The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are the surface roughness and the error between the actual printing height and the theoretical m...The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are the surface roughness and the error between the actual printing height and the theoretical model height.The Taguchi method was employed to establish the correlations between process parameter combinations and multi-objective characterization of metal deposition morphology(height error and roughness).Results show that using the signal-to-noise ratio and grey relational analysis,the optimal parameter combination for multi-layer and multi-pass deposition is determined as follows:laser power of 800 W,powder feeding rate of 0.3 r/min,step distance of 1.6 mm,and scanning speed of 20 mm/s.Subsequently,a Genetic Bayesian-back propagation(GB-BP)network is constructed to predict multi-objective responses.Compared with the traditional back propagation network,the GB-back propagation network improves the prediction accuracy of height error and surface roughness by 43.14%and 71.43%,respectively.This network can accurately predict the multi-objective characterization of morphological quality of multi-layer and multi-pass metal deposited parts.展开更多
Climate models are essential for understanding past,present,and future changes in atmospheric circulation,with circulation modes providing key sources of seasonal predictability and prediction uncertainties for both g...Climate models are essential for understanding past,present,and future changes in atmospheric circulation,with circulation modes providing key sources of seasonal predictability and prediction uncertainties for both global and regional climates.This study assesses the performance of models participating in phase 6 of the Coupled Model Intercomparison Project in simulating interannual variability modes of Northern Hemisphere 500-hPa geopotential height during winter and summer,distinguishing predictable(potentially predictable on seasonal or longer timescales)and unpredictable(intraseasonal and essentially unpredictable at long range)components,using reanalysis data and a variance decomposition method.Although most models effectively capture unpredictable modes in reanalysis,their ability to reproduce dominant predictable modes-specifically the Pacific-North American pattern,Arctic Oscillation,and Western Pacific Oscillation in winter,and the East Atlantic and North Atlantic Oscillations in summer-varies notably.An optimal ensemble is identified to distinguish(a)predictable-external modes,dominated by external forcing,and(b)predictable-internal modes,associated with slow internal variability,during the historical period(1950-2014)and the SSP5-8.5 scenario(2036-2100).Under increased radiative forcing,the leading winter/summer predictable-external mode exhibits a more uniform spatial distribution,remarkably larger trend and annual variance,and enhanced height-sea surface temperature(SST)covariance under SSP5-8.5 compared to historical conditions.The dominant winter/summer predictable-internal modes also exhibit increased variance and height-SST covariance under SSP5-8.5,along with localized changes in spatial configuration.Minimal changes are observed in spatial distribution or variance for dominant winter/summer unpredictable modes under SSP5-8.5.This study,from a predictive perspective,deepens our understanding of model uncertainties and projected changes in circulations.展开更多
At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-laye...At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components.展开更多
Background Cervical cancer is the only cancer that can be eliminated worldwide.Tracking the latest burden of cervical cancer is critical toward the targets set by World Health Organization(WHO)to eliminate cervical ca...Background Cervical cancer is the only cancer that can be eliminated worldwide.Tracking the latest burden of cervical cancer is critical toward the targets set by World Health Organization(WHO)to eliminate cervical cancer as a major public health problem.Methods All data were extracted from the Global Cancer Observatory(GLOBOCAN)2022.Age-standardized incidence rate(ASIR)and mortality rates(ASMR)of cervical cancer were compared and linked to Human Development Index(HDI)between populations.The estimated annual percentage changes(EAPCs)were used to characterize the temporal trend in ASIR/ASMR,and demographic estimates were projected up to 2050.Results Globally,an estimated 662,044 cases(ASIR:14.12/100,000)and 348,709 deaths(ASMR:7.08/100,000)from cervical cancer occurred in 2022,corresponding to the fourth cause of cancer morbidity and mortality in women worldwide.Specifically,42%of cases and 39%of deaths occurred in China(23%and 16%)and India(19%and 23%).Both ASIR and ASMR of cervical cancer decreased with HDI,and similar decreasing links were observed for both early-onset(0–39 years)and late-onset(≥40 years)cervical cancer.Both ASIR and ASMR of overall cervical cancer showed decreasing trends during 2003–2012(EAPC:0.04%and-1.03%);however,upward trends were observed for early-onset cervical cancer(EAPC:1.16%and 0.57%).If national rates in 2022 remain stable,the estimated cases and deaths from cervical cancer are projected to increase by 56.8%and 80.7%up to 2050.Moreover,the projected increase of early-onset cervical cancer is mainly observed in transitioning countries,while decreased burden is expected in transitioned countries.Conclusions Cervical cancer remains a common cause of cancer death in many countries,especially in transitioning countries.Unless scaling-up preventive interventions,human papillomavirus(HPV)vaccination and cervical cancer screening,as well as systematic cooperation within government,civil societies,and private enterprises,the global burden of cervical cancer would be expected to increase in the future.展开更多
Semantic segmentation of eye images is a complex task with important applications in human–computer interaction,cognitive science,and neuroscience.Achieving real-time,accurate,and robust segmentation algorithms is cr...Semantic segmentation of eye images is a complex task with important applications in human–computer interaction,cognitive science,and neuroscience.Achieving real-time,accurate,and robust segmentation algorithms is crucial for computationally limited portable devices such as augmented reality and virtual reality.With the rapid advancements in deep learning,many network models have been developed specifically for eye image segmentation.Some methods divide the segmentation process into multiple stages to achieve model parameter miniaturization while enhancing output through post processing techniques to improve segmentation accuracy.These approaches significantly increase the inference time.Other networks adopt more complex encoding and decoding modules to achieve end-to-end output,which requires substantial computation.Therefore,balancing the model’s size,accuracy,and computational complexity is essential.To address these challenges,we propose a lightweight asymmetric UNet architecture and a projection loss function.We utilize ResNet-3 layer blocks to enhance feature extraction efficiency in the encoding stage.In the decoding stage,we employ regular convolutions and skip connections to upscale the feature maps from the latent space to the original image size,balancing the model size and segmentation accuracy.In addition,we leverage the geometric features of the eye region and design a projection loss function to further improve the segmentation accuracy without adding any additional inference computational cost.We validate our approach on the OpenEDS2019 dataset for virtual reality and achieve state-of-the-art performance with 95.33%mean intersection over union(mIoU).Our model has only 0.63M parameters and 350 FPS,which are 68%and 200%of the state-of-the-art model RITNet,respectively.展开更多
