期刊文献+
共找到238篇文章
< 1 2 12 >
每页显示 20 50 100
Multi-layer perceptron-based data-driven multiscale modelling of granular materials with a novel Frobenius norm-based internal variable 被引量:1
1
作者 Mengqi Wang Y.T.Feng +1 位作者 Shaoheng Guan Tongming Qu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2198-2218,共21页
One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural ne... One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural networks(RNNs)have been extensively applied to capture history-dependent constitutive responses of granular materials,but these multiple-step-based neural networks are neither sufficiently efficient nor aligned with the standard finite element method(FEM).Single-step-based neural networks like the multi-layer perceptron(MLP)are an alternative to bypass the above issues but have to introduce some internal variables to encode complex loading histories.In this work,one novel Frobenius norm-based internal variable,together with the Fourier layer and residual architectureenhanced MLP model,is crafted to replicate the history-dependent constitutive features of representative volume element(RVE)for granular materials.The obtained ML models are then seamlessly embedded into the FEM to solve the BVP of a biaxial compression case and a rigid strip footing case.The obtained solutions are comparable to results from the FEM-DEM multiscale modelling but achieve significantly improved efficiency.The results demonstrate the applicability of the proposed internal variable in enabling MLP to capture highly nonlinear constitutive responses of granular materials. 展开更多
关键词 Granular materials History-dependence multi-layer perceptron(MLP) Discrete element method FEM-DEM Machine learning
在线阅读 下载PDF
Dynamic Multi-Layer Perceptron for Fetal Health Classification Using Cardiotocography Data
2
作者 Uddagiri Sirisha Parvathaneni Naga Srinivasu +4 位作者 Panguluri Padmavathi Seongki Kim Aruna Pavate Jana Shafi Muhammad Fazal Ijaz 《Computers, Materials & Continua》 SCIE EI 2024年第8期2301-2330,共30页
Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To kn... Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To know the status of the fetus,doctors monitor blood reports,Ultrasounds,cardiotocography(CTG)data,etc.Still,in this research,we have considered CTG data,which provides information on heart rate and uterine contractions during pregnancy.Several researchers have proposed various methods for classifying the status of fetus growth.Manual processing of CTG data is time-consuming and unreliable.So,automated tools should be used to classify fetal health.This study proposes a novel neural network-based architecture,the Dynamic Multi-Layer Perceptron model,evaluated from a single layer to several layers to classify fetal health.Various strategies were applied,including pre-processing data using techniques like Balancing,Scaling,Normalization hyperparameter tuning,batch normalization,early stopping,etc.,to enhance the model’s performance.A comparative analysis of the proposed method is done against the traditional machine learning models to showcase its accuracy(97%).An ablation study without any pre-processing techniques is also illustrated.This study easily provides valuable interpretations for healthcare professionals in the decision-making process. 展开更多
关键词 Fetal health cardiotocography data deep learning dynamic multi-layer perceptron feature engineering
在线阅读 下载PDF
Prediction of flyrock distance induced by mine blasting using a novel Harris Hawks optimization-based multi-layer perceptron neural network 被引量:13
3
作者 Bhatawdekar Ramesh Murlidhar Hoang Nguyen +4 位作者 Jamal Rostami XuanNam Bui Danial Jahed Armaghani Prashanth Ragam Edy Tonnizam Mohamad 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1413-1427,共15页
In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead t... In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead to the flyrock phenomenon.Flyrock can damage structures or nearby equipment in the surrounding areas and inflict harm to humans,especially workers in the working sites.Thus,prediction of flyrock is of high importance.In this investigation,examination and estimation/forecast of flyrock distance induced by blasting through the application of five artificial intelligent algorithms were carried out.One hundred and fifty-two blasting events in three open-pit granite mines in Johor,Malaysia,were monitored to collect field data.The collected data include blasting parameters and rock mass properties.Site-specific weathering index(WI),geological strength index(GSI) and rock quality designation(RQD)are rock mass properties.Multi-layer perceptron(MLP),random forest(RF),support vector machine(SVM),and hybrid models including Harris Hawks optimization-based MLP(known as HHO-MLP) and whale optimization algorithm-based MLP(known as WOA-MLP) were developed.The performance of various models was assessed through various performance indices,including a10-index,coefficient of determination(R^(2)),root mean squared error(RMSE),mean absolute percentage error(MAPE),variance accounted for(VAF),and root squared error(RSE).The a10-index values for MLP,RF,SVM,HHO-MLP and WOA-MLP are 0.953,0.933,0.937,0.991 and 0.972,respectively.R^(2) of HHO-MLP is 0.998,which achieved the best performance among all five machine learning(ML) models. 展开更多
