The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are the surface roughness and the error between the actual printing height and the theoretical m...The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are the surface roughness and the error between the actual printing height and the theoretical model height.The Taguchi method was employed to establish the correlations between process parameter combinations and multi-objective characterization of metal deposition morphology(height error and roughness).Results show that using the signal-to-noise ratio and grey relational analysis,the optimal parameter combination for multi-layer and multi-pass deposition is determined as follows:laser power of 800 W,powder feeding rate of 0.3 r/min,step distance of 1.6 mm,and scanning speed of 20 mm/s.Subsequently,a Genetic Bayesian-back propagation(GB-BP)network is constructed to predict multi-objective responses.Compared with the traditional back propagation network,the GB-back propagation network improves the prediction accuracy of height error and surface roughness by 43.14%and 71.43%,respectively.This network can accurately predict the multi-objective characterization of morphological quality of multi-layer and multi-pass metal deposited parts.展开更多
Ceramic thin plates were prepared using kaolin,potassium sodium feldspar and quartz powder as the main raw materials and kaolin,α-Al_(2)O_(3),MoO_(3) and AlF_(3)·3H_(2)O as additives.The experiment examined the ...Ceramic thin plates were prepared using kaolin,potassium sodium feldspar and quartz powder as the main raw materials and kaolin,α-Al_(2)O_(3),MoO_(3) and AlF_(3)·3H_(2)O as additives.The experiment examined the effects of different additives on mullite formation,as well as the microstructure and properties of the ceramic thin plates.Additionally,the study explored the toughening and strengthening mechanisms induced by the additives,providing a theoretical foundation for further optimizing the toughness of ceramic thin plates.The results showed that the D4 sample fired at 1220℃(with an addition of 20 wt% α-Al_(2)O_(3))exhibited the best performance,with a water absorption rate of 0.07%,apparent porosity of 0.18%,bulk density of 2.75 g·cm^(-3),firing shrinkage of 12.76%,bending strength reaching 101.93 MPa,and fracture toughness of 2.51 MPa·m^(1/2).As the amount ofα-Al_(2)O_(3) additive increased,the ceramic thin plates exhibited a greater abundance of short rod-like mullite and corundum grains,which were tightly packed together,forming a framework for the ceramic thin plates.This microstructure enhanced pathways for crack propagation,dispersed internal stresses,and increased fracture surface energy,resulting in significant improvements in both strength and fracture toughness of the ceramic thin plates.展开更多
A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The resu...A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
Three different kinds of PELE(the penetrator with lateral efficiency) were launched by ballistic artillery to impact the multi-layer spaced metal target plates.The lmpact velocities of the projectiles were measured by...Three different kinds of PELE(the penetrator with lateral efficiency) were launched by ballistic artillery to impact the multi-layer spaced metal target plates.The lmpact velocities of the projectiles were measured by the velocity measuring system.The damage degree and process of each laye r of target plate impacted by the three kinds of projectiles were analyzed.The experimental results show that all the three kinds of projectiles have the effect of expanding holes on the multi-layer spaced metal target plates.For the normal structure PELE(without layered) with tungsten alloy jacket and the radial layered PELE with tungsten alloy jacket,the diameters of holes on the seco nd layer of plates are 3.36 times and 3.76 times of the diameter of the projectile,re spectively.For radial layered PELE with W/Zr-based amorphous composite jacket,due to the large number of tungsten wires dispersed after the impact,the diameter of the holes on the four-layer spaced plates can reach 2.4 times,3.04 times,5.36 times and 2.68 times of the diameter of the projectile.Besides,the normal structure PELE with tungsten alloy jacket and the radial layered PELE whit tungsten alloy jacket formed a large number of fragments impact marks on the third target plate.Although the number of fragments penetrating the third target plate is not as large as that of the normal structure PELE,the area of dispersion of fragments impact craters on the third target plate is larger by the radial layered PELE.The radial layered PELE with W/Zr-based amorphous composite jacket released a lot of heat energy due to the impact of the matrix material,and formed a large area of ablation marks on the last three target plates.展开更多
The microstructure and mechanical properties of multi-layer multi-pass TIG welded joints of Al-Zn-Mg alloy plates were studied.The phase constituent and microstructure of different regions of the welded joints were ch...The microstructure and mechanical properties of multi-layer multi-pass TIG welded joints of Al-Zn-Mg alloy plates were studied.The phase constituent and microstructure of different regions of the welded joints were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD),transmission electron microscopy(TEM)and energy disperse spectrum(EDS),while the mechanical properties were evaluated according to the impact test.A dispersively distributed spherical and needle-likeη(MgZn2)phase was obtained in the welding seam.The phase composition of the heat-affected zone(HAZ)wasα(Al)+η(MgZn2)+Al6Mn,and there were a large number of dispersively precipitated nanoscale particles.The welded joint zone had the highest impact toughness as compared with the other parts of the joint.The MgZn2 phase in the weld zone contributed to the improved toughness of the joint.Al2 MgCu phase in HAZ was proven to act as a crack source during fracture.展开更多
