期刊文献+
共找到546,477篇文章
< 1 2 250 >
每页显示 20 50 100
Target Controllability of Multi-Layer Networks With High-Dimensional Nodes
1
作者 Lifu Wang Zhaofei Li +1 位作者 Ge Guo Zhi Kong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1999-2010,共12页
This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighte... This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighted.The influence of inter-layer couplings on the target controllability of multi-layer networks is discussed.It is found that even if there exists a layer which is not target controllable,the entire multi-layer network can still be target controllable due to the inter-layer couplings.For the multi-layer networks with general structure,a necessary and sufficient condition for target controllability is given by establishing the relationship between uncontrollable subspace and output matrix.By the derived condition,it can be found that the system may be target controllable even if it is not state controllable.On this basis,two corollaries are derived,which clarify the relationship between target controllability,state controllability and output controllability.For the multi-layer networks where the inter-layer couplings are directed chains and directed stars,sufficient conditions for target controllability of networked systems are given,respectively.These conditions are easier to verify than the classic criterion. 展开更多
关键词 High-dimensional nodes inter-layer couplings multi-layer networks target controllability
在线阅读 下载PDF
Routing cost-integrated intelligent handover strategy for multi-layer LEO mega-constellation networks
2
作者 Zhenglong YIN Quan CHEN +2 位作者 Lei YANG Yong ZHAO Xiaoqian CHEN 《Chinese Journal of Aeronautics》 2025年第6期487-500,共14页
Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed ... Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed satellites,ground users now can be covered by multiple visible satellites,but also face complex handover issues with such massive high-mobility satellites in multi-layer.The end-to-end routing is also affected by the handover behavior.In this paper,we propose an intelligent handover strategy dedicated to multi-layer LEO mega-constellation networks.Firstly,an analytic model is utilized to rapidly estimate the end-to-end propagation latency as a key handover factor to construct a multi-objective optimization model.Subsequently,an intelligent handover strategy is proposed by employing the Dueling Double Deep Q Network(D3QN)-based deep reinforcement learning algorithm for single-layer constellations.Moreover,an optimal crosslayer handover scheme is proposed by predicting the latency-jitter and minimizing the cross-layer overhead.Simulation results demonstrate the superior performance of the proposed method in the multi-layer LEO mega-constellation,showcasing reductions of up to 8.2%and 59.5%in end-to-end latency and jitter respectively,when compared to the existing handover strategies. 展开更多
关键词 multi-layer LEO mega-constellation networks HANDOVER Routing cost Dueling Double Deep Q network(D3QN)
原文传递
An Ensembled Multi-Layer Automatic-Constructed Weighted Online Broad Learning System for Fault Detection in Cellular Networks
3
作者 Wang Qi Pan Zhiwen +1 位作者 Liu Nan You Xiaohu 《China Communications》 2025年第8期150-167,共18页
6G is desired to support more intelligence networks and this trend attaches importance to the self-healing capability if degradation emerges in the cellular networks.As a primary component of selfhealing networks,faul... 6G is desired to support more intelligence networks and this trend attaches importance to the self-healing capability if degradation emerges in the cellular networks.As a primary component of selfhealing networks,fault detection is investigated in this paper.Considering the fast response and low timeand-computational consumption,it is the first time that the Online Broad Learning System(OBLS)is applied to identify outages in cellular networks.In addition,the Automatic-constructed Online Broad Learning System(AOBLS)is put forward to rationalize its structure and consequently avoid over-fitting and under-fitting.Furthermore,a multi-layer classification structure is proposed to further improve the classification performance.To face the challenges caused by imbalanced data in fault detection problems,a novel weighting strategy is derived to achieve the Multilayer Automatic-constructed Weighted Online Broad Learning System(MAWOBLS)and ensemble learning with retrained Support Vector Machine(SVM),denoted as EMAWOBLS,for superior treatment with this imbalance issue.Simulation results show that the proposed algorithm has excellent performance in detecting faults with satisfactory time usage. 展开更多