关键词 Flyrock Harris hawks optimization(HHO) multi-layer perceptron(MLP) Random forest(RF) Support vector machine(SVM) Whale optimization algorithm(WOA)
在线阅读 下载PDF
Identification of low-resistivity-low-contrast pay zones in the feature space with a multi-layer perceptron based on conventional well log data 被引量:2
4
作者 Lun Gao Ran-Hong Xie +2 位作者 Li-Zhi Xiao Shuai Wang Chen-Yu Xu 《Petroleum Science》 SCIE CAS CSCD 2022年第2期570-580,共11页
In the early exploration of many oilfields,low-resistivity-low-contrast(LRLC)pay zones are easily overlooked due to the resistivity similarity to the water zones.Existing identification methods are model-driven and ca... In the early exploration of many oilfields,low-resistivity-low-contrast(LRLC)pay zones are easily overlooked due to the resistivity similarity to the water zones.Existing identification methods are model-driven and cannot yield satisfactory results when the causes of LRLC pay zones are complicated.In this study,after analyzing a large number of core samples,main causes of LRLC pay zones in the study area are discerned,which include complex distribution of formation water salinity,high irreducible water saturation due to micropores,and high shale volume.Moreover,different oil testing layers may have different causes of LRLC pay zones.As a result,in addition to the well log data of oil testing layers,well log data of adjacent shale layers are also added to the original dataset as reference data.The densitybased spatial clustering algorithm with noise(DBSCAN)is used to cluster the original dataset into 49 clusters.A new dataset is ultimately projected into a feature space with 49 dimensions.The new dataset and oil testing results are respectively treated as input and output to train the multi-layer perceptron(MLP).A total of 3192 samples are used for stratified 8-fold cross-validation,and the accuracy of the MLP is found to be 85.53%. 展开更多
关键词 Low-resistivity-low-contrast(LRLC)pay zones Conventional well logging Machine learning DBSCAN algorithm multi-layer perceptron
原文传递
Optimizing slope safety factor prediction via stacking using sparrow search algorithm for multi-layer machine learning regression models 被引量:2
5
作者 SHUI Kuan HOU Ke-peng +2 位作者 HOU Wen-wen SUN Jun-long SUN Hua-fen 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2852-2868,共17页
The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration o... The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration of the influencing factors,leading to large errors in their calculations.Therefore,a stacking ensemble learning model(stacking-SSAOP)based on multi-layer regression algorithm fusion and optimized by the sparrow search algorithm is proposed for predicting the slope safety factor.In this method,the density,cohesion,friction angle,slope angle,slope height,and pore pressure ratio are selected as characteristic parameters from the 210 sets of established slope sample data.Random Forest,Extra Trees,AdaBoost,Bagging,and Support Vector regression are used as the base model(inner loop)to construct the first-level regression algorithm layer,and XGBoost is used as the meta-model(outer loop)to construct the second-level regression algorithm layer and complete the construction of the stacked learning model for improving the model prediction accuracy.The sparrow search algorithm is used to optimize the hyperparameters of the above six regression models and correct the over-and underfitting problems of the single regression model to further improve the prediction accuracy.The mean square error(MSE)of the predicted and true values and the fitting of the data are compared and analyzed.The MSE of the stacking-SSAOP model was found to be smaller than that of the single regression model(MSE=0.03917).Therefore,the former has a higher prediction accuracy and better data fitting.This study innovatively applies the sparrow search algorithm to predict the slope safety factor,showcasing its advantages over traditional methods.Additionally,our proposed stacking-SSAOP model integrates multiple regression algorithms to enhance prediction accuracy.This model not only refines the prediction accuracy of the slope safety factor but also offers a fresh approach to handling the intricate soil composition and other influencing factors,making it a precise and reliable method for slope stability evaluation.This research holds importance for the modernization and digitalization of slope safety assessments. 展开更多
关键词 multi-layer regression algorithm fusion Stacking gensemblelearning Sparrow search algorithm Slope safety factor Data prediction
原文传递
Camera-Radar Fusion Sensing System Based on Multi-Layer Perceptron 被引量:1
6
作者 YAO Tong WANG Chunxiang QIAN Yeqiang 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第5期561-568,共8页