The huge impact kinetic energy cannot be quickly dissipated by the energy-absorbing structure and transferred to the other vehicle through the car body structure,which will cause structural damage and threaten the liv...The huge impact kinetic energy cannot be quickly dissipated by the energy-absorbing structure and transferred to the other vehicle through the car body structure,which will cause structural damage and threaten the lives of the occupants.Therefore,it is necessary to understand the laws of energy conversion,dissipation and transfer during train collisions.This study proposes a multi-layer progressive analysis method of energy flow during train collisions,considering the characteristics of the train.In this method,the train collision system is divided into conversion,dissipation,and transfer layers from the perspective of the train,collision interface,and car body structure to analyze the energy conversion,dissipation and transfer characteristics.Taking the collision process of a rail train as an example,a train collision energy transfer path analysis model was established based on power flow theory.The results show that when the maximum mean acceleration of the vehicle meets the standard requirements,the jerk may exceed the allowable limit of the human body,and there is a risk of injury to the occupants of a secondary collision.The decay rate of the collision energy along the direction of train operation reaches 79%.As the collision progresses,the collision energy gradually converges in the structure with holes,and the structure deforms when the gathered energy is greater than the maximum energy the structure can withstand.The proposed method helps to understand the train collision energy flow law and provides theoretical support for the train crashworthiness design in the future.展开更多
The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging at...The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems.展开更多
Benefit evaluation of debris flow prevention and control projects was one of the essential contents of debris flow prevention and mitigation work.In order to scientifically and quantitatively evaluate the comprehensiv...Benefit evaluation of debris flow prevention and control projects was one of the essential contents of debris flow prevention and mitigation work.In order to scientifically and quantitatively evaluate the comprehensive benefit of debris flow prevention and control projects,this study identified nine factors as evaluation indicators from economic,social,and ecological aspects.The projection pursuit(PP) model based on the improved particle swarm optimization(IPSO) algorithm was used to construct a mathematical model to evaluate the benefit of debris flow prevention and control projects.The interpolation method was applied to divide the benefit grades.The debris flow prevention and control projects in Qipan,Taoguan,Chutou,Anjia,and Mozi gullies in Wenchuan County were chosen as typical cases for empirical analysis.The case study revealed that,among the criteria layer indicators,investment per unit of the protected area,investment per unit of the protected population,the amount of water and soil conservation,and reduction rate of accumulation fan had the most significant weights.The social and ecological benefits were found to be the more important in the target layer.The comprehensive benefit of Qipan,Taoguan,Chutou,Anjia,and Mozi gullies was found to be 4.44,4.83,1.95,3,and 2,respectively.The benefit ranking of the five gullies was consistent with their effectiveness in disaster prevention ranking in the flood season of 2019.Therefore,it could prove that the newly-built benefit evaluation model was practical and feasible,and the evaluation results of the sample could be reasonably interpreted,which verified the effectiveness of the methods.展开更多
Currently,the international economic situation is becoming increasingly complex,and there is significant downward pressure on the global economy.In recent years,China’s infrastructure sector has experienced rapid gro...Currently,the international economic situation is becoming increasingly complex,and there is significant downward pressure on the global economy.In recent years,China’s infrastructure sector has experienced rapid growth,with the structure of its power engineering business gradually shifting from traditional infrastructure construction to more diversified areas such as production and operation,as well as emergency repairs.As a result,the transformation of mechanized construction in power transmission and transformation projects has become increasingly urgent.This article proposes a post-evaluation model based on game theory to improve comprehensive weighting and fuzzy grey relational projection sorting,which can be used to evaluate the optimal mechanized construction scheme for power transmission and transformation projects.The model begins by considering the entire lifecycle of power transmission and transformation projects.It constructs a post-evaluation index system that covers the planning and design stage,on-site construction stage,operation and maintenance stage,and the decommissioning and disposal stage,with corresponding calculation methods for each index.The fuzzy grey correlation projection sorting method is then employed to evaluate and rank the construction schemes.To validate the model’s effectiveness,a case study of a power transmission and transformation project in a specific region of China is used.The comprehensive benefits of three proposed mechanized construction schemes are evaluated and compared.According to the evaluation results,Scheme 1 is ranked the highest,with a membership degree of 0.870945,excelling in sustainability.These results suggest that the proposed model can effectively evaluate and make decisions regarding the optimal mechanized construction plan for power transmission and transformation projects.展开更多
In practical engineering construction,multi-layered barriers containing geomembranes are extensively applied to retard the migration of pollutants.However,the associated analytical theory on pollutants diffusion still...In practical engineering construction,multi-layered barriers containing geomembranes are extensively applied to retard the migration of pollutants.However,the associated analytical theory on pollutants diffusion still needs to be further improved.In this work,general analytical solutions are derived for one-dimensional diffusion of degradable organic contaminant(DOC)in the multi-layered media containing geomembranes under a time-varying concentration boundary condition,where the variable substitution and separated variable approaches are employed.These analytical solutions with clear expressions can be used not only to study the diffusion behaviors of DOC in bottom and vertical composite barrier systems,but also to verify other complex numerical models.The proposed general analytical solutions are then fully validated via three comparative analyses,including comparisons with the experimental measurements,an existing analytical solution,and a finite-difference solution.Ultimately,the influences of different factors on the composite cutoff wall’s(CCW,which consists of two soil-bentonite layers and a geomembrane)service performance are investigated through a composite vertical barrier system as the application example.The findings obtained from this investigation can provide scientific guidance for the barrier performance evaluation and the engineering design of CCWs.This application example also exhibits the necessity and effectiveness of the developed analytical solutions.展开更多
Let X be a real uniformly convex and uniformly smooth Banach space and C a nonempty closed and convex subset of X.Let Π_(C):X→C denote the generalized metric projection operator introduced by Alber in[1].In this pap...Let X be a real uniformly convex and uniformly smooth Banach space and C a nonempty closed and convex subset of X.Let Π_(C):X→C denote the generalized metric projection operator introduced by Alber in[1].In this paper,we define the Gâteaux directional differentiability of Π_(C).We investigate some properties of the Gâteaux directional differentiability of Π_(C).In particular,if C is a closed ball,or a closed and convex cone(including proper closed subspaces),or a closed and convex cylinder,then,we give the exact representations of the directional derivatives of Π_(C).By comparing the results in[12]and this paper,we see the significant difference between the directional derivatives of the generalized metric projection operator Π_(C) and the Gâteaux directional derivatives of the standard metric projection operator PC.展开更多
