In this paper, a planning algorithm for multi path/multi layer circular locus is poposed. The algorithm is applied to weld the nipples on the header of boiler. Multi path/multi layer circular locus is planned acco...In this paper, a planning algorithm for multi path/multi layer circular locus is poposed. The algorithm is applied to weld the nipples on the header of boiler. Multi path/multi layer circular locus is planned according to three teaching points, which is lapped head on end to satisfy the requirement of technology. For the nipples wherever they are arranged radially or axially, even if there are errors caused by positioning and thermal deformations, providing that nipple's position and orientation relative to the teaching one can be measured, the multi path/multi layer circular locus can be planned without teaching any more. The algorithm has been applied in welding robot for manufacturing power station' boiler.展开更多
Dissimilar AZ31B magnesium alloy and DC56D steel were welded via AA1060 aluminum alloy by magnetic pulse welding.The effects of primary and secondary welding processes on the welded interface were comparatively invest...Dissimilar AZ31B magnesium alloy and DC56D steel were welded via AA1060 aluminum alloy by magnetic pulse welding.The effects of primary and secondary welding processes on the welded interface were comparatively investigated.Macroscopic morphology,microstructure,and interfacial structure of the joints were analyzed using scanning electron microscope,energy dispersive spectrometer,and X-ray diffractometer(XRD).The results show that magnetic pulse welding of dissimilar Mg/Fe metals is achieved using an Al interlayer,which acts as a bridge for deformation and diffusion.Specifically,the AZ31B/AA1060 interface exhibits a typical wavy morphology,and a transition zone exists at the joint interface,which may result in an extremely complex microstructure.The microstructure of this transition zone differs from that of AZ31B magnesium and 1060 Al alloys,and it is identified as brittle intermetallic compounds(IMCs)Al_(3)Mg_(2) and Al_(12)Mg_(17).The transition zone is mainly distributed on the Al side,with the maximum thickness of Al-side transition layer reaching approximately 13.53μm.Incomplete melting layers with varying thicknesses are observed at the primary weld interface,while micron-sized hole defects appear in the transition zone of the secondary weld interface.The AA1060/DC56D interface is mainly straight,with only a small number of discontinuous transition zones distributed intermittently along the interface.These transition zones are characterized by the presence of the brittle IMC FeAl_(3),with a maximum thickness of about 4μm.展开更多
The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are the surface roughness and the error between the actual printing height and the theoretical m...The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are the surface roughness and the error between the actual printing height and the theoretical model height.The Taguchi method was employed to establish the correlations between process parameter combinations and multi-objective characterization of metal deposition morphology(height error and roughness).Results show that using the signal-to-noise ratio and grey relational analysis,the optimal parameter combination for multi-layer and multi-pass deposition is determined as follows:laser power of 800 W,powder feeding rate of 0.3 r/min,step distance of 1.6 mm,and scanning speed of 20 mm/s.Subsequently,a Genetic Bayesian-back propagation(GB-BP)network is constructed to predict multi-objective responses.Compared with the traditional back propagation network,the GB-back propagation network improves the prediction accuracy of height error and surface roughness by 43.14%and 71.43%,respectively.This network can accurately predict the multi-objective characterization of morphological quality of multi-layer and multi-pass metal deposited parts.展开更多
Joining dissimilar materials encounters significant engineering challenges due to the contrast in material properties that makes conventional welding not feasible.Magnetic Pulse Welding(MPW)offers a solidstate joining...Joining dissimilar materials encounters significant engineering challenges due to the contrast in material properties that makes conventional welding not feasible.Magnetic Pulse Welding(MPW)offers a solidstate joining technique that overcomes these issues by using impact to create strong bonds without melting the substrate materials.This study investigates the weldability of aluminum alloy Al-5754 with Al-7075 and MARS 380 steel,used in armouring solutions of defense systems,by the use of MPW.In this work,weldability windows are investigated by varying standoff distances between the coating material and its substrate(0.25-4.5 mm)and discharge energies(5-13 kJ)with both O-shape and U-shape inductors.Mechanical strength of the welded joints were assessed through single lap shear tests,identifying optimal welding parameters.Then,the velocity profiles of the flyer plates were measured using heterodyne velocimetry to understand the dynamics of the impact.Then,substructures assembled with the optimal welding conditions were subjected to ballistic testing using 7.62 mm×51 mm NATO and 9 mm×19 mm Parabellum munitions to evaluate the resilience of the welds under ballistic impact.The outcomes demonstrate that MPW effectively joins Al-5754 with both Al-7075 and MARS 380,producing robust welds capable of withstanding ballistic impacts under certain conditions.This research advances the application of MPW in lightweight ballistic protection of defense systems,contributing to the development of more resilient and lighter protective structures.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
The dissimilar 2B06 and 7B04 Al alloy joints were prepared by refill friction stir spot welding(RFSSW),and the microstructural evolution and corrosion behavior of the joints were investigated.Based on microstructural ...The dissimilar 2B06 and 7B04 Al alloy joints were prepared by refill friction stir spot welding(RFSSW),and the microstructural evolution and corrosion behavior of the joints were investigated.Based on microstructural analysis,the welded joints exhibit distinct microstructural zones,including the stir zone(SZ),thermomechanically affected zone(TMAZ),and heat-affected zone(HAZ).The grain size of each zone is in the order of HAZ>TMAZ>SZ.Notably,the TMAZ and HAZ contain significantly larger secondary-phase particles compared to the SZ,with particle size in the HAZ increasing at higher rotational speeds.Electrochemical tests indicate that corrosion susceptibility follows the sequence of HAZ>TMAZ>SZ>BM,with greater sensitivity observed at increased rotational speeds.Post-corrosion mechanical performance degradation primarily arises from crevice corrosion at joint overlaps,but not from the changes in the microstructure.展开更多