关键词 broad learning system(BLS) cell outage detection cellular network fault detection ensemble learning imbalanced classification online broad learning system(OBLS) self-healing network weighted broad learning system(WBLS)
在线阅读 下载PDF
Explosive synchronization of multi-layer complex networks based on star connection between layers with delay
4
作者 金彦亮 韩钱源 +2 位作者 郭润珠 高塬 沈礼权 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期343-349,共7页
Explosive synchronization(ES)is a kind of first-order jump phenomenon that exists in physical and biological systems.In recent years,researchers have focused on ES between single-layer and multi-layer networks.Most re... Explosive synchronization(ES)is a kind of first-order jump phenomenon that exists in physical and biological systems.In recent years,researchers have focused on ES between single-layer and multi-layer networks.Most research on complex networks with delay has focused on single-layer or double-layer networks,multi-layer networks are seldom explored.In this paper,we propose a Kuramoto model of frequency weights in multi-layer complex networks with delay and star connections between layers.Through theoretical analysis and numerical verification,the factors affecting the backward critical coupling strength are analyzed.The results show that the interaction between layers and the average node degree has a direct effect on the backward critical coupling strength of each layer network.The location of the delay,the size of the delay,the number of network layers,the number of nodes,and the network topology are revealed to have no direct impact on the backward critical coupling strength of the network.Delay is introduced to explore the influence of delay and other related parameters on ES. 展开更多
关键词 multi-layer networks Kuramoto model explosive synchronization DELAY
原文传递
Explosive synchronization of multi-layer complex networks based on inter-layer star network connection
5
作者 Yan-Liang Jin Run-Zhu Guo +1 位作者 Xiao-Qi Yu Li-Quan Shen 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第12期264-270,共7页
Explosive synchronization(ES)is a first-order transition phenomenon that is ubiquitous in various physical and biological systems.In recent years,researchers have focused on explosive synchronization in a single-layer... Explosive synchronization(ES)is a first-order transition phenomenon that is ubiquitous in various physical and biological systems.In recent years,researchers have focused on explosive synchronization in a single-layer network,but few in multi-layer networks.This paper proposes a frequency-weighted Kuramoto model in multi-layer complex networks with star connection between layers and analyzes the factors affecting the backward critical coupling strength by both theoretical analysis and numerical validation.Our results show that the backward critical coupling strength of each layer network is influenced by the inter-layer interaction strength and the average degree.The number of network layers,the number of nodes,and the network topology can not directly affect the synchronization of the network.Enhancing the inter-layer interaction strength can prevent the emergence of explosive synchronization and increasing the average degree can promote the generation of explosive synchronization. 展开更多
关键词 explosive synchronization Kuramoto model multi-layer networks
原文传递
Intrusion Detection Model on Network Data with Deep Adaptive Multi-Layer Attention Network(DAMLAN)
6
作者 Fatma S.Alrayes Syed Umar Amin +2 位作者 Nada Ali Hakami Mohammed K.Alzaylaee Tariq Kashmeery 《Computer Modeling in Engineering & Sciences》 2025年第7期581-614,共34页
The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging at... The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems. 展开更多
关键词 Intrusion detection deep adaptive networks multi-layer attention DAMLAN network security anomaly detection
在线阅读 下载PDF
Laplacian energy maximizationfor multi-layer air transportation networks 被引量:2
7
作者 Zheng Yue Li Wenquan +1 位作者 Qiu Feng Cao Xi 《Journal of Southeast University(English Edition)》 EI CAS 2017年第3期341-347,共7页