Objective:This study aimed to analyze the temporal trends in cancer mortality in China from 2013-2021 and project the future trends through 2030.Methods:This study was based on the China Causes of Death Surveillance D...Objective:This study aimed to analyze the temporal trends in cancer mortality in China from 2013-2021 and project the future trends through 2030.Methods:This study was based on the China Causes of Death Surveillance Dataset,which covers 2.37 billion person-years.Age-standardized mortality rates(ASMRs)were calculated using Segi’s world standard population and the trends were evaluated via Joinpoint regression.Bayesian age-period-cohort models were used for mortality projections.Contributions of demographic changes(population size and age structure)and risk factors to the mortality burden were quantified using the decomposition analysis.Results:The combined ASMRs for all cancers decreased annually by 2.3%,driven by significant declines in esophageal(4.8%),stomach(4.5%),and liver cancers(2.7%).In contrast,the pancreatic and prostate cancer ASMRs increased by 2.0% and 3.4% annually,respectively.Urban areas demonstrated a more rapid decline in the combined ASMRs for all cancers[average annual percent change(AAPC)=-3.0% in urban areas vs.-2.0% in rural areas],highlighting persistent disparities.Population aging contributed 20%-50% to death increases between 2013 and 2021.The combined ASMRs for all cancers,like the findings of temporal trend analyses,will continue to decrease and the regional(urban and rural)difference is projected to simulate that of the temporal trend through 2030.In fact,cancer deaths are projected to reach 2.4 million by 2030.Conclusions:The cancer burden in China is facing the dual challenges of population aging and urban-rural disparities.It is necessary to prioritize rural screening,control risk factors,such as smoking and diet,and integrate more efficacious cancer prevention and control programmes into the policy to reduce mortality in the future.展开更多
We show that the volume of the projection bodyΠ(Z)of an n-dimensional zonotope Z with n+1 generators and of volume 1 is always exactly 2^(n).Moroever,we point out that an upper bound on the volume ofΠ(K)of a central...We show that the volume of the projection bodyΠ(Z)of an n-dimensional zonotope Z with n+1 generators and of volume 1 is always exactly 2^(n).Moroever,we point out that an upper bound on the volume ofΠ(K)of a centrally symmetric n-dimensional convex body of volume 1 is at least 2^(n)(9/8)^([n/3]).展开更多
This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi...This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi analytical solutions of temperature increment and displacement of multi-layered composite structures are obtained by using the Laplace transform method,upon which the effects of thermal resistance coefficient,partition coefficient,thermal conductivity ratio and heat capacity ratio on the responses are studied.The results show that the generalized imperfect thermal contact model can realistically describe the imperfect thermal contact problem.Accordingly,it may degenerate into other thermal contact models by adjusting the thermal resistance coefficient and partition coefficient.展开更多
Transportation structures such as composite pavements and railway foundations typically consist of multi-layered media designed to withstand high bearing capacity.A theoretical understanding of load transfer mechanism...Transportation structures such as composite pavements and railway foundations typically consist of multi-layered media designed to withstand high bearing capacity.A theoretical understanding of load transfer mechanisms in these multi-layer composites is essential,as it offers intuitive insights into parametric influences and facilitates enhanced structural performance.This paper employs an improved transfer matrix method to address the limitations of existing theoretical approaches for analyzing multi-layer composite structures.By establishing a twodimensional composite pavement model,it investigates load transfer characteristics and validates the accuracy through finite element simulation.The proposed method offers a straightforward analytical approach for examining internal interactions between structural layers.Case studies indicate that the concrete surface layer is the main load-bearing layer for most vertical normal and shear stresses.The soil base layer reduces the overall mechanical response of the substructure,while horizontal actions increase the risk of interfacial slip and cracking.Structural optimization analysis demonstrates that increasing the thickness of the concrete surface layer,enhancing the thickness and stiffness of the soil base layer,or incorporating gradient layers can significantly mitigate these risks of interfacial slip and cracking.The findings of this study can guide the optimization design,parameter analysis,and damage prevention of multi-layer composite structures.展开更多
Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed ...Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed satellites,ground users now can be covered by multiple visible satellites,but also face complex handover issues with such massive high-mobility satellites in multi-layer.The end-to-end routing is also affected by the handover behavior.In this paper,we propose an intelligent handover strategy dedicated to multi-layer LEO mega-constellation networks.Firstly,an analytic model is utilized to rapidly estimate the end-to-end propagation latency as a key handover factor to construct a multi-objective optimization model.Subsequently,an intelligent handover strategy is proposed by employing the Dueling Double Deep Q Network(D3QN)-based deep reinforcement learning algorithm for single-layer constellations.Moreover,an optimal crosslayer handover scheme is proposed by predicting the latency-jitter and minimizing the cross-layer overhead.Simulation results demonstrate the superior performance of the proposed method in the multi-layer LEO mega-constellation,showcasing reductions of up to 8.2%and 59.5%in end-to-end latency and jitter respectively,when compared to the existing handover strategies.展开更多
Revealing regional climate changes is vital for policymaking activities related to climate change adaptation and mitigation.South China is a well-developed region with a dense population,but the level of uncertainty i...Revealing regional climate changes is vital for policymaking activities related to climate change adaptation and mitigation.South China is a well-developed region with a dense population,but the level of uncertainty in climate projections remains to be evaluated in detail.In this study,we comprehensively assessed the historical simulations and future projections of climate change in South China based on CMIP5/CMIP6 models.We show evidence that CMIP5/CMIP6 models can skillfully reproduce the observed distributions of annual/seasonal mean temperature but show much lower skill for precipitation.CMIP6 outperforms CMIP5 in the historical simulations,as evidenced by more models with lower bias magnitude and higher skill scores.During 2021–2100,the annual mean temperature over South China is projected to increase significantly at a rate of 0.53(0.42–0.63)and 0.59(0.52–0.66)℃(10 yr)^(-1),while precipitation is projected to increase slightly at a rate of 0.78(0.15–1.56)and 1.52(0.91–2.30)%(10 yr)^(-1),under the RCP8.5 and SSP5-8.5 scenarios,respectively.CMIP6 models project larger annual/seasonal mean temperature and precipitation trends than CMIP5 models under equivalent scenarios.The temperature in South China is projected to increase robustly by more than1.5℃during 2041–2060 under RCP4.5 and SSP2-4.5,but by 4.5℃during 2081–2100,under RCP8.5 and SSP5-8.5 with respect to 1850–1900.The uncertainty in temperature projections is mainly dominated by model uncertainty and scenario uncertainty,while internal uncertainty contributes some of the uncertainty during the near-term.The uncertainty in precipitation projection stems mainly from internal uncertainty and model uncertainty.For both the temperature and precipitation projection uncertainty,the relative sizes of contributions from the main contributors vary with time and show obvious seasonal differences.展开更多