This paper deals with the thickness-twist vibration of a multi-layered rectangular piezoelectric plate of crystals of 6 mm symmetry or polarized ceramics. An exact solution is obtained from the three-dimensional equat...This paper deals with the thickness-twist vibration of a multi-layered rectangular piezoelectric plate of crystals of 6 mm symmetry or polarized ceramics. An exact solution is obtained from the three-dimensional equations of linear piezoelectricity. The solution is useful to the understanding and design of composite piezoelectric devices. A piezoelectric resonator, a piezoelectric transformer, and a piezoelectric generator are analyzed as examples.展开更多
To further understand the dynamic deformation and impact resistance of thin-plate hull structure under impulse wave,the deformation of multi-layer steel plates under underwater impulsive loading has been studied by AU...To further understand the dynamic deformation and impact resistance of thin-plate hull structure under impulse wave,the deformation of multi-layer steel plates under underwater impulsive loading has been studied by AUTODYN V6.1.In order to verify the validity of numerical methods,the experimental results are compared with the simulation results.The multi-layer plate types include 1 mm + 3 mm,2 mm + 2 mm,3 mm + 1 mm double-layer,and 4 mm monolayer annealed 304 stainless steel plates.Each type of target plates has four flyer plate's velocities.There are 150,200,250 m /s and 300 m /s.The pressure wave histories in water and deformation of specimens have been predicted and measured by numerical simulations.The simulation results demonstrate that the protective capacity of 2mm + 2mm double-layer annealed 304 stainless steel plates is the best one in this velocity range of flyer plate,as the integral deformation is the smallest among the four structure types.展开更多
The welding of medium and thick plates has a wide range of applications in the engineering field.Industrial welding robots are gradually replacing traditional welding operations due to their significant advantages,suc...The welding of medium and thick plates has a wide range of applications in the engineering field.Industrial welding robots are gradually replacing traditional welding operations due to their significant advantages,such as high welding quality,high work efficiency,and effective reduction of labor intensity.Ensuring the accuracy of the welding trajectory for the welding robot is crucial for guaranteeing welding quality.In this paper,the author uses the chaos sparrow search algorithm to optimize the trajectory of a multi-layer and multi-pass welding robot for medium and thick plates.Firstly,the Sparrow Search Algorithm(SSA)is improved by introducing tent chaotic mapping and Gaussian mutation of the inertia weight factor.Secondly,in order to prevent the welding robot arm from colliding with obstacles in the welding environment during the welding process,maintain the stability of the welding robot,and ensure the continuous stability of the changes in each joint angle,joint angular velocity,and angular velocity of the joint angle,a welding robot model is established by improving the Denavit-Hartenberg parameter method.A multi-objective optimization fitness function is used to optimize the trajectory of the welding robot,minimizing time and energy consumption.Thirdly,the optimization and convergence performance of SSA and Chaos Sparrow Search Algorithm(CSSA)are compared through 10 benchmark test functions.Based on the six sets of test functions,the CSSA algorithm consistently maintains superior optimization performance and has excellent stability,with a faster decline in the convergence curve compared to the SSA algorithm.Finally,the accuracy of welding is tested through V-shaped multi-layer and multi-pass welding experiments.The experimental results show that the CSSA algorithm has a strong superiority in trajectory optimization of multi-layer and multi-pass welding for medium and thick plates,with an accuracy rate of 99.5%.It is an effective optimization method that can meet the actual needs of production.展开更多
At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-laye...At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components.展开更多
This paper presents a closed expression of the layered-plate factor used to calculate the coil eddy-current impedance over the multi-layer plate conductor. By using this expression, the general series of eddy-current ...This paper presents a closed expression of the layered-plate factor used to calculate the coil eddy-current impedance over the multi-layer plate conductor. By using this expression, the general series of eddy-current impedance can be written directly without solving the undetermined constant equations. The series expression is easy to use for theoretical analysis and programming. Experimental results show that calculated values and measured values are in agreement. As an application, when the bottom layer of the layered plate is a non-ferromagnetic thin layer conductor and the product of the thickness and conductivity of the layer remains unchanged, using the layered-plate factor expression proposed in this paper, it can be theoretically predicted that the eddy-current impedance curves corresponding to different thin layer thickness values will coincide.展开更多
Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of ...Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of shallow strips and circular plate anchors in multi-layered soils.The nonlinear strength criterion and non-associated flow rule of geotechnical materials were introduced to investigate the influence of nonuniformity on the pullout performance and failure mechanism of shallow plate anchors.The expressions of the detaching curves or surfaces were obtained to reflect the failure mechanism,which can be used to figure out the ultimate uplift capacity and failure range.The results are generally in agreement with the numerical simulations and previous research.The effects of various parameters on the ultimate uplift capacity and failure mechanism of plate anchors in multi-layered soils were investigated,and it is found that the ultimate uplift capacity and failure range of shallow anchors increase with the increase of initial cohesion and dilatancy coefficient,but decrease with the unit weight,axial tensile stress and nonlinear coefficient.展开更多
In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper c...In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation.展开更多