Multi-layer narrow-gap welding of thick S32101 duplex stainless steel was conducted using laser welding with beam wobble process.The phase transition,grain size,phase proportion and crystal texture of welded joint wer...Multi-layer narrow-gap welding of thick S32101 duplex stainless steel was conducted using laser welding with beam wobble process.The phase transition,grain size,phase proportion and crystal texture of welded joint were also studied and compared with gas metal arc welding process.The microhardness and tensile strength were measured and fracture surface was analyzed to evaluate the mechanical properties of welded joints.The results showed that beam wobble technology improved the misalignment of laser beam and filler wire in narrow groove and helped to avoid incomplete fusion defects.Compared to arc welding process,the groove size and heat input were reduced,while welding efficiency was increased.The faster cooling rate and lower temperature gradient of laser wobble welding favored grain refinement,while the austenite content in weld zone decreased.Both the beam wobble and swing arc were conducive to stir weld pool,optimizing the weld microstructure and joint formation.The microstructural variance in various weld passes was caused by the heat input and heat dissipation ability.The microhardness of laser welded joint was lower,while the tensile strength and elongation percentage were higher.The fracture surface of arc welded joint was featured with shallower dimples and cleavage steps.展开更多
The welding of medium and thick plates has a wide range of applications in the engineering field.Industrial welding robots are gradually replacing traditional welding operations due to their significant advantages,suc...The welding of medium and thick plates has a wide range of applications in the engineering field.Industrial welding robots are gradually replacing traditional welding operations due to their significant advantages,such as high welding quality,high work efficiency,and effective reduction of labor intensity.Ensuring the accuracy of the welding trajectory for the welding robot is crucial for guaranteeing welding quality.In this paper,the author uses the chaos sparrow search algorithm to optimize the trajectory of a multi-layer and multi-pass welding robot for medium and thick plates.Firstly,the Sparrow Search Algorithm(SSA)is improved by introducing tent chaotic mapping and Gaussian mutation of the inertia weight factor.Secondly,in order to prevent the welding robot arm from colliding with obstacles in the welding environment during the welding process,maintain the stability of the welding robot,and ensure the continuous stability of the changes in each joint angle,joint angular velocity,and angular velocity of the joint angle,a welding robot model is established by improving the Denavit-Hartenberg parameter method.A multi-objective optimization fitness function is used to optimize the trajectory of the welding robot,minimizing time and energy consumption.Thirdly,the optimization and convergence performance of SSA and Chaos Sparrow Search Algorithm(CSSA)are compared through 10 benchmark test functions.Based on the six sets of test functions,the CSSA algorithm consistently maintains superior optimization performance and has excellent stability,with a faster decline in the convergence curve compared to the SSA algorithm.Finally,the accuracy of welding is tested through V-shaped multi-layer and multi-pass welding experiments.The experimental results show that the CSSA algorithm has a strong superiority in trajectory optimization of multi-layer and multi-pass welding for medium and thick plates,with an accuracy rate of 99.5%.It is an effective optimization method that can meet the actual needs of production.展开更多
At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-laye...At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components.展开更多
The microstructure and mechanical properties of multi-layer multi-pass TIG welded joints of Al-Zn-Mg alloy plates were studied.The phase constituent and microstructure of different regions of the welded joints were ch...The microstructure and mechanical properties of multi-layer multi-pass TIG welded joints of Al-Zn-Mg alloy plates were studied.The phase constituent and microstructure of different regions of the welded joints were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD),transmission electron microscopy(TEM)and energy disperse spectrum(EDS),while the mechanical properties were evaluated according to the impact test.A dispersively distributed spherical and needle-likeη(MgZn2)phase was obtained in the welding seam.The phase composition of the heat-affected zone(HAZ)wasα(Al)+η(MgZn2)+Al6Mn,and there were a large number of dispersively precipitated nanoscale particles.The welded joint zone had the highest impact toughness as compared with the other parts of the joint.The MgZn2 phase in the weld zone contributed to the improved toughness of the joint.Al2 MgCu phase in HAZ was proven to act as a crack source during fracture.展开更多
Titanium alloy has the advantages of high strength,strong corrosion resistance,excellent high and low temperature mechanical properties,etc.,and is widely used in aerospace,shipbuilding,weapons and equipment,and other...Titanium alloy has the advantages of high strength,strong corrosion resistance,excellent high and low temperature mechanical properties,etc.,and is widely used in aerospace,shipbuilding,weapons and equipment,and other fields.In recent years,with the continuous increase in demand for medium-thick plate titanium alloys,corresponding welding technologies have also continued to develop.Therefore,this article reviews the research progress of deep penetration welding technology for medium-thick plate titanium alloys,mainly covering traditional arc welding,high-energy beam welding,and other welding technologies.Among many methods,narrow gap welding,hybrid welding,and external energy field assistance welding all contribute to improving the welding efficiency and quality of medium-thick plate titanium alloys.Finally,the development trend of deep penetration welding technology for mediumthick plate titanium alloys is prospected.展开更多
