by cross-shore processes.展开更多
In this study, several kinds of flexible protective materials sprayed with polyurea elastomers (hereinafter referred to as polyurea elastomer protective material) were adopted to meet the abrasion resistance require...In this study, several kinds of flexible protective materials sprayed with polyurea elastomers (hereinafter referred to as polyurea elastomer protective material) were adopted to meet the abrasion resistance requirement of hydraulic structures, and their abrasion resistances against the water flow with suspended load or bed load were studied systematically through tests. Natural basalt stones were adopted as the abrasive for simulation of the abrasion effect of the water flow with bed load, and test results indicate that the basalt stone is suitable for use in the abrasion resistance test of the flexible protective material. The wear process of the polyurea elastomer protective material is stable, and the wear loss is linear with the time of abrasion. If the wear thickness is regarded as the abrasion resistance evaluation factor, the abrasion resistance of the 351 pure polyurea is about twice those of pure polyurea with a high level of hardness and aliphatic polyurea, and over five times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with suspended load. It is also about 50 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load. Overall, the abrasion resistance of pure polyurea presented a decreasing trend with increasing hardness. Pure polyurea with a Shore hardness of D30 has the best abrasion resistance, which is 60 to 70 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load, and has been recommended, among the five kinds of pure polyurea materials with different hardness, in anti-abrasion protection of hydraulic structures.展开更多
Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate ...Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate these attacks but are cumbersome, neglect dynamic protection of community structure, and lack precise utility measures. To address these challenges, we present a dynamic social network graph anonymity scheme with community structure protection (DSNGA-CSP), which achieves the dynamic anonymization process by incorporating community detection. First, DSNGA-CSP categorizes communities of the original graph into three types at each timestamp, and only partitions community subgraphs for a specific category at each updated timestamp. Then, DSNGA-CSP achieves intra-community and inter-community anonymization separately to retain more of the community structure of the original graph at each timestamp. It anonymizes community subgraphs by the proposed novel -composition method and anonymizes inter-community edges by edge isomorphism. Finally, a novel information loss metric is introduced in DSNGA-CSP to precisely capture the utility of the anonymized graph through original information preservation and anonymous information changes. Extensive experiments conducted on five real-world datasets demonstrate that DSNGA-CSP consistently outperforms existing methods, providing a more effective balance between privacy and utility. Specifically, DSNGA-CSP shows an average utility improvement of approximately 30% compared to TAKG and CTKGA for three dynamic graph datasets, according to the proposed information loss metric IL.展开更多
The two-tier shareholding structure,which originated in the United States,has become popular around the world.Unlike the traditional model of“equal shares with equal rights”,the core feature of the two-tier sharehol...The two-tier shareholding structure,which originated in the United States,has become popular around the world.Unlike the traditional model of“equal shares with equal rights”,the core feature of the two-tier shareholding structure is that the company issues two classes of shares with different voting rights.It enables the concentration and stabilization of corporate control,which has a positive effect on the long-term development of the company and resistance to hostile takeovers.Against the background of the rapid development of the capital market and the continuous innovation of corporate governance structure,the two-tier shareholding structure has begun to be adopted by many enterprises.While this structure can improve the efficiency of corporate governance and promote corporate growth,it also raises a number of challenges.In particular,for small and medium-sized shareholders,their shareholdings may face the problem of limited or no voting rights,as well as the lack of an effective internal and external monitoring mechanism for the company.These issues may lead to the impairment of the rights of small and medium-sized shareholders.Currently,challenges in practice include inadequate laws and regulations,insufficient disclosure of information,and inadequate monitoring mechanisms.Therefore,exploring the path to protect the rights and interests of small and medium-sized shareholders and analyzing their current situation has become an important area in the study of two-tier shareholding structures.This paper starts from the actual situation,analyzes the problems exposed in the operation process of two-tier shareholding structure,and then explores the practical and feasible methods to protect the rights and interests of small and medium-sized shareholders on this basis,with a view to putting forward valuable references for the development of China’s securities market.展开更多