Environmental perception is a key technology for autonomous driving.Owing to the limitations of a single sensor,multiple sensors are often used in practical applications.However,multi-sensor fusion faces some problems... Environmental perception is a key technology for autonomous driving.Owing to the limitations of a single sensor,multiple sensors are often used in practical applications.However,multi-sensor fusion faces some problems,such as the choice of sensors and fusion methods.To solve these issues,we proposed a machine learning-based fusion sensing system that uses a camera and radar,and that can be used in intelligent vehicles.First,the object detection algorithm is used to detect the image obtained by the camera;in sequence,the radar data is preprocessed,coordinate transformation is performed,and a multi-layer perceptron model for correlating the camera detection results with the radar data is proposed.The proposed fusion sensing system was verified by comparative experiments in a real-world environment.The experimental results show that the system can effectively integrate camera and radar data results,and obtain accurate and comprehensive object information in front of intelligent vehicles. 展开更多
关键词 intelligent vehicle environmental perception system sensor fusion multi-layer perceptron
原文传递
New multi-layer data correlation algorithm for multi-passive-sensor location system 被引量:1
7
作者 Zhou Li Li Lingyun He You 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第4期667-672,共6页
Under the scenario of dense targets in clutter, a multi-layer optimal data correlation algorithm is proposed. This algorithm eliminates a large number of false location points from the assignment process by rough corr... Under the scenario of dense targets in clutter, a multi-layer optimal data correlation algorithm is proposed. This algorithm eliminates a large number of false location points from the assignment process by rough correlations before we calculate the correlation cost, so it avoids the operations for the target state estimate and the calculation of the correlation cost for the false correlation sets. In the meantime, with the elimination of these points in the rough correlation, the disturbance from the false correlations in the assignment process is decreased, so the data correlation accuracy is improved correspondingly. Complexity analyses of the new multi-layer optimal algorithm and the traditional optimal assignment algorithm are given. Simulation results show that the new algorithm is feasible and effective. 展开更多
关键词 multi-passive-sensor data correlation multi-layer correlation algorithm location system correlation cost
在线阅读 下载PDF
Prediction of Logistics Demand via Least Square Method and Multi-Layer Perceptron 被引量:1
8
作者 WEI Leqin ZHANG Anguo 《Journal of Donghua University(English Edition)》 EI CAS 2020年第6期526-533,共8页
To implement the prediction of the logistics demand capacity of a certain region,a comprehensive index system is constructed,which is composed of freight volume and other eight relevant economic indices,such as gross ... To implement the prediction of the logistics demand capacity of a certain region,a comprehensive index system is constructed,which is composed of freight volume and other eight relevant economic indices,such as gross domestic product(GDP),consumer price index(CPI),total import and export volume,port's cargo throughput,total retail sales of consumer goods,total fixed asset investment,highway mileage,and resident population,to form the foundation for the model calculation.Based on the least square method(LSM)to fit the parameters,the study obtains an accurate mathematical model and predicts the changes of each index in the next five years.Using artificial intelligence software,the research establishes the logistics demand model of multi-layer perceptron(MLP)neural network,makes an empirical analysis on the logistics demand of Quanzhou City,and predicts its logistics demand in the next five years,which provides some references for formulating logistics planning and development strategy. 展开更多
关键词 logistics demand least square method(LSM) multi-layer perceptron(MLP) PREDICTION strategic planning
在线阅读 下载PDF
Current Harmonic Estimation in Power Transmission Lines Using Multi-layer Perceptron Learning Strategies 被引量:1
9
作者 Patrice Wira Thien Minh Nguyen 《Journal of Electrical Engineering》 2017年第5期219-230,共12页
This main contribution of this work is to propose a new approach based on a structure of MLPs (multi-layer perceptrons) for identifying current harmonics in low power distribution systems. In this approach, MLPs are... This main contribution of this work is to propose a new approach based on a structure of MLPs (multi-layer perceptrons) for identifying current harmonics in low power distribution systems. In this approach, MLPs are proposed and trained with signal sets that arc generated from real harmonic waveforms. After training, each trained MLP is able to identify the two coefficients of each harmonic term of the input signal. The effectiveness of the new approach is evaluated by two experiments and is also compared to another recent MLP method. Experimental results show that the proposed MLPs approach enables to identify effectively the amplitudes of harmonic terms from the signals under noisy condition. The new approach can be applied in harmonic compensation strategies with an active power filter to ensure power quality issues in electrical power systems. 展开更多
关键词 Power quality harmonic identification MLP multi-layer perceptron Fourier series active power filtering.