Friction stir lap welding of AA2195 Al-Li alloy and Ti alloy was conducted to investigate the formation,microstructure,and mechanical properties of the joints.Results show that under different welding parameters,with ...Friction stir lap welding of AA2195 Al-Li alloy and Ti alloy was conducted to investigate the formation,microstructure,and mechanical properties of the joints.Results show that under different welding parameters,with the decrease in welding heat input,the weld surface is smoother.The Ti/Al joint interface is flat without obvious Ti and Al mixed structure,and the hook structure is not formed under optimal parameters.Due to the enhanced breaking effect of the stirring head,the hook structural defects and intermetallic compounds are more likely to form at the Ti/Al interface at high rotational speed of 1000 r/min,thereby deteriorating the mechanical properties of joints.Decreasing the heat input is beneficial to hardness enhancement of the aluminum alloy in the weld nugget zone.Under the optimal parameters of rotation speed of 800 r/min and welding speed of 120 mm/min,the maximum tensile shear strength of joint is 289 N/mm.展开更多
As light metals,aluminum and magnesium have been widely used in automotive manufacturing,but the welding of Al/Mg joints is facing challenges.However,it is difficult to obtain high-quality aluminum/magnesium joints wi...As light metals,aluminum and magnesium have been widely used in automotive manufacturing,but the welding of Al/Mg joints is facing challenges.However,it is difficult to obtain high-quality aluminum/magnesium joints with traditional arc welding methods.As a solid-phase welding technology,ultrasonic metal welding has the characteristics of high welding efficiency and less welded defects.It is also suitable for welding sound metal bonds.Aluminum and magnesium ultrasonic welding has become a research hotspot.Therefore,the evolution of microstructures and mechanical performance of Al/Mg and multi-layer Al/Mg ultrasonic welding,and the new study works,including the molecular dynamic simulation of Al/Mg ultrasonic welding and hybrid based on ultrasonic welding are summarized.Furthermore,several promising research directions are proposed to guide in-depth investigations into the ultrasonic welding of Al/Mg dissimilar joints.展开更多
Friction stir welding(FSW)is a relatively new welding technique that has significant advantages compared to the fusion welding techniques in joining non weld able alloys by fusion,such as aluminum alloys.Three FSW sea...Friction stir welding(FSW)is a relatively new welding technique that has significant advantages compared to the fusion welding techniques in joining non weld able alloys by fusion,such as aluminum alloys.Three FSW seams of AA6061-T6 plates were made us-ing different FSW parameters.The structure of the FSW seams was investigated using X-ray diffraction(XRD),scanning electron mi-croscope(SEM)and non destructive testing(NDT)techniques and their hardness was also measured.The dominated phase in the AA6061-T6 alloy and the FSW seams was theα-Al.The FSW seam had lower content of the secondary phases than the AA6061-T6 al-loy.The hardness of the FSW seams was decreased by about 30%compared to the AA6061-T6 alloy.The temperature distributions in the weld seams were also studied experimentally and numerically modeled and the results were in a good agreement.展开更多
Laser twin-arc GTAW(LTA-GTAW)process has been developed by using the synergic interaction effects of laser and a coupled arc in a weld pool to achieve higher energy efficiency.In this study,bead-on-plate welding was c...Laser twin-arc GTAW(LTA-GTAW)process has been developed by using the synergic interaction effects of laser and a coupled arc in a weld pool to achieve higher energy efficiency.In this study,bead-on-plate welding was conducted on 8-mm-thick Q235B work-pieces to investigate the variation of hybrid arc profile,the influence of hybrid arc profile on weld forming,microstructure and mech-anical properties of the joint during the LTA-GTAW process.The influence of Laser-GTAW and LTA-GTAW methods on weld surface appearance,heat input per unit length,and weld metal microstructure were also demonstrated systematically.The LTA-GTAW can make the distribution of arc energy more reasonable in welding depth and width.When defocus is 0,I_(f)is 330 A,I_(b)is 240 A,laser power is 2.4 kW,and spacing between heat sources of tungsten electrode is 10 mm,the weld shape is better.Compared with Laser-GTAW,LTA-GTAW can achieve lower heat input at the same penetration depth,and the microstructure of the weld is refined.The tensile strength of the welded joint is 121.8%of the base material,and the fracture mode of the welded joint is ductile fracture,the comprehensive mechanical properties are better.展开更多
The rupture behavior of the modified 10Cr–1Mo steel multi-layer welded joint is determined by the fine-grain zones of the weld metal adjacent to the fusion line during the long-term creep test at 620℃. The microstru...The rupture behavior of the modified 10Cr–1Mo steel multi-layer welded joint is determined by the fine-grain zones of the weld metal adjacent to the fusion line during the long-term creep test at 620℃. The microstructures of multi-layer weld metal before and after the creep tests were characterized in detail, and its role in creep behavior was systematically investigated. Most grain boundaries of subgrains represented the low-angle boundaries in the weld metal adjacent to the fusion line both before and after the creep test. The widths of grains in the fine-grain zones were about 0.5–1 μm. The fracture morphology appeared as "wave" structure due to the cracking initiating from multi-layer grain boundaries in the fine-grain zones. Some W elements that melted into weld metal adjacent to the fusion line altered the thermodynamic and kinetic conditions of the Laves phase formation during long-term creep exposure. Laves phase particles mainly distributed along the grain boundaries due to the faster diffusion and segregation of Mo, W, and Si elements. Moreover, higher-density grain boundaries in the fine-grain zones led to easier nucleation and growth of Laves phase particles. Compared with other areas in the welded joint, the size of Laves phase particles in the fine-grain zones of the weld metal adjacent to the fusion line was the largest ones. The interface between Laves phase particles and the matrix acted as the nucleation site of creep micro-cavities. The creep micro-cavities grew up at the expense of fine-grain boundaries and even grew across the grain boundary deeply into adjacent grains, and then developed to cracks in the fine-grain zones.展开更多