AIM: To evaluate the efficacy and safety of a hybrid bioartificial liver (HBAL) system in the treatment of acute liver failure. METHODS: Canine models with acute liver failure were introduced with intravenous administ...AIM: To evaluate the efficacy and safety of a hybrid bioartificial liver (HBAL) system in the treatment of acute liver failure. METHODS: Canine models with acute liver failure were introduced with intravenous administration of D-galactosamine. The animals were divided into: the HBAL treatment group (n = 8), in which the canines received a 3-h treatment of HBAL; the bioartificial liver (BAL) treatment group (n = 8), in which the canines received a 3-h treatment of BAL; the non-bioartificial liver (NBAL) treatment group (n = 8), in which the canines received a 3-h treatment of NBAL; the control group (n = 8), in which the canines received no additional treatment. Biochemical parameters and survival time were determined. Levels of xenoantibodies, RNA of porcine endogenous retrovirus (PERV) and reverse transcriptase (RT) activity in the plasma were detected. RESULTS: Biochemical parameters were significantly decreased in all treatment groups. The TBIL level in the HBAL group was lower than that in other groups (2.19 ± 0.55 mmol/L vs 24.2 ± 6.45 mmol/L, 12.47 ± 3.62 mmol/L, 3.77 ± 1.83 mmol/L, P < 0.05). The prothrombin time (PT) in the BAL and HBAL groups was significantly shorter than the NBAL and control groups (18.47 ± 4.41 s, 15.5 ± 1.56 s vs 28.67 ± 5.71 s, 21.71 ± 3.4 s, P < 0.05), and the PT in the HBAL group was shortest of all the groups. The albumin in the BAL and HBAL groups significantly increased and a significantly higher level was observed in the HBAL group compared with the BAL group (27.7 ± 1.7 g/L vs 25.24 ± 1.93 g/L). In the HBAL group, the ammonia levels significantly decreased from 54.37 ± 6.86 to 37.75 ± 6.09 after treatment (P < 0.05); there were significant difference in ammonia levels between other the groups (P < 0.05). The levels of antibodies were similar before and after treatment. The PERV RNA and the RT activity in the canine plasma were all negative. CONCLUSION: The HBAL showed great efficiency and safety in the treatment of acute liver failure.展开更多
For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattic...For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattice core located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it.For this purpose,the partial differential equations of motion have been derived based on the first-order shear deformation theory,employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations.Then,the nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary differential equation(Duffing equation)by applying the Galerkin method.From the solution of this equation,the natural frequencies are extracted.Then,to calculate the non-linear frequencies of the plate,the non-linear equation of the plate has been solved analytically using the method of multiple scales.Finally,the effect of some critical parameters of the system,such as the thickness,height,and different angles of the stiffeners on the linear and nonlinear frequencies,has been analyzed in detail.To confirmthe solution method,the results of this research have been compared with the reported results in the literature and finite elements in ABAQUS,and a perfect match is observed.The results reveal that the geometry and configuration of core ribs strongly affect the natural frequencies of the plate.展开更多
TaN coatings were deposited on Ti bipolar plates by magnetron sputtering to improve corrosion resistance and service life.The influence of N_(2) flow rate on the surface morphology,hydrophobicity,crystallinity,corrosi...TaN coatings were deposited on Ti bipolar plates by magnetron sputtering to improve corrosion resistance and service life.The influence of N_(2) flow rate on the surface morphology,hydrophobicity,crystallinity,corrosion resistance,and interfacial contact resistance of TaN coatings was studied.Results show that as the N_(2) flow rate increases,the roughness of TaN coatings decreases firstly and then increases,and the hydrophobicity increases firstly and then decreases.At the N_(2) flow rate of 3 mL/min,TaN coating with larger grain size presents lower roughness and high hydrophobicity.The coating possesses the lowest corrosion current density of 2.82µA·cm^(−2) and the highest corrosion potential of−0.184 V vs.SCE in the simulated proton exchange membrane water electrolyser environment.After a potentiostatic polarization test for 10 h,a few corrosion pits are observed on the TaN coatings deposited at an N_(2) flow rate of 3 mL/min.After 75 h of electrolytic water performance testing,the TaN coating on bipolar plate improves the corrosion resistance and thus enhances the electrolysis efficiency(68.87%),greatly reducing the cost of bipolar plates.展开更多
A theoretical analysis on the perforation of Weldox 460E steel plates struck by flat-nosed projectiles is presented using a previously developed model within a unified framework.This model contains a dimensionless emp...A theoretical analysis on the perforation of Weldox 460E steel plates struck by flat-nosed projectiles is presented using a previously developed model within a unified framework.This model contains a dimensionless empirical equation to describe the variation of energy absorbed through global deformation as a function of impact velocity.The study further investigates the energy absorption mechanisms of Weldox 460E steel plates,with particular focus on the“plateau”phenomenon,i.e.,limited increase in ballistic limit with increasing plate thickness.This phenomenon is explained and compared with results from previously studied 2024-T351 aluminium plates.The model predictions agree well with experimental data for Weldox 460E steel plates impacted by flat-nosed projectiles,including:relationship between global deformation and impact velocity,ballistic limit,residual velocity,and critical conditions for the transition of failure modes.Moreover,the model effectively predicts the“plateau”phenomenon observed in intermediate plate thickness range.It is also found that the indentation absorption energy contributes a significantly larger fraction of the total absorption energy in Weldox 460E steel plates perforated by flat-nosed projectiles than in 2024-T351 aluminium plates,due to the differences in material properties.展开更多