A comprehensive protective structure with rigidity and flexibility was put forward and designed in view of the quality and safety problems for the double vertical explosive welding of large titanium/steel cladding pla...A comprehensive protective structure with rigidity and flexibility was put forward and designed in view of the quality and safety problems for the double vertical explosive welding of large titanium/steel cladding plate.The movement speed and displacement of the protective structure was calculated by establishing its physics model.The dynamics and stabilization properties were analyzed,and the protective structure parameters were optimized and devised.The comprehensive protective structure,which is composed of rigidity unit and flexibility wall,can bear the impact of detonation wave and the high-speed movement of the cladding plate.There are no damage and deformation in the protective structure and the cladding plate.The protective structure can be used many times.The bonding rate of the Ti/steel plate obtained was nearly 100%,and there is no deformation,surface cracks,and big wave and micro-defects.Therefore,the protective problems of the double vertical explosive welding can be solved effectively by the protective structure.展开更多
In order to study the influence of the bolt joint mode on low-velocity projectiles penetrating the composite protective structure,two bolt joint models which connect the composite target to the fixed frame were design...In order to study the influence of the bolt joint mode on low-velocity projectiles penetrating the composite protective structure,two bolt joint models which connect the composite target to the fixed frame were designed,the ballistic test of the bolted composite protective structure with limited span was carried out,and the bearing and failure characteristics of the bolted region,as well as the energy dissipation of each part of the structure,were analyzed.The results show that in the condition of lowvelocity impact,there are three failure modes for the bolted composite protective structure subjected to projectile penetration,including failure of the impact point of the composite target,failure of protective structure connecting components and failure of the holes in the bolted region of the composite target;the failure mode of bolt holes in the bolted region has a great influence on the protection performance,and the allowable value of the bearing capacity of the bolted region depends on the sum of the minimum failure load in the failure modes and the friction force;shear-out failure occurring in the bolt holes in the bolted region exerts the greatest effect on ballistic performance,which should be avoided;When simultaneous failure occurs in the bolted region and the free deformation region of the composite protective structure,the energy absorption per unit surface density of the composite protective structure reaches the maximum,which can give full play to its anti-penetration efficiency.展开更多
Cotton fabrics treated with phase change materials( PCMs)were used in multi-layered fabrics of the fire fighter protective clothing to study its effect on thermal protection. The thermal protective performance( TPP) o...Cotton fabrics treated with phase change materials( PCMs)were used in multi-layered fabrics of the fire fighter protective clothing to study its effect on thermal protection. The thermal protective performance( TPP) of the multi-layered fabrics was measured by a TPP tester under flash fire. Results showed that the utilization of the PCM fabrics improved the thermal protective performance of the multi-layered fabrics. The fabric with a PCM add on of 41. 9% increased the thermal protection by 50. 6% and reduced the time to reach a second degree burn by 8. 4 s compared with the reference fabrics( without PCMs). The employment of the PCM fabrics also reduced the blackened areas on the inner layers. The PCM fabrics with higher PCM melting temperature could bring higher thermal protective performance.展开更多
Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulne...Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from.展开更多
This paper discusses the use of Underground Metro stations and tunnels as protective structures in case of nuclear emergencies. Six lines are taken as a case study to investigate the use of their underground stations ...This paper discusses the use of Underground Metro stations and tunnels as protective structures in case of nuclear emergencies. Six lines are taken as a case study to investigate the use of their underground stations and tunnels. The research explains the structural design of Underground Metro and the necessary needs for hidden people inside Underground Metro used as shelters. The research investigates the calculations of the number of hidden persons inside Underground Metro used as shelters. A field study has been conducted to an Underground Metro station to detemaine the peaceful use and the emergency use of all basements of the station. Also, the field study aims to determine the existing spaces and the needed spaces of the Underground Metro station to dual--used as a nuclear shelter. Three Underground Metro stations have been selected and a field study has been conducted to determine the usages of these basements, the planning, general and design features for each one of them, and whether they can be used as protective structures for citizens in emergencies. These basements were compared for their protective factors. Also, their capacities for sheltering were calculated.展开更多
Protective structures, built in the 1980's in order to reduce or stop coastal erosion in Rufisque, involved a modification of the coastal morpho-sedimentary landscape and have intensified the coastal dynamics. The di...Protective structures, built in the 1980's in order to reduce or stop coastal erosion in Rufisque, involved a modification of the coastal morpho-sedimentary landscape and have intensified the coastal dynamics. The diachronic study of beach profiles, before and after the seawalls construction showed that these protective structures accentuated the coastal erosion, with more important sedimentary deficits at the ends of the structures. Today, the Rufisque coast is characterized by a set of sedimentary cells whose morphological evolution and annual sedimentary dynamics are controlled by seasonal forcing: sedimentary deposits in dry season and erosion in wet season. However, this alternation of deposits and erosion phase shows spatiotemporal disparities. These disparities are very marked between a northwestern area characterized by concave profiles and a southeastern area (the bay of Rufisque) characterized by convex profiles and a much more important sedimentary deficit. The results also showed that these methods of shoreline protection are not durable measurements (degradation of the structures) and have exacerbated the vulnerability to coastal erosion as well as those of the coastal populations.展开更多