Thickness of the intermetallic compounds(IMC)layer at the interface has a significant effect on the mechanical properties of Mg/Al dissimilar joints.However,the thickness of IMC layer can be only obtained by metallurg...Thickness of the intermetallic compounds(IMC)layer at the interface has a significant effect on the mechanical properties of Mg/Al dissimilar joints.However,the thickness of IMC layer can be only obtained by metallurgical microscopy,which is destructive and has to break down the weld.Therefore,it is crucial to find a reliable approach that can non-destructively predict the thickness of IMC layer in practical application.In the current study,Mg alloy and Al alloy were friction stir butt welded(FSW)under different tool rotation speeds(TRS)to obtain different thicknesses of IMC layers.As the TRS increased from 400 rpm to 1000 rpm,thickness of the IMC layer increased from 0.4μm to 1.3μm,the peak welding temperatures increased from 259℃to 402℃,and the Z-axis downforces decreased from10.5 kN to 3.2 k N during welding process.Higher TRS would generally induce higher welding heat input,which promotes the growth of the IMC layer and the softening of base materials.The IMC layer formed through solid-state diffusion and transformation instead of eutectic reaction according to the welding temperature history and interfacial microstructure,and its evolution process was clearly observed by plan view.In order to incorporate the effect of dramatic change of welding temperature which is the characteristic feature of FSW,Psd Voigt function was used to fit the welding temperature histories.A new prediction formula was then established to predict thicknesses of IMC layers with considering sharp welding temperature change.Predicted thicknesses gave good agreement with measured thicknesses obtained experimentally under different welding parameters,which confirmed the accuracy and reliability of the new prediction formula.Based on this prediction formula,the time period of temperature higher than 200℃during welding was found critical for the thickening of interfacial IMC layers.展开更多
The composite structures/components made by friction stir lap welding(FSLW)of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles.To further impr...The composite structures/components made by friction stir lap welding(FSLW)of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles.To further improve the joint quality,the ultrasonic vibration(UV)is exerted in FSLW,and the UV enhanced FSLW(UVeFSLW)was developed for making Mg-to-Al dissimilar joints.The numerical analysis and experimental investigation were combined to study the process mechanism in Mg/Al UVeFSLW.An equation related to the temperature and strain rate was derived to calculate the grain size at different locations of the weld nugget zone,and the effect of grain size distribution on the threshold thermal stress was included,so that the prediction accuracy of flow stress was further improved.With such modified constitutive equation,the numerical simulation was conducted to compare the heat generation,temperature profiles and material flow behaviors in Mg/Al UVeFSLW/FSLW processes.It was found that the exerted UV decreased the temperature at two checking points on the tool/workpiece interface from 707/671 K in FSLW to 689/660 K in UVeFSLW,which suppressed the IMCs thickness at Mg-Al interface from 1.7μm in FSLW to 1.1μm in UVeFSLW.The exerted UV increased the horizontal materials flow ability,and decreased the upward flow ability,which resulted in the increase of effective sheet thickness/effective lap width from 2.01/3.70 mm in FSLW to 2.04/4.84 mm in UVeFSLW.Therefore,the ultrasonic vibration improved the tensile shear strength of Mg-to-Al lap joints by 18%.展开更多
GH4169 joints manufactured by Linear Friction Welding(LFW)are subjected to tensile test and stair-case method to evaluate the High Cycle Fatigue(HCF)performance at 650℃.The yield and ultimate tensile strengths are 58...GH4169 joints manufactured by Linear Friction Welding(LFW)are subjected to tensile test and stair-case method to evaluate the High Cycle Fatigue(HCF)performance at 650℃.The yield and ultimate tensile strengths are 582 MPa and 820 MPa,respectively.The HCF strength of joint reaches 400 MPa,which is slightly lower than that of Base Metal(BM),indicating reliable quality of this type of joint.The microstructure observation results show that all cracks initiate at the inside of specimens and transfer into deeper region with decrease of external stress,and the crack initiation site is related with microhardness of matrix.The Electron Backscattered Diffraction(EBSD)results of the observed regions with different distances to fracture show that plastic deformation plays a key role in HCF,and the Schmid factor of most grains near fracture exceeds 0.4.In addition,the generation of twins plays a vital role in strain concentration release and coordinating plastic deformation among grains.展开更多
文摘In this paper, a planning algorithm for multi path/multi layer circular locus is poposed. The algorithm is applied to weld the nipples on the header of boiler. Multi path/multi layer circular locus is planned according to three teaching points, which is lapped head on end to satisfy the requirement of technology. For the nipples wherever they are arranged radially or axially, even if there are errors caused by positioning and thermal deformations, providing that nipple's position and orientation relative to the teaching one can be measured, the multi path/multi layer circular locus can be planned without teaching any more. The algorithm has been applied in welding robot for manufacturing power station' boiler.