Changes in the water cycle on the Tibetan Plateau(TP)have a significant impact on local agricultural production and livelihoods and its downstream regions.Against the background of widely reported warming and wetting,...Changes in the water cycle on the Tibetan Plateau(TP)have a significant impact on local agricultural production and livelihoods and its downstream regions.Against the background of widely reported warming and wetting,the hydrological cycle has accelerated and the likelihood of extreme weather events and natural disasters occurring(i.e.,snowstorms,floods,landslides,mudslides,and ice avalanches)has also intensified,especially in the highelevation mountainous regions.Thus,an accurate estimation of the intensity and variation of each component of the water cycle is an urgent scientific question for the assessment of plateau environmental changes.Following the transformation and movement of water between the atmosphere,biosphere and hydrosphere,the authors highlight the urgent need to strengthen the three-dimensional comprehensive observation system(including the eddy covariance system;planetary boundary layer tower;profile measurements of temperature,humidity,and wind by microwave radiometers,wind profiler,and radiosonde system;and cloud and precipitation radars)in the TP region and propose a practical implementation plan.The construction of such a three-dimensional observation system is expected to promote the study of environmental changes and natural hazards prevention.展开更多
To investigate the effects of surface morphology on properties of carbon coatings on proton exchange membrane fuel cell(PEMFC)Ti bipolar plate,scanning electron microscope(SEM)and confocal laser scanning microscopy(CL...To investigate the effects of surface morphology on properties of carbon coatings on proton exchange membrane fuel cell(PEMFC)Ti bipolar plate,scanning electron microscope(SEM)and confocal laser scanning microscopy(CLSM)were used for characterization and analysis of different Ti foils.Physical vapor deposition(PVD)and chemical vapor deposition(CVD)were used to fabricate the carbon coatings on different Ti foils with same procedure.The initial contact resistance test results show that the contact resistance of the carbon coating on different Ti foils are nearly same.The electrochemical test results show that the 3#titanium foil coating with greater surface fluctuation has a lower corrosion current density,but the accelerated corrosion results show that the 1#and 2#titanium foil coatings with less surface fluctuation had the lower contact resistance and better durability.In conclusion,the results show that titanium foils with greater surface fluctuations are prone to produce more nucleation sites in growth of coatings,and the as-prepared carbon coating exhibited lower corrosion current density.But the coatings show lower durability due to the internal stress.According to results of potentialdynamic polarization and ICR tests,carbon coating with less surface defects and crack shows better durability in CVD procedure,and the carbon coating with flattened surface shows better durability in PVD procedure.展开更多
The huge impact kinetic energy cannot be quickly dissipated by the energy-absorbing structure and transferred to the other vehicle through the car body structure,which will cause structural damage and threaten the liv...The huge impact kinetic energy cannot be quickly dissipated by the energy-absorbing structure and transferred to the other vehicle through the car body structure,which will cause structural damage and threaten the lives of the occupants.Therefore,it is necessary to understand the laws of energy conversion,dissipation and transfer during train collisions.This study proposes a multi-layer progressive analysis method of energy flow during train collisions,considering the characteristics of the train.In this method,the train collision system is divided into conversion,dissipation,and transfer layers from the perspective of the train,collision interface,and car body structure to analyze the energy conversion,dissipation and transfer characteristics.Taking the collision process of a rail train as an example,a train collision energy transfer path analysis model was established based on power flow theory.The results show that when the maximum mean acceleration of the vehicle meets the standard requirements,the jerk may exceed the allowable limit of the human body,and there is a risk of injury to the occupants of a secondary collision.The decay rate of the collision energy along the direction of train operation reaches 79%.As the collision progresses,the collision energy gradually converges in the structure with holes,and the structure deforms when the gathered energy is greater than the maximum energy the structure can withstand.The proposed method helps to understand the train collision energy flow law and provides theoretical support for the train crashworthiness design in the future.展开更多
基金National Natural Science Foundation of China(52175237)。
文摘The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are the surface roughness and the error between the actual printing height and the theoretical model height.The Taguchi method was employed to establish the correlations between process parameter combinations and multi-objective characterization of metal deposition morphology(height error and roughness).Results show that using the signal-to-noise ratio and grey relational analysis,the optimal parameter combination for multi-layer and multi-pass deposition is determined as follows:laser power of 800 W,powder feeding rate of 0.3 r/min,step distance of 1.6 mm,and scanning speed of 20 mm/s.Subsequently,a Genetic Bayesian-back propagation(GB-BP)network is constructed to predict multi-objective responses.Compared with the traditional back propagation network,the GB-back propagation network improves the prediction accuracy of height error and surface roughness by 43.14%and 71.43%,respectively.This network can accurately predict the multi-objective characterization of morphological quality of multi-layer and multi-pass metal deposited parts.