The structural design and protective methods for the 100 kW shoreline wave power station in China are described in detail. The proper structural type is designed for effective minimization of wave loads and bending st...The structural design and protective methods for the 100 kW shoreline wave power station in China are described in detail. The proper structural type is designed for effective minimization of wave loads and bending stress. Various protective devices are adopted to protect the station in the extreme conditions against excessive power of airflow, excessive torsion of the shaft, over-pressure of the chamber, over-speed of rotation, power failure, and so on. It turns out that the structural design and protective methods for the 100 kW shoreline wave power station are successful.展开更多
Root length and root length density of Lespedeza bicolor,Amorpha fruticosa,and Sea buckthorn were investigated in a country highway-TongSan highway(Tongjiang to Sanya) in Heilongjiang Province,China.The root lengths...Root length and root length density of Lespedeza bicolor,Amorpha fruticosa,and Sea buckthorn were investigated in a country highway-TongSan highway(Tongjiang to Sanya) in Heilongjiang Province,China.The root lengths were divided into five root orders according to Pregizter sequence classification method.Results show that sea buckthorn roots are dominated by coarse roots in the horizontal growth,while L.bicolor has a large proportion of fine roots in vertical conical growth and A.fruticosa is in depth growth.Root length density of L.bicolor in all the root sequences is higher than that of sea buckthorn and A.fruticosa.On the basis of the root structure,it is inferred that L.bicolor roots mainly absorb the surface soil moisture for its normal growth;in contrast,A.fruticosa has good uptake ability to deep soil water.The root structure of sea buckthorn implies that it has a strong drought resistance.展开更多
In order to ensure the security of information systems, it's essential to make sure that system behaviors are trusted. By analyzing threats that exist in executing procedures, a trust model based on structured pro...In order to ensure the security of information systems, it's essential to make sure that system behaviors are trusted. By analyzing threats that exist in executing procedures, a trust model based on structured protection is proposed. We consider that functional components, system actions and message flows between components are three key factors of information systems. Structured protection requirements on components, connections and action parameters are also provided. Four trusted properties of the model are deducted through formal analysis, and trusted system behavior is defined based on these properties. Furthermore, decision theorem of trusted system behavior is proved. The developed prototype system indicates the model is practical. It is a general theory model built on logic deduction and independent on specific environment and the behaviors of the system designed and implemented following the model are trusted.展开更多
The thermal protection materials and structures are widely used in hypersonic vehicles for the purpose of thermal insulation, and their mechanical behavior is one of the key issues in design and manufacture of hyperso...The thermal protection materials and structures are widely used in hypersonic vehicles for the purpose of thermal insulation, and their mechanical behavior is one of the key issues in design and manufacture of hypersonic vehicles. It is our great pleasure to present the seven papers in this special subject of Theoretical & Applied Mechanics Letters (TAML) and introduce the recent progresses on the mechanical behavior of thermal protection materials and structures by the authors.展开更多
In the printing industry,the common method of coloring relies on inks,which contains amounts of chemical agents,causing environment pollution.However,structural color achieves coloration through the refraction and dif...In the printing industry,the common method of coloring relies on inks,which contains amounts of chemical agents,causing environment pollution.However,structural color achieves coloration through the refraction and diffraction of light by periodic structure,offering eco-friendly and fade-resistant advantages,as well as colorful.In this study,screen printing was used to create patterned mask on paper substrates.Then,coated SiO_(2)microspheres on the mask to create structural color patterns with angle-dependent color characteristics.The patterns showed color changes from rose-red to orange to green by changing the viewing angle.By changing the color grayscale,the absorption of stray light by the substrate was enhanced,thereby the brightness and saturation of the structural color improved too.This method is simple,cost-effective,and environmentally friendly,and it has highly promising for the application in printing and anti-counterfeiting.展开更多