在线阅读 下载PDF
Digital modulation classification using multi-layer perceptron and time-frequency features
10
作者 Yuan Ye Mei Wenbo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期249-254,共6页
Considering that real communication signals corrupted by noise are generally nonstationary, and timefrequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributio... Considering that real communication signals corrupted by noise are generally nonstationary, and timefrequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributions are introduced for the modulation classification of communication signals: The extracted time-frequency features have good classification information, and they are insensitive to signal to noise ratio (SNR) variation. According to good classification by the correct rate of a neural network classifier, a multilayer perceptron (MLP) classifier with better generalization, as well as, addition of time-frequency features set for classifying six different modulation types has been proposed. Computer simulations show that the MLP classifier outperforms the decision-theoretic classifier at low SNRs, and the classification experiments for real MPSK signals verify engineering significance of the MLP classifier. 展开更多
关键词 Digital modulation classification Time-frequency feature Time-frequency distribution multi-layer perceptron.
在线阅读 下载PDF
Reconstructing shock front of unstable detonations based on multi-layer perceptron
11
作者 Lin Zhou Honghui Teng +2 位作者 Hoi Dick Ng Pengfei Yang Zonglin Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第11期1610-1623,I0001,共15页
The dynamics of frontal and transverse shocks in gaseous detonation waves is a complex phenomenon bringing many difficulties to both numerical and experimental research.Advanced laser-optical visualization of detonati... The dynamics of frontal and transverse shocks in gaseous detonation waves is a complex phenomenon bringing many difficulties to both numerical and experimental research.Advanced laser-optical visualization of detonation structure may provide certain information of its reactive front,but the corresponding lead shock needs to be reconstructed building the complete flow field.Using the multi-layer perceptron(MLP)approach,we propose a shock front reconstruction method which can predict evolution of the lead shock wavefront from the state of the reactive front.The method is verified through the numerical results of one-and two-dimensional unstable detonations based on the reactive Euler equations with a one-step irreversible chemical reaction model.Results show that the accuracy of the proposed method depends on the activation energy of the reactive mixture,which influences prominently the cellular detonation instability and hence,the distortion of the lead shock surface.To select the input variables for training and evaluate their influence on the effectiveness of the proposed method,five groups,one with six variables,and the other with four variables,are tested and analyzed in the MLP model.The trained MLP is tested in the cases with different activation energies,demonstrates the inspiring generalization capability.This paper offers a universal framework for predicting detonation frontal evolution and provides a novel way to interpret numerical and experimental results of detonation waves. 展开更多
关键词 Cellular detonation Lead shock evolution multi-layer perceptron Numerical simulations
原文传递