文摘Dissimilar AZ31B magnesium alloy and DC56D steel were welded via AA1060 aluminum alloy by magnetic pulse welding.The effects of primary and secondary welding processes on the welded interface were comparatively investigated.Macroscopic morphology,microstructure,and interfacial structure of the joints were analyzed using scanning electron microscope,energy dispersive spectrometer,and X-ray diffractometer(XRD).The results show that magnetic pulse welding of dissimilar Mg/Fe metals is achieved using an Al interlayer,which acts as a bridge for deformation and diffusion.Specifically,the AZ31B/AA1060 interface exhibits a typical wavy morphology,and a transition zone exists at the joint interface,which may result in an extremely complex microstructure.The microstructure of this transition zone differs from that of AZ31B magnesium and 1060 Al alloys,and it is identified as brittle intermetallic compounds(IMCs)Al_(3)Mg_(2) and Al_(12)Mg_(17).The transition zone is mainly distributed on the Al side,with the maximum thickness of Al-side transition layer reaching approximately 13.53μm.Incomplete melting layers with varying thicknesses are observed at the primary weld interface,while micron-sized hole defects appear in the transition zone of the secondary weld interface.The AA1060/DC56D interface is mainly straight,with only a small number of discontinuous transition zones distributed intermittently along the interface.These transition zones are characterized by the presence of the brittle IMC FeAl_(3),with a maximum thickness of about 4μm.
基金National Natural Science Foundation of China(52175237)。
文摘The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are the surface roughness and the error between the actual printing height and the theoretical model height.The Taguchi method was employed to establish the correlations between process parameter combinations and multi-objective characterization of metal deposition morphology(height error and roughness).Results show that using the signal-to-noise ratio and grey relational analysis,the optimal parameter combination for multi-layer and multi-pass deposition is determined as follows:laser power of 800 W,powder feeding rate of 0.3 r/min,step distance of 1.6 mm,and scanning speed of 20 mm/s.Subsequently,a Genetic Bayesian-back propagation(GB-BP)network is constructed to predict multi-objective responses.Compared with the traditional back propagation network,the GB-back propagation network improves the prediction accuracy of height error and surface roughness by 43.14%and 71.43%,respectively.This network can accurately predict the multi-objective characterization of morphological quality of multi-layer and multi-pass metal deposited parts.
基金funded on the one hand by Agence de l'Innovation de Défense(AID)grant reference number 2021650044on the other hand by Ecole Centrale de Nantes。
文摘Joining dissimilar materials encounters significant engineering challenges due to the contrast in material properties that makes conventional welding not feasible.Magnetic Pulse Welding(MPW)offers a solidstate joining technique that overcomes these issues by using impact to create strong bonds without melting the substrate materials.This study investigates the weldability of aluminum alloy Al-5754 with Al-7075 and MARS 380 steel,used in armouring solutions of defense systems,by the use of MPW.In this work,weldability windows are investigated by varying standoff distances between the coating material and its substrate(0.25-4.5 mm)and discharge energies(5-13 kJ)with both O-shape and U-shape inductors.Mechanical strength of the welded joints were assessed through single lap shear tests,identifying optimal welding parameters.Then,the velocity profiles of the flyer plates were measured using heterodyne velocimetry to understand the dynamics of the impact.Then,substructures assembled with the optimal welding conditions were subjected to ballistic testing using 7.62 mm×51 mm NATO and 9 mm×19 mm Parabellum munitions to evaluate the resilience of the welds under ballistic impact.The outcomes demonstrate that MPW effectively joins Al-5754 with both Al-7075 and MARS 380,producing robust welds capable of withstanding ballistic impacts under certain conditions.This research advances the application of MPW in lightweight ballistic protection of defense systems,contributing to the development of more resilient and lighter protective structures.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金supported by the National Natural Science Foundation of China (Nos. 52075449, 51975480)。
文摘The dissimilar 2B06 and 7B04 Al alloy joints were prepared by refill friction stir spot welding(RFSSW),and the microstructural evolution and corrosion behavior of the joints were investigated.Based on microstructural analysis,the welded joints exhibit distinct microstructural zones,including the stir zone(SZ),thermomechanically affected zone(TMAZ),and heat-affected zone(HAZ).The grain size of each zone is in the order of HAZ>TMAZ>SZ.Notably,the TMAZ and HAZ contain significantly larger secondary-phase particles compared to the SZ,with particle size in the HAZ increasing at higher rotational speeds.Electrochemical tests indicate that corrosion susceptibility follows the sequence of HAZ>TMAZ>SZ>BM,with greater sensitivity observed at increased rotational speeds.Post-corrosion mechanical performance degradation primarily arises from crevice corrosion at joint overlaps,but not from the changes in the microstructure.