基金Funded by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2023YFB4204302)。
文摘Ceramic thin plates were prepared using kaolin,potassium sodium feldspar and quartz powder as the main raw materials and kaolin,α-Al_(2)O_(3),MoO_(3) and AlF_(3)·3H_(2)O as additives.The experiment examined the effects of different additives on mullite formation,as well as the microstructure and properties of the ceramic thin plates.Additionally,the study explored the toughening and strengthening mechanisms induced by the additives,providing a theoretical foundation for further optimizing the toughness of ceramic thin plates.The results showed that the D4 sample fired at 1220℃(with an addition of 20 wt% α-Al_(2)O_(3))exhibited the best performance,with a water absorption rate of 0.07%,apparent porosity of 0.18%,bulk density of 2.75 g·cm^(-3),firing shrinkage of 12.76%,bending strength reaching 101.93 MPa,and fracture toughness of 2.51 MPa·m^(1/2).As the amount ofα-Al_(2)O_(3) additive increased,the ceramic thin plates exhibited a greater abundance of short rod-like mullite and corundum grains,which were tightly packed together,forming a framework for the ceramic thin plates.This microstructure enhanced pathways for crack propagation,dispersed internal stresses,and increased fracture surface energy,resulting in significant improvements in both strength and fracture toughness of the ceramic thin plates.
基金supported by Guangdong Major Project of Basic and Applied Basic Research, China (No. 2020B0301030006)Fundamental Research Funds for the Central Universities, China (No. SWU-XDJH202313)+1 种基金Chongqing Postdoctoral Science Foundation Funded Project, China (No. 2112012728014435)the Chongqing Postgraduate Research and Innovation Project, China (No. CYS23197)。
文摘A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
基金supported by National Natural Science Foundation of China(Grant No.11802141)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX18_0465)。
文摘Three different kinds of PELE(the penetrator with lateral efficiency) were launched by ballistic artillery to impact the multi-layer spaced metal target plates.The lmpact velocities of the projectiles were measured by the velocity measuring system.The damage degree and process of each laye r of target plate impacted by the three kinds of projectiles were analyzed.The experimental results show that all the three kinds of projectiles have the effect of expanding holes on the multi-layer spaced metal target plates.For the normal structure PELE(without layered) with tungsten alloy jacket and the radial layered PELE with tungsten alloy jacket,the diameters of holes on the seco nd layer of plates are 3.36 times and 3.76 times of the diameter of the projectile,re spectively.For radial layered PELE with W/Zr-based amorphous composite jacket,due to the large number of tungsten wires dispersed after the impact,the diameter of the holes on the four-layer spaced plates can reach 2.4 times,3.04 times,5.36 times and 2.68 times of the diameter of the projectile.Besides,the normal structure PELE with tungsten alloy jacket and the radial layered PELE whit tungsten alloy jacket formed a large number of fragments impact marks on the third target plate.Although the number of fragments penetrating the third target plate is not as large as that of the normal structure PELE,the area of dispersion of fragments impact craters on the third target plate is larger by the radial layered PELE.The radial layered PELE with W/Zr-based amorphous composite jacket released a lot of heat energy due to the impact of the matrix material,and formed a large area of ablation marks on the last three target plates.
基金Project(ZR2016EEQ03) supported by the Shandong Province Natural Science Foundation,ChinaProject(2018M641822) supported by the China Postdoctoral Science Foundation-General ProgramProject(HIT.NSRIF.201703) supported by the Natural Scientific Research Innovation Foundation in HIT,China
文摘The microstructure and mechanical properties of multi-layer multi-pass TIG welded joints of Al-Zn-Mg alloy plates were studied.The phase constituent and microstructure of different regions of the welded joints were characterized by scanning electron microscopy(SEM),X-ray diffraction(XRD),transmission electron microscopy(TEM)and energy disperse spectrum(EDS),while the mechanical properties were evaluated according to the impact test.A dispersively distributed spherical and needle-likeη(MgZn2)phase was obtained in the welding seam.The phase composition of the heat-affected zone(HAZ)wasα(Al)+η(MgZn2)+Al6Mn,and there were a large number of dispersively precipitated nanoscale particles.The welded joint zone had the highest impact toughness as compared with the other parts of the joint.The MgZn2 phase in the weld zone contributed to the improved toughness of the joint.Al2 MgCu phase in HAZ was proven to act as a crack source during fracture.