To increase airspace capacity, alleviate flight delay,and improve network robustness, an optimization method of multi-layer air transportation networks is put forward based on Laplacian energy maximization. The effect... To increase airspace capacity, alleviate flight delay,and improve network robustness, an optimization method of multi-layer air transportation networks is put forward based on Laplacian energy maximization. The effectiveness of taking Laplacian energy as a measure of network robustness is validated through numerical experiments. The flight routes addition optimization model is proposed with the principle of maximizing Laplacian energy. Three methods including the depth-first search( DFS) algorithm, greedy algorithm and Monte-Carlo tree search( MCTS) algorithm are applied to solve the proposed problem. The trade-off between system performance and computational efficiency is compared through simulation experiments. Finally, a case study on Chinese airport network( CAN) is conducted using the proposed model. Through encapsulating it into multi-layer infrastructure via k-core decomposition algorithm, Laplacian energy maximization for the sub-networks is discussed which can provide a useful tool for the decision-makers to optimize the robustness of the air transportation network on different scales. 展开更多
关键词 air TRANSPORTATION network LAPLACIAN ENERGY ROBUSTNESS multi-layer networks
在线阅读 下载PDF
Efficient Training of Multi-Layer Neural Networks to Achieve Faster Validation 被引量:1
8
作者 Adel Saad Assiri 《Computer Systems Science & Engineering》 SCIE EI 2021年第3期435-450,共16页
Artificial neural networks(ANNs)are one of the hottest topics in computer science and artificial intelligence due to their potential and advantages in analyzing real-world problems in various disciplines,including but... Artificial neural networks(ANNs)are one of the hottest topics in computer science and artificial intelligence due to their potential and advantages in analyzing real-world problems in various disciplines,including but not limited to physics,biology,chemistry,and engineering.However,ANNs lack several key characteristics of biological neural networks,such as sparsity,scale-freeness,and small-worldness.The concept of sparse and scale-free neural networks has been introduced to fill this gap.Network sparsity is implemented by removing weak weights between neurons during the learning process and replacing them with random weights.When the network is initialized,the neural network is fully connected,which means the number of weights is four times the number of neurons.In this study,considering that a biological neural network has some degree of initial sparsity,we design an ANN with a prescribed level of initial sparsity.The neural network is tested on handwritten digits,Arabic characters,CIFAR-10,and Reuters newswire topics.Simulations show that it is possible to reduce the number of weights by up to 50%without losing prediction accuracy.Moreover,in both cases,the testing time is dramatically reduced compared with fully connected ANNs. 展开更多
关键词 SPARSITY weak weights multi-layer neural network NN training with initial sparsity
在线阅读 下载PDF
Target layer state estimation in multi-layer complex dynamical networks considering nonlinear node dynamics
9
作者 吴亚勇 王欣伟 蒋国平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期245-252,共8页
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ... In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method. 展开更多
关键词 multi-layer complex dynamical network nonlinear node dynamics target state estimation functional state observer
原文传递
Comparison between Multi-Layer Perceptron and Radial Basis Function Networks for Sediment Load Estimation in a Tropical Watershed 被引量:1
10
作者 Hadi Memarian Siva Kumar Balasundram 《Journal of Water Resource and Protection》 2012年第10期870-876,共7页
Prediction of highly non-linear behavior of suspended sediment flow in rivers has prime importance in environmental studies and watershed management. In this study, the predictive performance of two Artificial Neural ... Prediction of highly non-linear behavior of suspended sediment flow in rivers has prime importance in environmental studies and watershed management. In this study, the predictive performance of two Artificial Neural Networks (ANNs), namely Radial Basis Function (RBF) and Multi-Layer Perceptron (MLP) were compared. Time series data of daily suspended sediment discharge and water discharge at the Langat River, Malaysia were used for training and testing the networks. Mean Square Error (MSE), Normalized Mean Square Error (NMSE) and correlation coefficient (r) were used for performance evaluation of the models. Using the testing data set, both models produced a similar level of robustness in sediment load simulation. The MLP network model showed a slightly better output than the RBF network model in predicting suspended sediment discharge, especially in the training process. However, both ANNs showed a weak robustness in estimating large magnitudes of sediment load. 展开更多
关键词 SEDIMENT Load Neural network MLP RBF HULU Langat WATERSHED
暂未订购