基金supported by the Science and Technology Innovation Program of Hunan Province(2022RC1060 and 2022GK4046)。
文摘Multi-layer narrow-gap welding of thick S32101 duplex stainless steel was conducted using laser welding with beam wobble process.The phase transition,grain size,phase proportion and crystal texture of welded joint were also studied and compared with gas metal arc welding process.The microhardness and tensile strength were measured and fracture surface was analyzed to evaluate the mechanical properties of welded joints.The results showed that beam wobble technology improved the misalignment of laser beam and filler wire in narrow groove and helped to avoid incomplete fusion defects.Compared to arc welding process,the groove size and heat input were reduced,while welding efficiency was increased.The faster cooling rate and lower temperature gradient of laser wobble welding favored grain refinement,while the austenite content in weld zone decreased.Both the beam wobble and swing arc were conducive to stir weld pool,optimizing the weld microstructure and joint formation.The microstructural variance in various weld passes was caused by the heat input and heat dissipation ability.The microhardness of laser welded joint was lower,while the tensile strength and elongation percentage were higher.The fracture surface of arc welded joint was featured with shallower dimples and cleavage steps.
基金support by Ningxia Key R&D projects“Integration and demonstration application of intelligent finishing system for large casting riser robot”(No.2021BEE03002)Ningxia Natural Science Foundation Project“Research on detection and location of large casting welding seam based on depth learning”(No.2020AAC03201).
文摘The welding of medium and thick plates has a wide range of applications in the engineering field.Industrial welding robots are gradually replacing traditional welding operations due to their significant advantages,such as high welding quality,high work efficiency,and effective reduction of labor intensity.Ensuring the accuracy of the welding trajectory for the welding robot is crucial for guaranteeing welding quality.In this paper,the author uses the chaos sparrow search algorithm to optimize the trajectory of a multi-layer and multi-pass welding robot for medium and thick plates.Firstly,the Sparrow Search Algorithm(SSA)is improved by introducing tent chaotic mapping and Gaussian mutation of the inertia weight factor.Secondly,in order to prevent the welding robot arm from colliding with obstacles in the welding environment during the welding process,maintain the stability of the welding robot,and ensure the continuous stability of the changes in each joint angle,joint angular velocity,and angular velocity of the joint angle,a welding robot model is established by improving the Denavit-Hartenberg parameter method.A multi-objective optimization fitness function is used to optimize the trajectory of the welding robot,minimizing time and energy consumption.Thirdly,the optimization and convergence performance of SSA and Chaos Sparrow Search Algorithm(CSSA)are compared through 10 benchmark test functions.Based on the six sets of test functions,the CSSA algorithm consistently maintains superior optimization performance and has excellent stability,with a faster decline in the convergence curve compared to the SSA algorithm.Finally,the accuracy of welding is tested through V-shaped multi-layer and multi-pass welding experiments.The experimental results show that the CSSA algorithm has a strong superiority in trajectory optimization of multi-layer and multi-pass welding for medium and thick plates,with an accuracy rate of 99.5%.It is an effective optimization method that can meet the actual needs of production.
基金supported by the National Key Research and Development Program of China(No.2022YFB3404700)the National Natural Science Foundation of China(Nos.52105313 and 52275299)+2 种基金the Research and Development Program of Beijing Municipal Education Commission,China(No.KM202210005036)the Natural Science Foundation of Chongqing,China(No.CSTB2023NSCQ-MSX0701)the National Defense Basic Research Projects of China(No.JCKY2022405C002).
文摘At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components.
基金Project(ZR2016EEQ03) supported by the Shandong Province Natural Science Foundation,ChinaProject(2018M641822) supported by the China Postdoctoral Science Foundation-General ProgramProject(HIT.NSRIF.201703) supported by the Natural Scientific Research Innovation Foundation in HIT,China
文摘The microstructure and mechanical properties of multi-layer multi-pass TIG welded joints of Al-Zn-Mg alloy plates were studied.The phase constituent and microstructure of different regions of the welded joints were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD),transmission electron microscopy(TEM)and energy disperse spectrum(EDS),while the mechanical properties were evaluated according to the impact test.A dispersively distributed spherical and needle-likeη(MgZn2)phase was obtained in the welding seam.The phase composition of the heat-affected zone(HAZ)wasα(Al)+η(MgZn2)+Al6Mn,and there were a large number of dispersively precipitated nanoscale particles.The welded joint zone had the highest impact toughness as compared with the other parts of the joint.The MgZn2 phase in the weld zone contributed to the improved toughness of the joint.Al2 MgCu phase in HAZ was proven to act as a crack source during fracture.
基金financially supported by the Key Research and Development Program of Ningbo(Grant No.2023Z098)Natural Science Foundation of Inner Mongolia(Grant No.2023MS05040)+1 种基金Shenyang Collaborative Innovation Center Project for Multiple Energy Fields Composite Processing of Special Materials(Grant No.JG210027)Shenyang Key Technology Special Project of The Open Competition Mechanism to Select the Best Solution(Grant Nos.2022210101000827,2022-0-43-048).