基金Project supported by Chinese Postdoctoral Science Foundation(No.20070410944).
文摘This paper deals with the thickness-twist vibration of a multi-layered rectangular piezoelectric plate of crystals of 6 mm symmetry or polarized ceramics. An exact solution is obtained from the three-dimensional equations of linear piezoelectricity. The solution is useful to the understanding and design of composite piezoelectric devices. A piezoelectric resonator, a piezoelectric transformer, and a piezoelectric generator are analyzed as examples.
文摘To further understand the dynamic deformation and impact resistance of thin-plate hull structure under impulse wave,the deformation of multi-layer steel plates under underwater impulsive loading has been studied by AUTODYN V6.1.In order to verify the validity of numerical methods,the experimental results are compared with the simulation results.The multi-layer plate types include 1 mm + 3 mm,2 mm + 2 mm,3 mm + 1 mm double-layer,and 4 mm monolayer annealed 304 stainless steel plates.Each type of target plates has four flyer plate's velocities.There are 150,200,250 m /s and 300 m /s.The pressure wave histories in water and deformation of specimens have been predicted and measured by numerical simulations.The simulation results demonstrate that the protective capacity of 2mm + 2mm double-layer annealed 304 stainless steel plates is the best one in this velocity range of flyer plate,as the integral deformation is the smallest among the four structure types.
基金support by Ningxia Key R&D projects“Integration and demonstration application of intelligent finishing system for large casting riser robot”(No.2021BEE03002)Ningxia Natural Science Foundation Project“Research on detection and location of large casting welding seam based on depth learning”(No.2020AAC03201).
文摘The welding of medium and thick plates has a wide range of applications in the engineering field.Industrial welding robots are gradually replacing traditional welding operations due to their significant advantages,such as high welding quality,high work efficiency,and effective reduction of labor intensity.Ensuring the accuracy of the welding trajectory for the welding robot is crucial for guaranteeing welding quality.In this paper,the author uses the chaos sparrow search algorithm to optimize the trajectory of a multi-layer and multi-pass welding robot for medium and thick plates.Firstly,the Sparrow Search Algorithm(SSA)is improved by introducing tent chaotic mapping and Gaussian mutation of the inertia weight factor.Secondly,in order to prevent the welding robot arm from colliding with obstacles in the welding environment during the welding process,maintain the stability of the welding robot,and ensure the continuous stability of the changes in each joint angle,joint angular velocity,and angular velocity of the joint angle,a welding robot model is established by improving the Denavit-Hartenberg parameter method.A multi-objective optimization fitness function is used to optimize the trajectory of the welding robot,minimizing time and energy consumption.Thirdly,the optimization and convergence performance of SSA and Chaos Sparrow Search Algorithm(CSSA)are compared through 10 benchmark test functions.Based on the six sets of test functions,the CSSA algorithm consistently maintains superior optimization performance and has excellent stability,with a faster decline in the convergence curve compared to the SSA algorithm.Finally,the accuracy of welding is tested through V-shaped multi-layer and multi-pass welding experiments.The experimental results show that the CSSA algorithm has a strong superiority in trajectory optimization of multi-layer and multi-pass welding for medium and thick plates,with an accuracy rate of 99.5%.It is an effective optimization method that can meet the actual needs of production.
基金supported by the National Key Research and Development Program of China(No.2022YFB3404700)the National Natural Science Foundation of China(Nos.52105313 and 52275299)+2 种基金the Research and Development Program of Beijing Municipal Education Commission,China(No.KM202210005036)the Natural Science Foundation of Chongqing,China(No.CSTB2023NSCQ-MSX0701)the National Defense Basic Research Projects of China(No.JCKY2022405C002).
文摘At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components.
基金supported by the National Natural Science Foundation of China(Grant No.51577004)
文摘This paper presents a closed expression of the layered-plate factor used to calculate the coil eddy-current impedance over the multi-layer plate conductor. By using this expression, the general series of eddy-current impedance can be written directly without solving the undetermined constant equations. The series expression is easy to use for theoretical analysis and programming. Experimental results show that calculated values and measured values are in agreement. As an application, when the bottom layer of the layered plate is a non-ferromagnetic thin layer conductor and the product of the thickness and conductivity of the layer remains unchanged, using the layered-plate factor expression proposed in this paper, it can be theoretically predicted that the eddy-current impedance curves corresponding to different thin layer thickness values will coincide.