Adaptive Multi-Layer Defense Mechanism for Trusted Federated Learning in Network Security Assessment
11
作者 Lincong Zhao Liandong Chen +3 位作者 Peipei Shen Zizhou Liu Chengzhu Li Fanqin Zhou 《Computers, Materials & Continua》 2025年第12期5057-5071,共15页
The rapid growth of Internet of things devices and the emergence of rapidly evolving network threats have made traditional security assessment methods inadequate.Federated learning offers a promising solution to exped... The rapid growth of Internet of things devices and the emergence of rapidly evolving network threats have made traditional security assessment methods inadequate.Federated learning offers a promising solution to expedite the training of security assessment models.However,ensuring the trustworthiness and robustness of federated learning under multi-party collaboration scenarios remains a challenge.To address these issues,this study proposes a shard aggregation network structure and a malicious node detection mechanism,along with improvements to the federated learning training process.First,we extract the data features of the participants by using spectral clustering methods combined with a Gaussian kernel function.Then,we introduce a multi-objective decision-making approach that combines data distribution consistency,consensus communication overhead,and consensus result reliability in order to determine the final network sharing scheme.Finally,by integrating the federated learning aggregation process with the malicious node detection mechanism,we improve the traditional decentralized learning process.Our proposed ShardFed algorithm outperforms conventional classification algorithms and state-of-the-art machine learning methods like FedProx and FedCurv in convergence speed,robustness against data interference,and adaptability across multiple scenarios.Experimental results demonstrate that the proposed approach improves model accuracy by up to 2.33%under non-independent and identically distributed data conditions,maintains higher performance with malicious nodes containing poisoned data ratios of 20%–50%,and significantly enhances model resistance to low-quality data. 展开更多
关键词 Trusted federated learning adaptive defense mechanism network security assessment participant trustworthiness scoring hybrid anomaly detection
在线阅读 下载PDF
Resilience Augmentation in Unmanned Weapon Systems via Multi-Layer Attention Graph Convolutional Neural Networks 被引量:1
12
作者 Kexin Wang Yingdong Gou +4 位作者 Dingrui Xue Jiancheng Liu Wanlong Qi Gang Hou Bo Li 《Computers, Materials & Continua》 SCIE EI 2024年第8期2941-2962,共22页
The collective Unmanned Weapon System-of-Systems(UWSOS)network represents a fundamental element in modern warfare,characterized by a diverse array of unmanned combat platforms interconnected through hetero-geneous net... The collective Unmanned Weapon System-of-Systems(UWSOS)network represents a fundamental element in modern warfare,characterized by a diverse array of unmanned combat platforms interconnected through hetero-geneous network architectures.Despite its strategic importance,the UWSOS network is highly susceptible to hostile infiltrations,which significantly impede its battlefield recovery capabilities.Existing methods to enhance network resilience predominantly focus on basic graph relationships,neglecting the crucial higher-order dependencies among nodes necessary for capturing multi-hop meta-paths within the UWSOS.To address these limitations,we propose the Enhanced-Resilience Multi-Layer Attention Graph Convolutional Network(E-MAGCN),designed to augment the adaptability of UWSOS.Our approach employs BERT for extracting semantic insights from nodes and edges,thereby refining feature representations by leveraging various node and edge categories.Additionally,E-MAGCN integrates a regularization-based multi-layer attention mechanism and a semantic node fusion algo-rithm within the Graph Convolutional Network(GCN)framework.Through extensive simulation experiments,our model demonstrates an enhancement in resilience performance ranging from 1.2% to 7% over existing algorithms. 展开更多
关键词 Resilience enhancement heterogeneous network graph convolutional network
在线阅读 下载PDF
Data-Driven Method for Predicting Remaining Useful Life of Bearings Based on Multi-Layer Perception Neural Network and Bidirectional Long Short-Term Memory Network
13
作者 Yongfeng Tai Xingyu Yan +3 位作者 Xiangyi Geng Lin Mu Mingshun Jiang Faye Zhang 《Structural Durability & Health Monitoring》 2025年第2期365-383,共19页