Doxorubicin(DOX)is a widely employed tumor therapy,yet its substantial toxic side effects pose a considerable challenge.Bletilla striata has demonstrated efficacy in preventing and treating these toxic side effects in...Doxorubicin(DOX)is a widely employed tumor therapy,yet its substantial toxic side effects pose a considerable challenge.Bletilla striata has demonstrated efficacy in preventing and treating these toxic side effects in clinical practice,with polysaccharides identified as the principal active component.In the present study,16 fractions of B.striata polysaccharides(BsPs)were extracted using diverse methods,including hot-water extraction(HWE),ultrasonic-assisted extraction(UAE),enzyme-assisted extraction(EAE),dilute acid-water extraction(ACWE),and dilute alkali-water extraction(ALWE).These extractions were subsequently precipitated at final ethanol concentrations of 80%and 95%,respectively.The investigation encompassed yields,total carbohydrate content(TCC),total protein content(TPC),preliminary structural properties,and anti-DOX myocardial cytotoxic activity.Results indicated that the extraction method significantly influenced the physicochemical properties,associated functional properties,and anti-DOX myocardial cytotoxic activity of BsPs.HWE and UAE yielded higher BsPs quantities.The relative molecular weight(RMW)distribution of BsPs differed notably between HWE or UAE,EAE,ACWE,and ALWE.The RMW of primary BsPs obtained from HWE and UAE(1.9×10^(7)-1.7×10^(7) Da)exceeded that from EAE(7.5×10^(3)-2.8×10^(4) Da)and ALWE(5.1×10^(4)-1.7×10^(4) Da),with smaller molecular weights primarily precipitated by higher ethanol concentrations.BsPs were composed of Man and Glu,with partial fractions containing small amounts of Gal or Ara,displaying varying molar ratios.Notably,BsPs from ACWE exhibited the most significant structural differences,lacking 1,4-α-D-Glcp and a triple-helical structure.Furthermore,BsPs obtained from HWE,UAE,and EAE demonstrated heightened anti-DOX myocardial cytotoxic activity compared to other methods.This study underscored the influence of extraction methods on BsPs’structure and myocardial protective activity,offering a foundation for exploring structural diversity and employing specific extraction methods to extract polysaccharides with robust myocardial protective properties efficiently.展开更多
This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi...This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi analytical solutions of temperature increment and displacement of multi-layered composite structures are obtained by using the Laplace transform method,upon which the effects of thermal resistance coefficient,partition coefficient,thermal conductivity ratio and heat capacity ratio on the responses are studied.The results show that the generalized imperfect thermal contact model can realistically describe the imperfect thermal contact problem.Accordingly,it may degenerate into other thermal contact models by adjusting the thermal resistance coefficient and partition coefficient.展开更多
基金The authors are very grateful for the support received from the National Natural Science Foundation of China(No.11872121).
文摘The explosive reaction degree and protection from explosions are concerns in the military field.In this work,the reaction degree of the composition B explosive was investigated experimentally.Multi-layered compound structures were used as barriers to weaken the blast loads.A comprehensive experiment using a high-speed camera and image processing techniques,side witness plates,and bottom witness plates was presented.Using the experimental fragment velocities,fragment piercing patterns,and damage characteristics,the reaction degree of the explosive impeded by different multi-layered compound structures could be precisely differentiated.Reaction parameters of the explosive obstructed by compound structures were obtained by theoretical analysis and numerical simulations.Unlike the common method in which the explosive reaction degree is only distinguished based on the initial pressure amplitude transmitted into the explosive,a following shock wave reflected from the side steel casing was also considered.Different detonation growth paths in the explosive formed.Therefore,all these shock wave propagation characteristics must be considered to analyze the explosive response impeded by compound structures.
基金Supported by the National 863 Program:Gene Polymerization Tech-nology Study and New Variety Breeding of High-qualityMulti-resist-ance and High-yield Tomato(2007AA10Z178)+1 种基金Shanghai Agricul-ture Committee Key ProjectGermplasm Innovation of Tomato Re-sistance to Yellow Leaf Curl Virus(2007)~~
文摘[Objective] The aim was to study the effect of tomato yellow leaf curl virus (TYLCV) infection on leaf anatomical structure and protective enzyme system of tomato. [Method] The anatomical structure of infected and healthy leaves of tomato were observed and compared by using paraffin section method. The activity changes of SOD, POD and CAT in the infected leaves of tomato were determined. [ Result] The results revealed that there were some differences in anatomical structure between healthy and infected leaves. Some cells of infected leaves were damaged so that the leaves curled and became yellow, which affected the normal function of organs. Compared with control, enzyme activities in the tomato plants infected by TYLCV were enhanced at the early periods and higher than that in control, then started to decline at the middle and late periods but lower than that in control.[ Conclusion] After infection by TYLCV, the leaf anatomical structure of tomato was changed greatly and the protective enzyme system was damaged severely, and affected the normal physJological metabolic functions of tissues and organs in tomato in further.
基金supported by Fundamental Research Funds for the Central Universities(No.lzujbky-2024-05)Innovation Foundation of Provincial Education Department of Gansu(2024B-005)+2 种基金Scientific Department of Gansu(24CXGA083,24CXGA024,JK2024-28,JK2024-32 and 23CXJA0007)Industrial Support Plan Project of Provincial Education Department of Gansu(2025CYZC-003 and CYZC-2024-10)the Hunan Natural Science Foundation Science and Education Joint Fund Project(2022JJ60109).