基金Project(51874202) supported by the National Natural Science Foundation of ChinaProject(2017JQ0003) supported by the Sichuan Youth Fund,China。
文摘Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of shallow strips and circular plate anchors in multi-layered soils.The nonlinear strength criterion and non-associated flow rule of geotechnical materials were introduced to investigate the influence of nonuniformity on the pullout performance and failure mechanism of shallow plate anchors.The expressions of the detaching curves or surfaces were obtained to reflect the failure mechanism,which can be used to figure out the ultimate uplift capacity and failure range.The results are generally in agreement with the numerical simulations and previous research.The effects of various parameters on the ultimate uplift capacity and failure mechanism of plate anchors in multi-layered soils were investigated,and it is found that the ultimate uplift capacity and failure range of shallow anchors increase with the increase of initial cohesion and dilatancy coefficient,but decrease with the unit weight,axial tensile stress and nonlinear coefficient.
基金This project (No. 49070196) is funded by the National Science Foundation of China.
文摘In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation.
基金Supported by A grant from the National Natural Science Foundation of China, No. 30772129
文摘AIM: To evaluate the efficacy and safety of a hybrid bioartificial liver (HBAL) system in the treatment of acute liver failure. METHODS: Canine models with acute liver failure were introduced with intravenous administration of D-galactosamine. The animals were divided into: the HBAL treatment group (n = 8), in which the canines received a 3-h treatment of HBAL; the bioartificial liver (BAL) treatment group (n = 8), in which the canines received a 3-h treatment of BAL; the non-bioartificial liver (NBAL) treatment group (n = 8), in which the canines received a 3-h treatment of NBAL; the control group (n = 8), in which the canines received no additional treatment. Biochemical parameters and survival time were determined. Levels of xenoantibodies, RNA of porcine endogenous retrovirus (PERV) and reverse transcriptase (RT) activity in the plasma were detected. RESULTS: Biochemical parameters were significantly decreased in all treatment groups. The TBIL level in the HBAL group was lower than that in other groups (2.19 ± 0.55 mmol/L vs 24.2 ± 6.45 mmol/L, 12.47 ± 3.62 mmol/L, 3.77 ± 1.83 mmol/L, P < 0.05). The prothrombin time (PT) in the BAL and HBAL groups was significantly shorter than the NBAL and control groups (18.47 ± 4.41 s, 15.5 ± 1.56 s vs 28.67 ± 5.71 s, 21.71 ± 3.4 s, P < 0.05), and the PT in the HBAL group was shortest of all the groups. The albumin in the BAL and HBAL groups significantly increased and a significantly higher level was observed in the HBAL group compared with the BAL group (27.7 ± 1.7 g/L vs 25.24 ± 1.93 g/L). In the HBAL group, the ammonia levels significantly decreased from 54.37 ± 6.86 to 37.75 ± 6.09 after treatment (P < 0.05); there were significant difference in ammonia levels between other the groups (P < 0.05). The levels of antibodies were similar before and after treatment. The PERV RNA and the RT activity in the canine plasma were all negative. CONCLUSION: The HBAL showed great efficiency and safety in the treatment of acute liver failure.
文摘For the first time,the linear and nonlinear vibrations of composite rectangular sandwich plates with various geometric patterns of lattice core have been analytically examined in this work.The plate comprises a lattice core located in the middle and several homogeneous orthotropic layers that are symmetrical relative to it.For this purpose,the partial differential equations of motion have been derived based on the first-order shear deformation theory,employing Hamilton’s principle and Von Kármán’s nonlinear displacement-strain relations.Then,the nonlinear partial differential equations of the plate are converted into a time-dependent nonlinear ordinary differential equation(Duffing equation)by applying the Galerkin method.From the solution of this equation,the natural frequencies are extracted.Then,to calculate the non-linear frequencies of the plate,the non-linear equation of the plate has been solved analytically using the method of multiple scales.Finally,the effect of some critical parameters of the system,such as the thickness,height,and different angles of the stiffeners on the linear and nonlinear frequencies,has been analyzed in detail.To confirmthe solution method,the results of this research have been compared with the reported results in the literature and finite elements in ABAQUS,and a perfect match is observed.The results reveal that the geometry and configuration of core ribs strongly affect the natural frequencies of the plate.
基金National Key Research and Development Program of China(2022YFB4002100)National Natural Science Foundation of China(52271136)Natural Science Foundation of Shaanxi Province(2021JC-06)。
文摘TaN coatings were deposited on Ti bipolar plates by magnetron sputtering to improve corrosion resistance and service life.The influence of N_(2) flow rate on the surface morphology,hydrophobicity,crystallinity,corrosion resistance,and interfacial contact resistance of TaN coatings was studied.Results show that as the N_(2) flow rate increases,the roughness of TaN coatings decreases firstly and then increases,and the hydrophobicity increases firstly and then decreases.At the N_(2) flow rate of 3 mL/min,TaN coating with larger grain size presents lower roughness and high hydrophobicity.The coating possesses the lowest corrosion current density of 2.82µA·cm^(−2) and the highest corrosion potential of−0.184 V vs.SCE in the simulated proton exchange membrane water electrolyser environment.After a potentiostatic polarization test for 10 h,a few corrosion pits are observed on the TaN coatings deposited at an N_(2) flow rate of 3 mL/min.After 75 h of electrolytic water performance testing,the TaN coating on bipolar plate improves the corrosion resistance and thus enhances the electrolysis efficiency(68.87%),greatly reducing the cost of bipolar plates.