Implementing Semantic Deduction of Propositional Knowledge in an Extension Multi-layer Perceptron
12
作者 HUANG Tian-min,PEI Zheng (Department of Applied Mathematics, Southwest Jiaotong Universi ty,Chengdu 610031,China) 《Chinese Quarterly Journal of Mathematics》 CSCD 2003年第3期247-257,共11页
The paper presents an extension multi-laye r p erceptron model that is capable of representing and reasoning propositional know ledge base. An extended version of propositional calculus is developed, and its some prop... The paper presents an extension multi-laye r p erceptron model that is capable of representing and reasoning propositional know ledge base. An extended version of propositional calculus is developed, and its some properties is discussed. Formulas of the extended calculus can be expressed in the extension multi-layer perceptron. Naturally, semantic deduction of prop ositional knowledge base can be implement by the extension multi-layer perceptr on, and by learning, an unknown formula set can be found. 展开更多
关键词 multi-layer perceptron extension multi-layer perce p tron propositional calculus propositional knowledge buse semantic deduction
在线阅读 下载PDF
Recommendation System Based on Perceptron and Graph Convolution Network
13
作者 Zuozheng Lian Yongchao Yin Haizhen Wang 《Computers, Materials & Continua》 SCIE EI 2024年第6期3939-3954,共16页
The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combinatio... The relationship between users and items,which cannot be recovered by traditional techniques,can be extracted by the recommendation algorithm based on the graph convolution network.The current simple linear combination of these algorithms may not be sufficient to extract the complex structure of user interaction data.This paper presents a new approach to address such issues,utilizing the graph convolution network to extract association relations.The proposed approach mainly includes three modules:Embedding layer,forward propagation layer,and score prediction layer.The embedding layer models users and items according to their interaction information and generates initial feature vectors as input for the forward propagation layer.The forward propagation layer designs two parallel graph convolution networks with self-connections,which extract higher-order association relevance from users and items separately by multi-layer graph convolution.Furthermore,the forward propagation layer integrates the attention factor to assign different weights among the hop neighbors of the graph convolution network fusion,capturing more comprehensive association relevance between users and items as input for the score prediction layer.The score prediction layer introduces MLP(multi-layer perceptron)to conduct non-linear feature interaction between users and items,respectively.Finally,the prediction score of users to items is obtained.The recall rate and normalized discounted cumulative gain were used as evaluation indexes.The proposed approach effectively integrates higher-order information in user entries,and experimental analysis demonstrates its superiority over the existing algorithms. 展开更多
关键词 Recommendation system graph convolution network attention mechanism multi-layer perceptron
在线阅读 下载PDF
基于用户数据特征深度挖掘的快速图书检索算法
14
作者 窦淑庆 刘思豆 《现代电子技术》 北大核心 2025年第14期137-142,共6页