文摘Transportation structures such as composite pavements and railway foundations typically consist of multi-layered media designed to withstand high bearing capacity.A theoretical understanding of load transfer mechanisms in these multi-layer composites is essential,as it offers intuitive insights into parametric influences and facilitates enhanced structural performance.This paper employs an improved transfer matrix method to address the limitations of existing theoretical approaches for analyzing multi-layer composite structures.By establishing a twodimensional composite pavement model,it investigates load transfer characteristics and validates the accuracy through finite element simulation.The proposed method offers a straightforward analytical approach for examining internal interactions between structural layers.Case studies indicate that the concrete surface layer is the main load-bearing layer for most vertical normal and shear stresses.The soil base layer reduces the overall mechanical response of the substructure,while horizontal actions increase the risk of interfacial slip and cracking.Structural optimization analysis demonstrates that increasing the thickness of the concrete surface layer,enhancing the thickness and stiffness of the soil base layer,or incorporating gradient layers can significantly mitigate these risks of interfacial slip and cracking.The findings of this study can guide the optimization design,parameter analysis,and damage prevention of multi-layer composite structures.
文摘Beach groynes are structures for erosion protection along sandy coasts near inlets and can reduce the coastal erosion substantially,but open groynes cannot stop erosion completely because sand can be removed from the groyne compartments by cross-shore processes.Beach groynes should be designed with sufficient bypassing of sand to minimise erosion.Regular beach maintenance is required to keep a sufficient beach width for recreational purposes.The effectiveness of groyne compartments can be significantly improved by using T-head groynes or by using a submerged sill or breakwater in between the groynes.An economic evaluation shows that the beach maintenance costs over 50 years may be substantially higher than the construction costs of a submerged breakwater.An important parameter to be studied is the longshore transport,which requires detailed information of the wave climate,preferably based on measured data(offshore buoys)in combination with deep water wave modelling.Various models have been used to determine the net longshore sand transport and coastline changes.The design of groynes to reduce coastal erosion is illustrated by three field cases(Atlantic coast near Soulac,France;Lagos coast,Nigeria and Black Sea coast,Romania).These example cases show that beach groynes are effective structures,but sufficient bypassing of longshore sand transport is essential to minimise erosion.Regular beach fills in the groyne compartments may be required at high-energy(exposed)coasts.A submerged or emerged breakwater can be built between the groynes to protect the beach in the groyne compartments against erosion by cross-shore processes.
基金supported by the National Natural Science Foundation of China(Grants No.51109143 and 51209144)the Natural Science Foundation of Jiangsu Province(Grant No.BK2011109)the Foundation of Nanjing Hydraulic Research Institute(Grant No.Y113004)
文摘In this study, several kinds of flexible protective materials sprayed with polyurea elastomers (hereinafter referred to as polyurea elastomer protective material) were adopted to meet the abrasion resistance requirement of hydraulic structures, and their abrasion resistances against the water flow with suspended load or bed load were studied systematically through tests. Natural basalt stones were adopted as the abrasive for simulation of the abrasion effect of the water flow with bed load, and test results indicate that the basalt stone is suitable for use in the abrasion resistance test of the flexible protective material. The wear process of the polyurea elastomer protective material is stable, and the wear loss is linear with the time of abrasion. If the wear thickness is regarded as the abrasion resistance evaluation factor, the abrasion resistance of the 351 pure polyurea is about twice those of pure polyurea with a high level of hardness and aliphatic polyurea, and over five times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with suspended load. It is also about 50 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load. Overall, the abrasion resistance of pure polyurea presented a decreasing trend with increasing hardness. Pure polyurea with a Shore hardness of D30 has the best abrasion resistance, which is 60 to 70 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load, and has been recommended, among the five kinds of pure polyurea materials with different hardness, in anti-abrasion protection of hydraulic structures.
基金supported by the Natural Science Foundation of China(No.U22A2099)the Innovation Project of Guangxi Graduate Education(YCBZ2023130).
文摘Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate these attacks but are cumbersome, neglect dynamic protection of community structure, and lack precise utility measures. To address these challenges, we present a dynamic social network graph anonymity scheme with community structure protection (DSNGA-CSP), which achieves the dynamic anonymization process by incorporating community detection. First, DSNGA-CSP categorizes communities of the original graph into three types at each timestamp, and only partitions community subgraphs for a specific category at each updated timestamp. Then, DSNGA-CSP achieves intra-community and inter-community anonymization separately to retain more of the community structure of the original graph at each timestamp. It anonymizes community subgraphs by the proposed novel -composition method and anonymizes inter-community edges by edge isomorphism. Finally, a novel information loss metric is introduced in DSNGA-CSP to precisely capture the utility of the anonymized graph through original information preservation and anonymous information changes. Extensive experiments conducted on five real-world datasets demonstrate that DSNGA-CSP consistently outperforms existing methods, providing a more effective balance between privacy and utility. Specifically, DSNGA-CSP shows an average utility improvement of approximately 30% compared to TAKG and CTKGA for three dynamic graph datasets, according to the proposed information loss metric IL.