Conventional adaptive filtering algorithms often exhibit performance degradation when processing multipath interference in raw echoes of spaceborne synthetic aperture radar(SAR)systems due to anomalous outliers,manife...Conventional adaptive filtering algorithms often exhibit performance degradation when processing multipath interference in raw echoes of spaceborne synthetic aperture radar(SAR)systems due to anomalous outliers,manifesting as insufficient convergence and low estimation accuracy.To address this issue,this study proposes a novel robust adaptive filtering algorithm,namely the M-estimation-based minimum error entropy with affine projection(APMMEE)algorithm.This algorithm inherits the joint multi-data-block update mechanism of the affine projection algorithm,enabling rapid adaptation to the dynamic characteristics of raw echoes and achieving fast convergence.Meanwhile,it incorporates the M-estimation-based minimum error entropy(MMEE)criterion,which weights error samples in raw echoes through M-estimation functions,effectively suppressing outlier interference during the algorithm update.Both the system identification simulations and practical multipath interference suppression experiments using raw echoes demonstrate that the proposed APMMEE algorithm exhibits superior filtering performance.展开更多
Estimation and attribution of evapotranspiration(ET)and its components under changing environment is still a challenge but is essential for understanding the mechanisms of water and energy transfer for regional water ...Estimation and attribution of evapotranspiration(ET)and its components under changing environment is still a challenge but is essential for understanding the mechanisms of water and energy transfer for regional water resources management.In this study,an improved hydrological model is developed to estimate evapotranspiration and its components,i.e.,evaporation(E)and transpiration(T)by integrated the advantages of hydrological modeling constrained by water balance and the water-carbon close relationships.Results show that the improved hydrological model could captures ET and its components well in the study region.During the past years,annual ET and E increase obviously about 2.40 and 1.42 mm/a,particularly in spring and summer accounting for 90%.T shows less increasement and mainly increases in spring while it decreases in summer.Precipitation is the dominant factor and contributes 74.1%and 90.0%increases of annual ET and E,while the attribution of T changes is more complex by coupling of the positive effects of precipitation,rising temperature and interactive influences,the negative effects of solar diming and elevated CO_(2).In the future,ET and its components tend to increase under most of the Shared Socioeconomic Pathways(SSP)scenarios except for T decreases under the very high emissions scenario(SSP5-8.5)based on the projections.From seasonal perspective,the changes of ET and the components are mainly in spring and summer accounting for 75%,while more slight changes are found in autumn and winter.This study highlights the effectiveness of estimating ET and its components by improving hydrological models within water-carbon coupling relationships,and more complex mechanisms of transpiration changes than evapotranspiration and evaporation changes under the interactive effects of climate variability and vegetation dynamics.Besides,decision makers should pay attention to the more increases in the undesirable E than desirable T.展开更多
In this paper,it is shown that the harmonic Bergman projection P_(ω)^(h),induced by a radial,induced by a radial weightω,is bounded and onto from L^(∞)(D)to the harmonic Bloch space B_(h)if and only ifω∈D,,which ...In this paper,it is shown that the harmonic Bergman projection P_(ω)^(h),induced by a radial,induced by a radial weightω,is bounded and onto from L^(∞)(D)to the harmonic Bloch space B_(h)if and only ifω∈D,,which is a class of radial weights satisfying the two-sided doubling conditions.As an application,the bounded and compact positive Toeplitz operators T_(μ,ω)on the endpoint case weighted harmonic Bergman space L_(h,ω)^(1)(D)are characterized.展开更多
基金National Natural Science Foundation of China(52175237)。
文摘The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are the surface roughness and the error between the actual printing height and the theoretical model height.The Taguchi method was employed to establish the correlations between process parameter combinations and multi-objective characterization of metal deposition morphology(height error and roughness).Results show that using the signal-to-noise ratio and grey relational analysis,the optimal parameter combination for multi-layer and multi-pass deposition is determined as follows:laser power of 800 W,powder feeding rate of 0.3 r/min,step distance of 1.6 mm,and scanning speed of 20 mm/s.Subsequently,a Genetic Bayesian-back propagation(GB-BP)network is constructed to predict multi-objective responses.Compared with the traditional back propagation network,the GB-back propagation network improves the prediction accuracy of height error and surface roughness by 43.14%and 71.43%,respectively.This network can accurately predict the multi-objective characterization of morphological quality of multi-layer and multi-pass metal deposited parts.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2342210 and 42275043)the National Institute of Natural Hazards,Ministry of Emergency Management of China(Grant Nos.J2223806,ZDJ2024-25 and ZDJ2025-34)。
文摘Climate models are essential for understanding past,present,and future changes in atmospheric circulation,with circulation modes providing key sources of seasonal predictability and prediction uncertainties for both global and regional climates.This study assesses the performance of models participating in phase 6 of the Coupled Model Intercomparison Project in simulating interannual variability modes of Northern Hemisphere 500-hPa geopotential height during winter and summer,distinguishing predictable(potentially predictable on seasonal or longer timescales)and unpredictable(intraseasonal and essentially unpredictable at long range)components,using reanalysis data and a variance decomposition method.Although most models effectively capture unpredictable modes in reanalysis,their ability to reproduce dominant predictable modes-specifically the Pacific-North American pattern,Arctic Oscillation,and Western Pacific Oscillation in winter,and the East Atlantic and North Atlantic Oscillations in summer-varies notably.An optimal ensemble is identified to distinguish(a)predictable-external modes,dominated by external forcing,and(b)predictable-internal modes,associated with slow internal variability,during the historical period(1950-2014)and the SSP5-8.5 scenario(2036-2100).Under increased radiative forcing,the leading winter/summer predictable-external mode exhibits a more uniform spatial distribution,remarkably larger trend and annual variance,and enhanced height-sea surface temperature(SST)covariance under SSP5-8.5 compared to historical conditions.The dominant winter/summer predictable-internal modes also exhibit increased variance and height-SST covariance under SSP5-8.5,along with localized changes in spatial configuration.Minimal changes are observed in spatial distribution or variance for dominant winter/summer unpredictable modes under SSP5-8.5.This study,from a predictive perspective,deepens our understanding of model uncertainties and projected changes in circulations.