文摘A theoretical analysis on the perforation of Weldox 460E steel plates struck by flat-nosed projectiles is presented using a previously developed model within a unified framework.This model contains a dimensionless empirical equation to describe the variation of energy absorbed through global deformation as a function of impact velocity.The study further investigates the energy absorption mechanisms of Weldox 460E steel plates,with particular focus on the“plateau”phenomenon,i.e.,limited increase in ballistic limit with increasing plate thickness.This phenomenon is explained and compared with results from previously studied 2024-T351 aluminium plates.The model predictions agree well with experimental data for Weldox 460E steel plates impacted by flat-nosed projectiles,including:relationship between global deformation and impact velocity,ballistic limit,residual velocity,and critical conditions for the transition of failure modes.Moreover,the model effectively predicts the“plateau”phenomenon observed in intermediate plate thickness range.It is also found that the indentation absorption energy contributes a significantly larger fraction of the total absorption energy in Weldox 460E steel plates perforated by flat-nosed projectiles than in 2024-T351 aluminium plates,due to the differences in material properties.
基金This research was jointly funded by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant Nos.2019QZKK0103 and 2019QZKK0105)the National Natural Science Foundation of China(Grant Nos.91837208 and 42075085).
文摘Changes in the water cycle on the Tibetan Plateau(TP)have a significant impact on local agricultural production and livelihoods and its downstream regions.Against the background of widely reported warming and wetting,the hydrological cycle has accelerated and the likelihood of extreme weather events and natural disasters occurring(i.e.,snowstorms,floods,landslides,mudslides,and ice avalanches)has also intensified,especially in the highelevation mountainous regions.Thus,an accurate estimation of the intensity and variation of each component of the water cycle is an urgent scientific question for the assessment of plateau environmental changes.Following the transformation and movement of water between the atmosphere,biosphere and hydrosphere,the authors highlight the urgent need to strengthen the three-dimensional comprehensive observation system(including the eddy covariance system;planetary boundary layer tower;profile measurements of temperature,humidity,and wind by microwave radiometers,wind profiler,and radiosonde system;and cloud and precipitation radars)in the TP region and propose a practical implementation plan.The construction of such a three-dimensional observation system is expected to promote the study of environmental changes and natural hazards prevention.
文摘To investigate the effects of surface morphology on properties of carbon coatings on proton exchange membrane fuel cell(PEMFC)Ti bipolar plate,scanning electron microscope(SEM)and confocal laser scanning microscopy(CLSM)were used for characterization and analysis of different Ti foils.Physical vapor deposition(PVD)and chemical vapor deposition(CVD)were used to fabricate the carbon coatings on different Ti foils with same procedure.The initial contact resistance test results show that the contact resistance of the carbon coating on different Ti foils are nearly same.The electrochemical test results show that the 3#titanium foil coating with greater surface fluctuation has a lower corrosion current density,but the accelerated corrosion results show that the 1#and 2#titanium foil coatings with less surface fluctuation had the lower contact resistance and better durability.In conclusion,the results show that titanium foils with greater surface fluctuations are prone to produce more nucleation sites in growth of coatings,and the as-prepared carbon coating exhibited lower corrosion current density.But the coatings show lower durability due to the internal stress.According to results of potentialdynamic polarization and ICR tests,carbon coating with less surface defects and crack shows better durability in CVD procedure,and the carbon coating with flattened surface shows better durability in PVD procedure.
基金Supported by the National Natural Science Foundation of China(Grant No.52172409)Postdoctoral Innovation Talents Support Program(Grant No.BX20240298)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.2682024GF023)Heilongjiang Province Postdoctoral Foundation Project(Grant No.LBH-Z23041).
文摘The huge impact kinetic energy cannot be quickly dissipated by the energy-absorbing structure and transferred to the other vehicle through the car body structure,which will cause structural damage and threaten the lives of the occupants.Therefore,it is necessary to understand the laws of energy conversion,dissipation and transfer during train collisions.This study proposes a multi-layer progressive analysis method of energy flow during train collisions,considering the characteristics of the train.In this method,the train collision system is divided into conversion,dissipation,and transfer layers from the perspective of the train,collision interface,and car body structure to analyze the energy conversion,dissipation and transfer characteristics.Taking the collision process of a rail train as an example,a train collision energy transfer path analysis model was established based on power flow theory.The results show that when the maximum mean acceleration of the vehicle meets the standard requirements,the jerk may exceed the allowable limit of the human body,and there is a risk of injury to the occupants of a secondary collision.The decay rate of the collision energy along the direction of train operation reaches 79%.As the collision progresses,the collision energy gradually converges in the structure with holes,and the structure deforms when the gathered energy is greater than the maximum energy the structure can withstand.The proposed method helps to understand the train collision energy flow law and provides theoretical support for the train crashworthiness design in the future.