文摘The two-tier shareholding structure,which originated in the United States,has become popular around the world.Unlike the traditional model of“equal shares with equal rights”,the core feature of the two-tier shareholding structure is that the company issues two classes of shares with different voting rights.It enables the concentration and stabilization of corporate control,which has a positive effect on the long-term development of the company and resistance to hostile takeovers.Against the background of the rapid development of the capital market and the continuous innovation of corporate governance structure,the two-tier shareholding structure has begun to be adopted by many enterprises.While this structure can improve the efficiency of corporate governance and promote corporate growth,it also raises a number of challenges.In particular,for small and medium-sized shareholders,their shareholdings may face the problem of limited or no voting rights,as well as the lack of an effective internal and external monitoring mechanism for the company.These issues may lead to the impairment of the rights of small and medium-sized shareholders.Currently,challenges in practice include inadequate laws and regulations,insufficient disclosure of information,and inadequate monitoring mechanisms.Therefore,exploring the path to protect the rights and interests of small and medium-sized shareholders and analyzing their current situation has become an important area in the study of two-tier shareholding structures.This paper starts from the actual situation,analyzes the problems exposed in the operation process of two-tier shareholding structure,and then explores the practical and feasible methods to protect the rights and interests of small and medium-sized shareholders on this basis,with a view to putting forward valuable references for the development of China’s securities market.
基金Project was supported by the National Natural Science Foundation of China(Grant No.51541112).
文摘A comprehensive protective structure with rigidity and flexibility was put forward and designed in view of the quality and safety problems for the double vertical explosive welding of large titanium/steel cladding plate.The movement speed and displacement of the protective structure was calculated by establishing its physics model.The dynamics and stabilization properties were analyzed,and the protective structure parameters were optimized and devised.The comprehensive protective structure,which is composed of rigidity unit and flexibility wall,can bear the impact of detonation wave and the high-speed movement of the cladding plate.There are no damage and deformation in the protective structure and the cladding plate.The protective structure can be used many times.The bonding rate of the Ti/steel plate obtained was nearly 100%,and there is no deformation,surface cracks,and big wave and micro-defects.Therefore,the protective problems of the double vertical explosive welding can be solved effectively by the protective structure.
基金the financial support of the National Natural Science Foundation of China(Grant nos.51679246)。
文摘In order to study the influence of the bolt joint mode on low-velocity projectiles penetrating the composite protective structure,two bolt joint models which connect the composite target to the fixed frame were designed,the ballistic test of the bolted composite protective structure with limited span was carried out,and the bearing and failure characteristics of the bolted region,as well as the energy dissipation of each part of the structure,were analyzed.The results show that in the condition of lowvelocity impact,there are three failure modes for the bolted composite protective structure subjected to projectile penetration,including failure of the impact point of the composite target,failure of protective structure connecting components and failure of the holes in the bolted region of the composite target;the failure mode of bolt holes in the bolted region has a great influence on the protection performance,and the allowable value of the bearing capacity of the bolted region depends on the sum of the minimum failure load in the failure modes and the friction force;shear-out failure occurring in the bolt holes in the bolted region exerts the greatest effect on ballistic performance,which should be avoided;When simultaneous failure occurs in the bolted region and the free deformation region of the composite protective structure,the energy absorption per unit surface density of the composite protective structure reaches the maximum,which can give full play to its anti-penetration efficiency.
基金Fundamental Research Funds for the Central Universities,China(No.14D110715/17/18)Start up Fund by Shanghai University of Engineering Science(No.2015-69)Young Teacher Training Program by Shanghai,China(No.ZZGCD15051))
文摘Cotton fabrics treated with phase change materials( PCMs)were used in multi-layered fabrics of the fire fighter protective clothing to study its effect on thermal protection. The thermal protective performance( TPP) of the multi-layered fabrics was measured by a TPP tester under flash fire. Results showed that the utilization of the PCM fabrics improved the thermal protective performance of the multi-layered fabrics. The fabric with a PCM add on of 41. 9% increased the thermal protection by 50. 6% and reduced the time to reach a second degree burn by 8. 4 s compared with the reference fabrics( without PCMs). The employment of the PCM fabrics also reduced the blackened areas on the inner layers. The PCM fabrics with higher PCM melting temperature could bring higher thermal protective performance.