基金supported by the National Key Research and Development Program of China(No.2022YFB3404700)the National Natural Science Foundation of China(Nos.52105313 and 52275299)+2 种基金the Research and Development Program of Beijing Municipal Education Commission,China(No.KM202210005036)the Natural Science Foundation of Chongqing,China(No.CSTB2023NSCQ-MSX0701)the National Defense Basic Research Projects of China(No.JCKY2022405C002).
文摘At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components.
基金supported by the National Key R&D Program of China(grant number:2021YFC2500400)National Natural Science Foundation of China(grant numbers:82172894,82073028,82204121)China Postdoctoral Science Foundation(grant number:2023M742617).
文摘Background Cervical cancer is the only cancer that can be eliminated worldwide.Tracking the latest burden of cervical cancer is critical toward the targets set by World Health Organization(WHO)to eliminate cervical cancer as a major public health problem.Methods All data were extracted from the Global Cancer Observatory(GLOBOCAN)2022.Age-standardized incidence rate(ASIR)and mortality rates(ASMR)of cervical cancer were compared and linked to Human Development Index(HDI)between populations.The estimated annual percentage changes(EAPCs)were used to characterize the temporal trend in ASIR/ASMR,and demographic estimates were projected up to 2050.Results Globally,an estimated 662,044 cases(ASIR:14.12/100,000)and 348,709 deaths(ASMR:7.08/100,000)from cervical cancer occurred in 2022,corresponding to the fourth cause of cancer morbidity and mortality in women worldwide.Specifically,42%of cases and 39%of deaths occurred in China(23%and 16%)and India(19%and 23%).Both ASIR and ASMR of cervical cancer decreased with HDI,and similar decreasing links were observed for both early-onset(0–39 years)and late-onset(≥40 years)cervical cancer.Both ASIR and ASMR of overall cervical cancer showed decreasing trends during 2003–2012(EAPC:0.04%and-1.03%);however,upward trends were observed for early-onset cervical cancer(EAPC:1.16%and 0.57%).If national rates in 2022 remain stable,the estimated cases and deaths from cervical cancer are projected to increase by 56.8%and 80.7%up to 2050.Moreover,the projected increase of early-onset cervical cancer is mainly observed in transitioning countries,while decreased burden is expected in transitioned countries.Conclusions Cervical cancer remains a common cause of cancer death in many countries,especially in transitioning countries.Unless scaling-up preventive interventions,human papillomavirus(HPV)vaccination and cervical cancer screening,as well as systematic cooperation within government,civil societies,and private enterprises,the global burden of cervical cancer would be expected to increase in the future.
基金supported by the HFIPS Director’s Foundation(YZJJ202207-TS),the National Natural Science Foundation of China(82371931)the Natural Science Foundation of Anhui Province(2008085MC69)+3 种基金the Natural Science Foundation of Hefei City(2021033)the General Scientific Research Project of Anhui Provincial Health Commission(AHWJ2021b150)the Collaborative Innovation Program of Hefei Science Center,CAS(2021HSC-CIP013)the Anhui Province Key Research and Development Project(202204295107020004).
文摘Semantic segmentation of eye images is a complex task with important applications in human–computer interaction,cognitive science,and neuroscience.Achieving real-time,accurate,and robust segmentation algorithms is crucial for computationally limited portable devices such as augmented reality and virtual reality.With the rapid advancements in deep learning,many network models have been developed specifically for eye image segmentation.Some methods divide the segmentation process into multiple stages to achieve model parameter miniaturization while enhancing output through post processing techniques to improve segmentation accuracy.These approaches significantly increase the inference time.Other networks adopt more complex encoding and decoding modules to achieve end-to-end output,which requires substantial computation.Therefore,balancing the model’s size,accuracy,and computational complexity is essential.To address these challenges,we propose a lightweight asymmetric UNet architecture and a projection loss function.We utilize ResNet-3 layer blocks to enhance feature extraction efficiency in the encoding stage.In the decoding stage,we employ regular convolutions and skip connections to upscale the feature maps from the latent space to the original image size,balancing the model size and segmentation accuracy.In addition,we leverage the geometric features of the eye region and design a projection loss function to further improve the segmentation accuracy without adding any additional inference computational cost.We validate our approach on the OpenEDS2019 dataset for virtual reality and achieve state-of-the-art performance with 95.33%mean intersection over union(mIoU).Our model has only 0.63M parameters and 350 FPS,which are 68%and 200%of the state-of-the-art model RITNet,respectively.
基金Supported by the National Natural Science Foundation of China(Grant No.52172409)Postdoctoral Innovation Talents Support Program(Grant No.BX20240298)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.2682024GF023)Heilongjiang Province Postdoctoral Foundation Project(Grant No.LBH-Z23041).