文摘Titanium alloy has the advantages of high strength,strong corrosion resistance,excellent high and low temperature mechanical properties,etc.,and is widely used in aerospace,shipbuilding,weapons and equipment,and other fields.In recent years,with the continuous increase in demand for medium-thick plate titanium alloys,corresponding welding technologies have also continued to develop.Therefore,this article reviews the research progress of deep penetration welding technology for medium-thick plate titanium alloys,mainly covering traditional arc welding,high-energy beam welding,and other welding technologies.Among many methods,narrow gap welding,hybrid welding,and external energy field assistance welding all contribute to improving the welding efficiency and quality of medium-thick plate titanium alloys.Finally,the development trend of deep penetration welding technology for mediumthick plate titanium alloys is prospected.
基金National Natural Science Foundation of China(52275349)Key Research and Development Program of Shandong Province(2021ZLGX01)。
文摘Friction stir lap welding of AA2195 Al-Li alloy and Ti alloy was conducted to investigate the formation,microstructure,and mechanical properties of the joints.Results show that under different welding parameters,with the decrease in welding heat input,the weld surface is smoother.The Ti/Al joint interface is flat without obvious Ti and Al mixed structure,and the hook structure is not formed under optimal parameters.Due to the enhanced breaking effect of the stirring head,the hook structural defects and intermetallic compounds are more likely to form at the Ti/Al interface at high rotational speed of 1000 r/min,thereby deteriorating the mechanical properties of joints.Decreasing the heat input is beneficial to hardness enhancement of the aluminum alloy in the weld nugget zone.Under the optimal parameters of rotation speed of 800 r/min and welding speed of 120 mm/min,the maximum tensile shear strength of joint is 289 N/mm.
基金supported by Key Projects of Science and Technology Research Plan of Hubei Provincial Department of Education(D20221306)the National Natural Science Foundation of China(51605103)Key Project of Hubei Provincial Science and Technology Department(2020BAB055).
文摘As light metals,aluminum and magnesium have been widely used in automotive manufacturing,but the welding of Al/Mg joints is facing challenges.However,it is difficult to obtain high-quality aluminum/magnesium joints with traditional arc welding methods.As a solid-phase welding technology,ultrasonic metal welding has the characteristics of high welding efficiency and less welded defects.It is also suitable for welding sound metal bonds.Aluminum and magnesium ultrasonic welding has become a research hotspot.Therefore,the evolution of microstructures and mechanical performance of Al/Mg and multi-layer Al/Mg ultrasonic welding,and the new study works,including the molecular dynamic simulation of Al/Mg ultrasonic welding and hybrid based on ultrasonic welding are summarized.Furthermore,several promising research directions are proposed to guide in-depth investigations into the ultrasonic welding of Al/Mg dissimilar joints.
文摘Friction stir welding(FSW)is a relatively new welding technique that has significant advantages compared to the fusion welding techniques in joining non weld able alloys by fusion,such as aluminum alloys.Three FSW seams of AA6061-T6 plates were made us-ing different FSW parameters.The structure of the FSW seams was investigated using X-ray diffraction(XRD),scanning electron mi-croscope(SEM)and non destructive testing(NDT)techniques and their hardness was also measured.The dominated phase in the AA6061-T6 alloy and the FSW seams was theα-Al.The FSW seam had lower content of the secondary phases than the AA6061-T6 al-loy.The hardness of the FSW seams was decreased by about 30%compared to the AA6061-T6 alloy.The temperature distributions in the weld seams were also studied experimentally and numerically modeled and the results were in a good agreement.
基金supported by the Industrial Innovation Major Technology Global Unveiling Project of Jining City(2022JBZP004)Taishan Scholars Project.
文摘Laser twin-arc GTAW(LTA-GTAW)process has been developed by using the synergic interaction effects of laser and a coupled arc in a weld pool to achieve higher energy efficiency.In this study,bead-on-plate welding was conducted on 8-mm-thick Q235B work-pieces to investigate the variation of hybrid arc profile,the influence of hybrid arc profile on weld forming,microstructure and mech-anical properties of the joint during the LTA-GTAW process.The influence of Laser-GTAW and LTA-GTAW methods on weld surface appearance,heat input per unit length,and weld metal microstructure were also demonstrated systematically.The LTA-GTAW can make the distribution of arc energy more reasonable in welding depth and width.When defocus is 0,I_(f)is 330 A,I_(b)is 240 A,laser power is 2.4 kW,and spacing between heat sources of tungsten electrode is 10 mm,the weld shape is better.Compared with Laser-GTAW,LTA-GTAW can achieve lower heat input at the same penetration depth,and the microstructure of the weld is refined.The tensile strength of the welded joint is 121.8%of the base material,and the fracture mode of the welded joint is ductile fracture,the comprehensive mechanical properties are better.