文摘Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from.
文摘This paper discusses the use of Underground Metro stations and tunnels as protective structures in case of nuclear emergencies. Six lines are taken as a case study to investigate the use of their underground stations and tunnels. The research explains the structural design of Underground Metro and the necessary needs for hidden people inside Underground Metro used as shelters. The research investigates the calculations of the number of hidden persons inside Underground Metro used as shelters. A field study has been conducted to an Underground Metro station to detemaine the peaceful use and the emergency use of all basements of the station. Also, the field study aims to determine the existing spaces and the needed spaces of the Underground Metro station to dual--used as a nuclear shelter. Three Underground Metro stations have been selected and a field study has been conducted to determine the usages of these basements, the planning, general and design features for each one of them, and whether they can be used as protective structures for citizens in emergencies. These basements were compared for their protective factors. Also, their capacities for sheltering were calculated.
文摘Protective structures, built in the 1980's in order to reduce or stop coastal erosion in Rufisque, involved a modification of the coastal morpho-sedimentary landscape and have intensified the coastal dynamics. The diachronic study of beach profiles, before and after the seawalls construction showed that these protective structures accentuated the coastal erosion, with more important sedimentary deficits at the ends of the structures. Today, the Rufisque coast is characterized by a set of sedimentary cells whose morphological evolution and annual sedimentary dynamics are controlled by seasonal forcing: sedimentary deposits in dry season and erosion in wet season. However, this alternation of deposits and erosion phase shows spatiotemporal disparities. These disparities are very marked between a northwestern area characterized by concave profiles and a southeastern area (the bay of Rufisque) characterized by convex profiles and a much more important sedimentary deficit. The results also showed that these methods of shoreline protection are not durable measurements (degradation of the structures) and have exacerbated the vulnerability to coastal erosion as well as those of the coastal populations.
文摘The structural design and protective methods for the 100 kW shoreline wave power station in China are described in detail. The proper structural type is designed for effective minimization of wave loads and bending stress. Various protective devices are adopted to protect the station in the extreme conditions against excessive power of airflow, excessive torsion of the shaft, over-pressure of the chamber, over-speed of rotation, power failure, and so on. It turns out that the structural design and protective methods for the 100 kW shoreline wave power station are successful.
基金supported by Natural Science Fund Project of Heilongjiang Province (41309602)
文摘Root length and root length density of Lespedeza bicolor,Amorpha fruticosa,and Sea buckthorn were investigated in a country highway-TongSan highway(Tongjiang to Sanya) in Heilongjiang Province,China.The root lengths were divided into five root orders according to Pregizter sequence classification method.Results show that sea buckthorn roots are dominated by coarse roots in the horizontal growth,while L.bicolor has a large proportion of fine roots in vertical conical growth and A.fruticosa is in depth growth.Root length density of L.bicolor in all the root sequences is higher than that of sea buckthorn and A.fruticosa.On the basis of the root structure,it is inferred that L.bicolor roots mainly absorb the surface soil moisture for its normal growth;in contrast,A.fruticosa has good uptake ability to deep soil water.The root structure of sea buckthorn implies that it has a strong drought resistance.
基金supported by National Science and Technology Major Project under Grant No.2012ZX03002003Funds of Key Lab of Fujian Province University Network Security and Cryptology under Grant No.2011009Open Research Project of State Key Laboratory of Information Security in Institute of Software,Chinese Academy of Sciences
文摘In order to ensure the security of information systems, it's essential to make sure that system behaviors are trusted. By analyzing threats that exist in executing procedures, a trust model based on structured protection is proposed. We consider that functional components, system actions and message flows between components are three key factors of information systems. Structured protection requirements on components, connections and action parameters are also provided. Four trusted properties of the model are deducted through formal analysis, and trusted system behavior is defined based on these properties. Furthermore, decision theorem of trusted system behavior is proved. The developed prototype system indicates the model is practical. It is a general theory model built on logic deduction and independent on specific environment and the behaviors of the system designed and implemented following the model are trusted.
基金support from the Natural Science Foundation of China(91016029,91216302,and 91216301)
文摘The thermal protection materials and structures are widely used in hypersonic vehicles for the purpose of thermal insulation, and their mechanical behavior is one of the key issues in design and manufacture of hypersonic vehicles. It is our great pleasure to present the seven papers in this special subject of Theoretical & Applied Mechanics Letters (TAML) and introduce the recent progresses on the mechanical behavior of thermal protection materials and structures by the authors.