文摘The huge impact kinetic energy cannot be quickly dissipated by the energy-absorbing structure and transferred to the other vehicle through the car body structure,which will cause structural damage and threaten the lives of the occupants.Therefore,it is necessary to understand the laws of energy conversion,dissipation and transfer during train collisions.This study proposes a multi-layer progressive analysis method of energy flow during train collisions,considering the characteristics of the train.In this method,the train collision system is divided into conversion,dissipation,and transfer layers from the perspective of the train,collision interface,and car body structure to analyze the energy conversion,dissipation and transfer characteristics.Taking the collision process of a rail train as an example,a train collision energy transfer path analysis model was established based on power flow theory.The results show that when the maximum mean acceleration of the vehicle meets the standard requirements,the jerk may exceed the allowable limit of the human body,and there is a risk of injury to the occupants of a secondary collision.The decay rate of the collision energy along the direction of train operation reaches 79%.As the collision progresses,the collision energy gradually converges in the structure with holes,and the structure deforms when the gathered energy is greater than the maximum energy the structure can withstand.The proposed method helps to understand the train collision energy flow law and provides theoretical support for the train crashworthiness design in the future.
基金Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2025R319)Riyadh,Saudi Arabia and Prince Sultan University for covering the article processing charges(APC)associated with this publication.Special acknowledgement to Automated Systems&Soft Computing Lab(ASSCL),Prince Sultan University,Riyadh,Saudi Arabia.
文摘The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems.
基金financially supported by the National Key Research and Development Program(No.2018YFC1505402)the National Natural Science Foundation of China(No.41871174)+1 种基金the Science and Technology Department of Sichuan Province(No.2020YFSY0013)the Fundamental Research Funds for the Central Universities Project(No.2682019CX19)。
文摘Benefit evaluation of debris flow prevention and control projects was one of the essential contents of debris flow prevention and mitigation work.In order to scientifically and quantitatively evaluate the comprehensive benefit of debris flow prevention and control projects,this study identified nine factors as evaluation indicators from economic,social,and ecological aspects.The projection pursuit(PP) model based on the improved particle swarm optimization(IPSO) algorithm was used to construct a mathematical model to evaluate the benefit of debris flow prevention and control projects.The interpolation method was applied to divide the benefit grades.The debris flow prevention and control projects in Qipan,Taoguan,Chutou,Anjia,and Mozi gullies in Wenchuan County were chosen as typical cases for empirical analysis.The case study revealed that,among the criteria layer indicators,investment per unit of the protected area,investment per unit of the protected population,the amount of water and soil conservation,and reduction rate of accumulation fan had the most significant weights.The social and ecological benefits were found to be the more important in the target layer.The comprehensive benefit of Qipan,Taoguan,Chutou,Anjia,and Mozi gullies was found to be 4.44,4.83,1.95,3,and 2,respectively.The benefit ranking of the five gullies was consistent with their effectiveness in disaster prevention ranking in the flood season of 2019.Therefore,it could prove that the newly-built benefit evaluation model was practical and feasible,and the evaluation results of the sample could be reasonably interpreted,which verified the effectiveness of the methods.
文摘Currently,the international economic situation is becoming increasingly complex,and there is significant downward pressure on the global economy.In recent years,China’s infrastructure sector has experienced rapid growth,with the structure of its power engineering business gradually shifting from traditional infrastructure construction to more diversified areas such as production and operation,as well as emergency repairs.As a result,the transformation of mechanized construction in power transmission and transformation projects has become increasingly urgent.This article proposes a post-evaluation model based on game theory to improve comprehensive weighting and fuzzy grey relational projection sorting,which can be used to evaluate the optimal mechanized construction scheme for power transmission and transformation projects.The model begins by considering the entire lifecycle of power transmission and transformation projects.It constructs a post-evaluation index system that covers the planning and design stage,on-site construction stage,operation and maintenance stage,and the decommissioning and disposal stage,with corresponding calculation methods for each index.The fuzzy grey correlation projection sorting method is then employed to evaluate and rank the construction schemes.To validate the model’s effectiveness,a case study of a power transmission and transformation project in a specific region of China is used.The comprehensive benefits of three proposed mechanized construction schemes are evaluated and compared.According to the evaluation results,Scheme 1 is ranked the highest,with a membership degree of 0.870945,excelling in sustainability.These results suggest that the proposed model can effectively evaluate and make decisions regarding the optimal mechanized construction plan for power transmission and transformation projects.
基金Project(2023YFC3707800)supported by the National Key Research and Development Program of China。
文摘In practical engineering construction,multi-layered barriers containing geomembranes are extensively applied to retard the migration of pollutants.However,the associated analytical theory on pollutants diffusion still needs to be further improved.In this work,general analytical solutions are derived for one-dimensional diffusion of degradable organic contaminant(DOC)in the multi-layered media containing geomembranes under a time-varying concentration boundary condition,where the variable substitution and separated variable approaches are employed.These analytical solutions with clear expressions can be used not only to study the diffusion behaviors of DOC in bottom and vertical composite barrier systems,but also to verify other complex numerical models.The proposed general analytical solutions are then fully validated via three comparative analyses,including comparisons with the experimental measurements,an existing analytical solution,and a finite-difference solution.Ultimately,the influences of different factors on the composite cutoff wall’s(CCW,which consists of two soil-bentonite layers and a geomembrane)service performance are investigated through a composite vertical barrier system as the application example.The findings obtained from this investigation can provide scientific guidance for the barrier performance evaluation and the engineering design of CCWs.This application example also exhibits the necessity and effectiveness of the developed analytical solutions.
文摘Let X be a real uniformly convex and uniformly smooth Banach space and C a nonempty closed and convex subset of X.Let Π_(C):X→C denote the generalized metric projection operator introduced by Alber in[1].In this paper,we define the Gâteaux directional differentiability of Π_(C).We investigate some properties of the Gâteaux directional differentiability of Π_(C).In particular,if C is a closed ball,or a closed and convex cone(including proper closed subspaces),or a closed and convex cylinder,then,we give the exact representations of the directional derivatives of Π_(C).By comparing the results in[12]and this paper,we see the significant difference between the directional derivatives of the generalized metric projection operator Π_(C) and the Gâteaux directional derivatives of the standard metric projection operator PC.