基金the National Natural Science Foundation of China(Nos.51675336 and U1660101)。
文摘The rupture behavior of the modified 10Cr–1Mo steel multi-layer welded joint is determined by the fine-grain zones of the weld metal adjacent to the fusion line during the long-term creep test at 620℃. The microstructures of multi-layer weld metal before and after the creep tests were characterized in detail, and its role in creep behavior was systematically investigated. Most grain boundaries of subgrains represented the low-angle boundaries in the weld metal adjacent to the fusion line both before and after the creep test. The widths of grains in the fine-grain zones were about 0.5–1 μm. The fracture morphology appeared as "wave" structure due to the cracking initiating from multi-layer grain boundaries in the fine-grain zones. Some W elements that melted into weld metal adjacent to the fusion line altered the thermodynamic and kinetic conditions of the Laves phase formation during long-term creep exposure. Laves phase particles mainly distributed along the grain boundaries due to the faster diffusion and segregation of Mo, W, and Si elements. Moreover, higher-density grain boundaries in the fine-grain zones led to easier nucleation and growth of Laves phase particles. Compared with other areas in the welded joint, the size of Laves phase particles in the fine-grain zones of the weld metal adjacent to the fusion line was the largest ones. The interface between Laves phase particles and the matrix acted as the nucleation site of creep micro-cavities. The creep micro-cavities grew up at the expense of fine-grain boundaries and even grew across the grain boundary deeply into adjacent grains, and then developed to cracks in the fine-grain zones.
基金supported by the National Natural Science Foundation of China(No.52075330)the Interdisciplinary Program of Shanghai Jiao Tong University(No.YG2019QNA15)the Foundation of National Facility for Translational Medicine(Shanghai)(No.TMSK-2020-107)。
文摘Thickness of the intermetallic compounds(IMC)layer at the interface has a significant effect on the mechanical properties of Mg/Al dissimilar joints.However,the thickness of IMC layer can be only obtained by metallurgical microscopy,which is destructive and has to break down the weld.Therefore,it is crucial to find a reliable approach that can non-destructively predict the thickness of IMC layer in practical application.In the current study,Mg alloy and Al alloy were friction stir butt welded(FSW)under different tool rotation speeds(TRS)to obtain different thicknesses of IMC layers.As the TRS increased from 400 rpm to 1000 rpm,thickness of the IMC layer increased from 0.4μm to 1.3μm,the peak welding temperatures increased from 259℃to 402℃,and the Z-axis downforces decreased from10.5 kN to 3.2 k N during welding process.Higher TRS would generally induce higher welding heat input,which promotes the growth of the IMC layer and the softening of base materials.The IMC layer formed through solid-state diffusion and transformation instead of eutectic reaction according to the welding temperature history and interfacial microstructure,and its evolution process was clearly observed by plan view.In order to incorporate the effect of dramatic change of welding temperature which is the characteristic feature of FSW,Psd Voigt function was used to fit the welding temperature histories.A new prediction formula was then established to predict thicknesses of IMC layers with considering sharp welding temperature change.Predicted thicknesses gave good agreement with measured thicknesses obtained experimentally under different welding parameters,which confirmed the accuracy and reliability of the new prediction formula.Based on this prediction formula,the time period of temperature higher than 200℃during welding was found critical for the thickening of interfacial IMC layers.
基金supported by the National Natural Science Foundation of China(Grant No.52035005)the Key R&D Program of Shandong Province in China(Grant No.2021ZLGX01).
文摘The composite structures/components made by friction stir lap welding(FSLW)of Mg alloy sheet and Al alloy sheet are of wide application potentials in the manufacturing sector of transportation vehicles.To further improve the joint quality,the ultrasonic vibration(UV)is exerted in FSLW,and the UV enhanced FSLW(UVeFSLW)was developed for making Mg-to-Al dissimilar joints.The numerical analysis and experimental investigation were combined to study the process mechanism in Mg/Al UVeFSLW.An equation related to the temperature and strain rate was derived to calculate the grain size at different locations of the weld nugget zone,and the effect of grain size distribution on the threshold thermal stress was included,so that the prediction accuracy of flow stress was further improved.With such modified constitutive equation,the numerical simulation was conducted to compare the heat generation,temperature profiles and material flow behaviors in Mg/Al UVeFSLW/FSLW processes.It was found that the exerted UV decreased the temperature at two checking points on the tool/workpiece interface from 707/671 K in FSLW to 689/660 K in UVeFSLW,which suppressed the IMCs thickness at Mg-Al interface from 1.7μm in FSLW to 1.1μm in UVeFSLW.The exerted UV increased the horizontal materials flow ability,and decreased the upward flow ability,which resulted in the increase of effective sheet thickness/effective lap width from 2.01/3.70 mm in FSLW to 2.04/4.84 mm in UVeFSLW.Therefore,the ultrasonic vibration improved the tensile shear strength of Mg-to-Al lap joints by 18%.
基金supported by the National Natural Science Foundation of China(Nos.52074228,52305420,and 51875470)the China Postdoctoral Science Foundation(No.2023M742830)。
文摘GH4169 joints manufactured by Linear Friction Welding(LFW)are subjected to tensile test and stair-case method to evaluate the High Cycle Fatigue(HCF)performance at 650℃.The yield and ultimate tensile strengths are 582 MPa and 820 MPa,respectively.The HCF strength of joint reaches 400 MPa,which is slightly lower than that of Base Metal(BM),indicating reliable quality of this type of joint.The microstructure observation results show that all cracks initiate at the inside of specimens and transfer into deeper region with decrease of external stress,and the crack initiation site is related with microhardness of matrix.The Electron Backscattered Diffraction(EBSD)results of the observed regions with different distances to fracture show that plastic deformation plays a key role in HCF,and the Schmid factor of most grains near fracture exceeds 0.4.In addition,the generation of twins plays a vital role in strain concentration release and coordinating plastic deformation among grains.