针对传统图书推荐系统所得到的计算结果滞后于实时需求且准确性较低的缺陷,文中基于用户画像数据,提出一种快速图书检索算法。该算法在用户画像构建部分对静态属性抽取和动态标签行为进行建模。在图书特征提取模型中,使用BERT-Word2Vec... 针对传统图书推荐系统所得到的计算结果滞后于实时需求且准确性较低的缺陷,文中基于用户画像数据,提出一种快速图书检索算法。该算法在用户画像构建部分对静态属性抽取和动态标签行为进行建模。在图书特征提取模型中,使用BERT-Word2Vec作为基础框架进行多模态特征提取,并利用双塔深度匹配模型构建了用户MLP塔和图书改进CNN塔,对特征进行充分细致的多维分析。模型通过将实时反馈机制Kafka-Redis流处理算法与会话注意力加权融合,最终实现了场景化的推荐。实验测试结果显示,NDCG@10指标较最优基准提升了约21.0%,行为反馈延迟在峰值500 QPS流量下小于等于3.5 s。表明所提算法能够为知识服务场景提供兼具准确性、时效性与场景适应性的信息推荐解决方案。 展开更多
关键词 用户画像 双向编码器表示技术 双塔深度匹配模型 多层感知器 卷积神经网络 推荐算法
在线阅读 下载PDF
基于多层感知机模型的稻麦双变量精准施肥机排肥策略 被引量:3
15
作者 施印炎 辛亚鹏 +3 位作者 汪小旵 郑恩来 沈成 张昭 《农业工程学报》 北大核心 2025年第10期51-60,共10页
变量施肥是实施精准农业的重要技术途径,转速、开度双重调节的外槽轮式变量施肥方式是稻麦轮作区作物施肥的典型方式。针对目前变量施肥机控制系统响应速度慢、预测模型不准确,引起排肥量误差大、成效不显著的问题,该研究基于自主研制... 变量施肥是实施精准农业的重要技术途径,转速、开度双重调节的外槽轮式变量施肥方式是稻麦轮作区作物施肥的典型方式。针对目前变量施肥机控制系统响应速度慢、预测模型不准确,引起排肥量误差大、成效不显著的问题,该研究基于自主研制的稻麦双变量精准施肥机,运用数理统计和机器学习方法,提出一种基于多层感知人工神经网络的排肥量预测模型,并对其有效性和适用性进行验证。通过分析莱维飞行算法(levy flight algorithm,LFA)、粒子群算法(particle swarm optimization,PSO)和多层感知器神经网络模型(multilayer perceptron,MLP)的算法机理,结合开度-转速双变量排肥方法,构建LFA-PSO-MLP(LPM)排肥量预测模型;引入开度-转速-排肥量关系模型,利用归一化、正则化等方式改善算法结构,开展参数优化和模型训练,并对比MLP和PSO-MLP模型,得到LFA-PSO-MLP排肥量最优预测模型;构建ILPM(inverse LFA-PSO-MLP)预测模型作为施肥机的神经网络模型,根据目标排肥量快速计算所需开度和转速。试验结果表明:LFA-PSO-MLP模型在拟合50次左右收敛,拟合500次后的R2值为0.999,平均相对误差(average relative error,ARE)为1.83%,均优于其他两种模型。LPM验证集验证试验中,预测值与验证值的平均相对误差为2.47%,田间试验的预测值与实测值的平均相对误差为3.49%;ILPM验证试验中,转速预测的平均相对误差为1.82%,目标排肥量与实际排肥量的最大相对误差为7.26%,平均相对误差为6.09%,施肥机排肥效果较好。所提模型能够在保证排肥量预测精度的同时提升运算效率,实现快速、精准、高效的变量施肥,改善生态效益和经济效益。 展开更多
关键词 算法 粒子群 莱维飞行 多层感知机神经网络 双变量排肥策略
在线阅读 下载PDF
基于非平衡大数据的公司破产评估模型研究 被引量:1
16
作者 李田雨 高煌婷 翟亚琪 《财经理论与实践》 北大核心 2025年第2期43-50,共8页
大数据环境下,应用机器学习数据挖掘分析技术对波兰破产及未破产公司的财务数据进行建模训练和测试验证,其中包括多层感知器中的SMOTE、SMOTE-Borderline1和BMS不平衡算法。横向对比发现SMOTE、SMOTE-Borderline1、BMS算法有效提升了F1-... 大数据环境下,应用机器学习数据挖掘分析技术对波兰破产及未破产公司的财务数据进行建模训练和测试验证,其中包括多层感知器中的SMOTE、SMOTE-Borderline1和BMS不平衡算法。横向对比发现SMOTE、SMOTE-Borderline1、BMS算法有效提升了F1-Score,证明了多层感知器算法在公司破产评估领域内处理非平衡类别数据手段的有效性。纵向对比表明在不同的预测时间跨度上,MLP模型和公司财务数据的分类器模型效果具有显著差异。最后,使用卡方检验筛选出公司短期负债、资金结构和经营利润等较为重要的财务指标。 展开更多
关键词 机器学习 多层感知器算法 破产评估模型 MLP模型
在线阅读 下载PDF
Wireless location algorithm using digital broadcasting signals based on neural network 被引量:1
17
作者 柯炜 吴乐南 殷奎喜 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期394-398,共5页
In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. ... In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. By the learning ability of the NN and the closely approximate unknown function to any degree of desired accuracy,the input-output mapping relationship between coordinates and the measurement data of time of arrival (TOA) and time difference of arrival (TDOA) is established. A real-time learning algorithm based on the extended Kalman filter (EKF) is used to train the multilayer perceptron (MLP) network by treating the linkweights of a network as the states of the nonlinear dynamic system. Since the EKF-based learning algorithm approximately gives the minimum variance estimate of the linkweights,the convergence is improved in comparison with the backwards error propagation (BP) algorithm. Numerical results illustrate thatthe proposedalgorithmcanachieve enhanced accuracy,and the performance ofthe algorithmis betterthanthat of the BP-based NN algorithm and the least squares (LS) algorithm in the NLOS environments. Moreover,this location method does not depend on a particular distribution of the NLOS error and does not need line-of-sight ( LOS ) or NLOS identification. 展开更多
关键词 digital broadcasting signals neural network extended Kalman filter (EKF) backwards error propagation algorithm multilayer perceptron
在线阅读 下载PDF
EWT多重分解与若干新型元启发式算法优化的多层感知器月径流预测
18