基金supported by the CAMS Innovation Fund for Medical Sciences(Grant No.2021-I2M-1-011)the Capital’s Funds for Health Improvement and Research(Grant No.CFH2024-2G-40214).
文摘Objective:This study aimed to analyze the temporal trends in cancer mortality in China from 2013-2021 and project the future trends through 2030.Methods:This study was based on the China Causes of Death Surveillance Dataset,which covers 2.37 billion person-years.Age-standardized mortality rates(ASMRs)were calculated using Segi’s world standard population and the trends were evaluated via Joinpoint regression.Bayesian age-period-cohort models were used for mortality projections.Contributions of demographic changes(population size and age structure)and risk factors to the mortality burden were quantified using the decomposition analysis.Results:The combined ASMRs for all cancers decreased annually by 2.3%,driven by significant declines in esophageal(4.8%),stomach(4.5%),and liver cancers(2.7%).In contrast,the pancreatic and prostate cancer ASMRs increased by 2.0% and 3.4% annually,respectively.Urban areas demonstrated a more rapid decline in the combined ASMRs for all cancers[average annual percent change(AAPC)=-3.0% in urban areas vs.-2.0% in rural areas],highlighting persistent disparities.Population aging contributed 20%-50% to death increases between 2013 and 2021.The combined ASMRs for all cancers,like the findings of temporal trend analyses,will continue to decrease and the regional(urban and rural)difference is projected to simulate that of the temporal trend through 2030.In fact,cancer deaths are projected to reach 2.4 million by 2030.Conclusions:The cancer burden in China is facing the dual challenges of population aging and urban-rural disparities.It is necessary to prioritize rural screening,control risk factors,such as smoking and diet,and integrate more efficacious cancer prevention and control programmes into the policy to reduce mortality in the future.
文摘We show that the volume of the projection bodyΠ(Z)of an n-dimensional zonotope Z with n+1 generators and of volume 1 is always exactly 2^(n).Moroever,we point out that an upper bound on the volume ofΠ(K)of a centrally symmetric n-dimensional convex body of volume 1 is at least 2^(n)(9/8)^([n/3]).
基金Projects(42477162,52108347,52178371,52168046,52178321,52308383)supported by the National Natural Science Foundation of ChinaProjects(2023C03143,2022C01099,2024C01219,2022C03151)supported by the Zhejiang Key Research and Development Plan,China+6 种基金Project(LQ22E080010)supported by the Exploring Youth Project of Zhejiang Natural Science Foundation,ChinaProject(LR21E080005)supported by the Outstanding Youth Project of Natural Science Foundation of Zhejiang Province,ChinaProject(2022M712964)supported by the Postdoctoral Science Foundation of ChinaProject(2023AFB008)supported by the Natural Science Foundation of Hubei Province for Youth,ChinaProject(202203)supported by Engineering Research Centre of Rock-Soil Drilling&Excavation and Protection,Ministry of Education,ChinaProject(202305-2)supported by the Science and Technology Project of Zhejiang Provincial Communication Department,ChinaProject(2021K256)supported by the Construction Research Founds of Department of Housing and Urban-Rural Development of Zhejiang Province,China。
文摘This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi analytical solutions of temperature increment and displacement of multi-layered composite structures are obtained by using the Laplace transform method,upon which the effects of thermal resistance coefficient,partition coefficient,thermal conductivity ratio and heat capacity ratio on the responses are studied.The results show that the generalized imperfect thermal contact model can realistically describe the imperfect thermal contact problem.Accordingly,it may degenerate into other thermal contact models by adjusting the thermal resistance coefficient and partition coefficient.
基金supported by Fundamental Research Funds for the Central Universities(No.lzujbky-2024-05)Innovation Foundation of Provincial Education Department of Gansu(2024B-005)+2 种基金Scientific Department of Gansu(24CXGA083,24CXGA024,JK2024-28,JK2024-32 and 23CXJA0007)Industrial Support Plan Project of Provincial Education Department of Gansu(2025CYZC-003 and CYZC-2024-10)the Hunan Natural Science Foundation Science and Education Joint Fund Project(2022JJ60109).
文摘Transportation structures such as composite pavements and railway foundations typically consist of multi-layered media designed to withstand high bearing capacity.A theoretical understanding of load transfer mechanisms in these multi-layer composites is essential,as it offers intuitive insights into parametric influences and facilitates enhanced structural performance.This paper employs an improved transfer matrix method to address the limitations of existing theoretical approaches for analyzing multi-layer composite structures.By establishing a twodimensional composite pavement model,it investigates load transfer characteristics and validates the accuracy through finite element simulation.The proposed method offers a straightforward analytical approach for examining internal interactions between structural layers.Case studies indicate that the concrete surface layer is the main load-bearing layer for most vertical normal and shear stresses.The soil base layer reduces the overall mechanical response of the substructure,while horizontal actions increase the risk of interfacial slip and cracking.Structural optimization analysis demonstrates that increasing the thickness of the concrete surface layer,enhancing the thickness and stiffness of the soil base layer,or incorporating gradient layers can significantly mitigate these risks of interfacial slip and cracking.The findings of this study can guide the optimization design,parameter analysis,and damage prevention of multi-layer composite structures.
基金supported by the National Natural Science Foundation of China(No.62401597)Natural Science Foundation of Hunan Province,China(No.2024JJ6469)the Research Project of National University of Defense Technology,China(No.ZK22-02).
文摘Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed satellites,ground users now can be covered by multiple visible satellites,but also face complex handover issues with such massive high-mobility satellites in multi-layer.The end-to-end routing is also affected by the handover behavior.In this paper,we propose an intelligent handover strategy dedicated to multi-layer LEO mega-constellation networks.Firstly,an analytic model is utilized to rapidly estimate the end-to-end propagation latency as a key handover factor to construct a multi-objective optimization model.Subsequently,an intelligent handover strategy is proposed by employing the Dueling Double Deep Q Network(D3QN)-based deep reinforcement learning algorithm for single-layer constellations.Moreover,an optimal crosslayer handover scheme is proposed by predicting the latency-jitter and minimizing the cross-layer overhead.Simulation results demonstrate the superior performance of the proposed method in the multi-layer LEO mega-constellation,showcasing reductions of up to 8.2%and 59.5%in end-to-end latency and jitter respectively,when compared to the existing handover strategies.