文摘In the printing industry,the common method of coloring relies on inks,which contains amounts of chemical agents,causing environment pollution.However,structural color achieves coloration through the refraction and diffraction of light by periodic structure,offering eco-friendly and fade-resistant advantages,as well as colorful.In this study,screen printing was used to create patterned mask on paper substrates.Then,coated SiO_(2)microspheres on the mask to create structural color patterns with angle-dependent color characteristics.The patterns showed color changes from rose-red to orange to green by changing the viewing angle.By changing the color grayscale,the absorption of stray light by the substrate was enhanced,thereby the brightness and saturation of the structural color improved too.This method is simple,cost-effective,and environmentally friendly,and it has highly promising for the application in printing and anti-counterfeiting.
基金Science and Technology Foundation of Guizhou Province(Grant No.QKHJC-ZK[2023]YB524)Science and Technology Plan Project of Guizhou,China(Grant No.QKPTRC[2019]035)+2 种基金Science and Technology Foundation of Guizhou Province(Grant No.QKH[2019]1346)Science and Technology Department of Zunyi city of Guizhou province of China(Grant No.[2020]7)Undergraduate Training Program for Innovation and Entrepreneurship of Zunyi Medical University(Grant No.S202310661248).
文摘Doxorubicin(DOX)is a widely employed tumor therapy,yet its substantial toxic side effects pose a considerable challenge.Bletilla striata has demonstrated efficacy in preventing and treating these toxic side effects in clinical practice,with polysaccharides identified as the principal active component.In the present study,16 fractions of B.striata polysaccharides(BsPs)were extracted using diverse methods,including hot-water extraction(HWE),ultrasonic-assisted extraction(UAE),enzyme-assisted extraction(EAE),dilute acid-water extraction(ACWE),and dilute alkali-water extraction(ALWE).These extractions were subsequently precipitated at final ethanol concentrations of 80%and 95%,respectively.The investigation encompassed yields,total carbohydrate content(TCC),total protein content(TPC),preliminary structural properties,and anti-DOX myocardial cytotoxic activity.Results indicated that the extraction method significantly influenced the physicochemical properties,associated functional properties,and anti-DOX myocardial cytotoxic activity of BsPs.HWE and UAE yielded higher BsPs quantities.The relative molecular weight(RMW)distribution of BsPs differed notably between HWE or UAE,EAE,ACWE,and ALWE.The RMW of primary BsPs obtained from HWE and UAE(1.9×10^(7)-1.7×10^(7) Da)exceeded that from EAE(7.5×10^(3)-2.8×10^(4) Da)and ALWE(5.1×10^(4)-1.7×10^(4) Da),with smaller molecular weights primarily precipitated by higher ethanol concentrations.BsPs were composed of Man and Glu,with partial fractions containing small amounts of Gal or Ara,displaying varying molar ratios.Notably,BsPs from ACWE exhibited the most significant structural differences,lacking 1,4-α-D-Glcp and a triple-helical structure.Furthermore,BsPs obtained from HWE,UAE,and EAE demonstrated heightened anti-DOX myocardial cytotoxic activity compared to other methods.This study underscored the influence of extraction methods on BsPs’structure and myocardial protective activity,offering a foundation for exploring structural diversity and employing specific extraction methods to extract polysaccharides with robust myocardial protective properties efficiently.
基金Projects(42477162,52108347,52178371,52168046,52178321,52308383)supported by the National Natural Science Foundation of ChinaProjects(2023C03143,2022C01099,2024C01219,2022C03151)supported by the Zhejiang Key Research and Development Plan,China+6 种基金Project(LQ22E080010)supported by the Exploring Youth Project of Zhejiang Natural Science Foundation,ChinaProject(LR21E080005)supported by the Outstanding Youth Project of Natural Science Foundation of Zhejiang Province,ChinaProject(2022M712964)supported by the Postdoctoral Science Foundation of ChinaProject(2023AFB008)supported by the Natural Science Foundation of Hubei Province for Youth,ChinaProject(202203)supported by Engineering Research Centre of Rock-Soil Drilling&Excavation and Protection,Ministry of Education,ChinaProject(202305-2)supported by the Science and Technology Project of Zhejiang Provincial Communication Department,ChinaProject(2021K256)supported by the Construction Research Founds of Department of Housing and Urban-Rural Development of Zhejiang Province,China。
文摘This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi analytical solutions of temperature increment and displacement of multi-layered composite structures are obtained by using the Laplace transform method,upon which the effects of thermal resistance coefficient,partition coefficient,thermal conductivity ratio and heat capacity ratio on the responses are studied.The results show that the generalized imperfect thermal contact model can realistically describe the imperfect thermal contact problem.Accordingly,it may degenerate into other thermal contact models by adjusting the thermal resistance coefficient and partition coefficient.