作者 蔡亮 包艳飞 崔东文 《人民珠江》 2025年第9期72-83,共12页
为提高月径流时间序列预测精度,改进多层感知器(Multi-layer perceptron,MLP)性能,对比验证2024年4种新型元启发式算法——捕鱼优化算法(Catch Fish Optimization Algorithm,CFOA)、洪水优化算法(Flood Algorithm,FLA)、北极海雀优化算... 为提高月径流时间序列预测精度,改进多层感知器(Multi-layer perceptron,MLP)性能,对比验证2024年4种新型元启发式算法——捕鱼优化算法(Catch Fish Optimization Algorithm,CFOA)、洪水优化算法(Flood Algorithm,FLA)、北极海雀优化算法(Arctic puffin Optimization,APO)、教育竞争优化算法(Educational Competition Optimization,ECO)与传统粒子群优化(Particle Swarm Optimization,PSO)算法在基准测试函数和实例目标函数上的优化效果,提出多重经验证小波变换(EWT^(Ⅲ))-CFOA/FLA/APO/ECO/PSO-MLP预测模型,通过勐大水文站月径流时间序列预测实例对模型进行检验。首先,利用1重经验证小波变换(EWT^(Ⅰ))将月径流时间序列分解为波动项和趋势项,利用模糊熵(Fuzzy En)判别其复杂程度,针对复杂程度较高的波动项作2重(EWT^(Ⅱ))、3重经验证小波变换(EWT^(Ⅲ))。其次,基于各分量训练集构建MLP权值和偏差(超参数)优化实例目标函数,同时选取6个基准测试函数作为对比验证函数,利用CFOA/FLA/APO/ECO/PSO算法分别对基准测试函数和实例目标函数进行极值寻优与对比分析。最后,建立EWT^(Ⅰ)/EWT^(Ⅱ)/EWT^(Ⅲ)-CFOA/FLA/APO/ECO/PSO-MLP模型对各分解分量进行训练、预测和重构。结果表明:EWT^(Ⅲ)-FLOA/FLA/APO/ECO-MLP模型拟合、预测精度优于其他对比模型,具有更好的预测精度;CFOA/FLA/APO/ECO/PSO算法对基准测试函数寻优总排名、对实例目标函数寻优总排名和EWT^(Ⅰ)/EWT^(Ⅱ)/EWT^(Ⅲ)-FLOA/FLA/APO/ECO/PSO-MLP模型预测精度总排名基本一致,算法寻优性能越强,优化获得的MLP超参数越优;EWT^(Ⅰ)/EWT^(Ⅱ)/EWT^(Ⅲ)-FLOA/FLA/APO/ECO/PSO-MLP模型预测精度随着EWT分解重数的增加而提升;EWT^(Ⅲ)能将原始月径流序列分解为更具规模、更易建模预测的分量,是一种简洁、高效的时间序列分解方法。 展开更多
关键词 月径流预测 经验小波变换 元启发式算法 多层感知器 函数优化 时间序列
在线阅读 下载PDF
TMC-GCN: Encrypted Traffic Mapping Classification Method Based on Graph Convolutional Networks 被引量:1
19
作者 Baoquan Liu Xi Chen +2 位作者 Qingjun Yuan Degang Li Chunxiang Gu 《Computers, Materials & Continua》 2025年第2期3179-3201,共23页
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based... With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%. 展开更多
关键词 Encrypted traffic classification deep learning graph neural networks multi-layer perceptron graph convolutional networks
在线阅读 下载PDF
Industrial Control Anomaly Detection Based on Distributed Linear Deep Learning
20
作者 Shijie Tang Yong Ding Huiyong Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期1129-1150,共22页
As more and more devices in Cyber-Physical Systems(CPS)are connected to the Internet,physical components such as programmable logic controller(PLC),sensors,and actuators are facing greater risks of network attacks,and... As more and more devices in Cyber-Physical Systems(CPS)are connected to the Internet,physical components such as programmable logic controller(PLC),sensors,and actuators are facing greater risks of network attacks,and fast and accurate attack detection techniques are crucial.The key problem in distinguishing between normal and abnormal sequences is to model sequential changes in a large and diverse field of time series.To address this issue,we propose an anomaly detection method based on distributed deep learning.Our method uses a bilateral filtering algorithm for sequential sequences to remove noise in the time series,which can maintain the edge of discrete features.We use a distributed linear deep learning model to establish a sequential prediction model and adjust the threshold for anomaly detection based on the prediction error of the validation set.Our method can not only detect abnormal attacks but also locate the sensors that cause anomalies.We conducted experiments on the Secure Water Treatment(SWAT)and Water Distribution(WADI)public datasets.The experimental results show that our method is superior to the baseline method in identifying the types of attacks and detecting efficiency. 展开更多
关键词 Anomaly detection CPS deep learning MLP(multi-layer perceptron)
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部