基金jointly supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U2242203)the National Natural Science Foundation of China(Grant No.41905070)+4 种基金the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2021A1515011421,2023A1515240067,2023B1515020009)the National Key R&D Program of China(Grant No.2018YFC1505801)supported by the Guangdong Provincial Marine Meteorology Science Data Center(2024B1212070014)the China Meteorology Administration Key Innovation Team of Tropical Meteorology(Grant No.CMA2023ZD08)State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences(Project No.LTO2311)。
文摘Revealing regional climate changes is vital for policymaking activities related to climate change adaptation and mitigation.South China is a well-developed region with a dense population,but the level of uncertainty in climate projections remains to be evaluated in detail.In this study,we comprehensively assessed the historical simulations and future projections of climate change in South China based on CMIP5/CMIP6 models.We show evidence that CMIP5/CMIP6 models can skillfully reproduce the observed distributions of annual/seasonal mean temperature but show much lower skill for precipitation.CMIP6 outperforms CMIP5 in the historical simulations,as evidenced by more models with lower bias magnitude and higher skill scores.During 2021–2100,the annual mean temperature over South China is projected to increase significantly at a rate of 0.53(0.42–0.63)and 0.59(0.52–0.66)℃(10 yr)^(-1),while precipitation is projected to increase slightly at a rate of 0.78(0.15–1.56)and 1.52(0.91–2.30)%(10 yr)^(-1),under the RCP8.5 and SSP5-8.5 scenarios,respectively.CMIP6 models project larger annual/seasonal mean temperature and precipitation trends than CMIP5 models under equivalent scenarios.The temperature in South China is projected to increase robustly by more than1.5℃during 2041–2060 under RCP4.5 and SSP2-4.5,but by 4.5℃during 2081–2100,under RCP8.5 and SSP5-8.5 with respect to 1850–1900.The uncertainty in temperature projections is mainly dominated by model uncertainty and scenario uncertainty,while internal uncertainty contributes some of the uncertainty during the near-term.The uncertainty in precipitation projection stems mainly from internal uncertainty and model uncertainty.For both the temperature and precipitation projection uncertainty,the relative sizes of contributions from the main contributors vary with time and show obvious seasonal differences.
基金supported by Shandong Provincial Natural Science Foundation(No.ZR2022MF314).
文摘Conventional adaptive filtering algorithms often exhibit performance degradation when processing multipath interference in raw echoes of spaceborne synthetic aperture radar(SAR)systems due to anomalous outliers,manifesting as insufficient convergence and low estimation accuracy.To address this issue,this study proposes a novel robust adaptive filtering algorithm,namely the M-estimation-based minimum error entropy with affine projection(APMMEE)algorithm.This algorithm inherits the joint multi-data-block update mechanism of the affine projection algorithm,enabling rapid adaptation to the dynamic characteristics of raw echoes and achieving fast convergence.Meanwhile,it incorporates the M-estimation-based minimum error entropy(MMEE)criterion,which weights error samples in raw echoes through M-estimation functions,effectively suppressing outlier interference during the algorithm update.Both the system identification simulations and practical multipath interference suppression experiments using raw echoes demonstrate that the proposed APMMEE algorithm exhibits superior filtering performance.
基金supported by the Chongqing Natural Science Foundation Innovation-Driven Development Joint Funds(No.CSTB2025NSCQ-LZX0055)the Youth Innovation Promotion Association,CAS(No.2021385)+4 种基金the Fundamental Research Funds for the Central Universities of South-Central Minzu University(No.CZQ24028)the Hubei Provincial Natural Science Foundation of China(No.2023AFB782)the Program of China Scholarship Council(No.202407780001)the National Natural Science Foundation of China(No.51809008)the Fund for Academic Innovation Teams of South-Central Minzu University(No.XTZ24019).
文摘Estimation and attribution of evapotranspiration(ET)and its components under changing environment is still a challenge but is essential for understanding the mechanisms of water and energy transfer for regional water resources management.In this study,an improved hydrological model is developed to estimate evapotranspiration and its components,i.e.,evaporation(E)and transpiration(T)by integrated the advantages of hydrological modeling constrained by water balance and the water-carbon close relationships.Results show that the improved hydrological model could captures ET and its components well in the study region.During the past years,annual ET and E increase obviously about 2.40 and 1.42 mm/a,particularly in spring and summer accounting for 90%.T shows less increasement and mainly increases in spring while it decreases in summer.Precipitation is the dominant factor and contributes 74.1%and 90.0%increases of annual ET and E,while the attribution of T changes is more complex by coupling of the positive effects of precipitation,rising temperature and interactive influences,the negative effects of solar diming and elevated CO_(2).In the future,ET and its components tend to increase under most of the Shared Socioeconomic Pathways(SSP)scenarios except for T decreases under the very high emissions scenario(SSP5-8.5)based on the projections.From seasonal perspective,the changes of ET and the components are mainly in spring and summer accounting for 75%,while more slight changes are found in autumn and winter.This study highlights the effectiveness of estimating ET and its components by improving hydrological models within water-carbon coupling relationships,and more complex mechanisms of transpiration changes than evapotranspiration and evaporation changes under the interactive effects of climate variability and vegetation dynamics.Besides,decision makers should pay attention to the more increases in the undesirable E than desirable T.
基金supported by the National Natural Science Foundation of China(12171075)the Science and Technology Research Project of Education Department of Jilin Province(JJKH20241406KJ)Zhan’s research was supported by the Doctoral Startup Fund of Liaoning University of Technology(XB2024029).
文摘In this paper,it is shown that the harmonic Bergman projection P_(ω)^(h),induced by a radial,induced by a radial weightω,is bounded and onto from L^(∞)(D)to the harmonic Bloch space B_(h)if and only ifω∈D,,which is a class of radial weights satisfying the two-sided doubling conditions.As an application,the bounded and compact positive Toeplitz operators T_(μ,ω)on the endpoint case weighted harmonic Bergman space L_(h,ω)^(1)(D)are characterized.