The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through acceler... The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through accelerated life testing.In the absence of lifetime data,the hidden long-term correlation between performance degradation data is challenging to mine effectively,which is the main factor that restricts the prediction precision and engineering application of the residual life prediction method.To address this problem,a novel method based on the multi-layer perception neural network and bidirectional long short-term memory network is proposed.Firstly,a nonlinear health indicator(HI)calculation method based on kernel principal component analysis(KPCA)and exponential weighted moving average(EWMA)is designed.Then,using the raw vibration data and HI,a multi-layer perceptron(MLP)neural network is trained to further calculate the HI of the online bearing in real time.Furthermore,The bidirectional long short-term memory model(BiLSTM)optimized by particle swarm optimization(PSO)is used to mine the time series features of HI and predict the remaining service life.Performance verification experiments and comparative experiments are carried out on the XJTU-SY bearing open dataset.The research results indicate that this method has an excellent ability to predict future HI and remaining life. 展开更多
关键词 Remaining useful life prediction rolling bearing health indicator construction multilayer perceptron bidirectional long short-term memory network
在线阅读 下载PDF
Solving fluid flow in discontinuous heterogeneous porous media and multi-layer strata with interpretable physics-encoded finite element network
14
作者 Xi Wang Wei Wu He-Hua Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5509-5525,共17页
Physics-informed neural networks(PINNs)have prevailed as differentiable simulators to investigate flow in porous media.Despite recent progress PINNs have achieved,practical geotechnical scenarios cannot be readily sim... Physics-informed neural networks(PINNs)have prevailed as differentiable simulators to investigate flow in porous media.Despite recent progress PINNs have achieved,practical geotechnical scenarios cannot be readily simulated because conventional PINNs fail in discontinuous heterogeneous porous media or multi-layer strata when labeled data are missing.This work aims to develop a universal network structure to encode the mass continuity equation and Darcy’s law without labeled data.The finite element approximation,which can decompose a complex heterogeneous domain into simpler ones,is adopted to build the differentiable network.Without conventional DNNs,physics-encoded finite element network(PEFEN)can avoid spectral bias and learn high-frequency functions with sharp/steep gradients.PEFEN rigorously encodes Dirichlet and Neumann boundary conditions without training.Benefiting from its discretized formulation,the discontinuous heterogeneous hydraulic conductivity is readily embedded into the network.Three typical cases are reproduced to corroborate PEFEN’s superior performance over conventional PINNs and the PINN with mixed formulation.PEFEN is sparse and demonstrated to be capable of dealing with heterogeneity with much fewer training iterations(less than 1/30)than the improved PINN with mixed formulation.Thus,PEFEN saves energy and contributes to low-carbon AI for science.The last two cases focus on common geotechnical settings of impermeable sheet pile in singlelayer and multi-layer strata.PEFEN solves these cases with high accuracy,circumventing costly labeled data,extra computational burden,and additional treatment.Thus,this study warrants the further development and application of PEFEN as a novel differentiable network in porous flow of practical geotechnical engineering. 展开更多
关键词 Finite element method(FEM) Physics-informed neural network(PINN) Carbon neutrality Sheet pile Sharp/steep gradients Porous flow
在线阅读 下载PDF
Hausdorff Dimension of Multi-Layer Neural Networks
15
作者 Jung-Chao Ban Chih-Hung Chang 《Advances in Pure Mathematics》 2013年第9期9-14,共6页
This elucidation investigates the Hausdorff dimension of the output space of multi-layer neural networks. When the factor map from the covering space of the output space to the output space has a synchronizing word, t... This elucidation investigates the Hausdorff dimension of the output space of multi-layer neural networks. When the factor map from the covering space of the output space to the output space has a synchronizing word, the Hausdorff dimension of the output space relates to its topological entropy. This clarifies the geometrical structure of the output space in more details. 展开更多
关键词 multi-layer Neural networks HAUSDORFF DIMENSION Sofic SHIFT OUTPUT Space
在线阅读 下载PDF
Learning Performance of Linear and Exponential Activity Function with Multi-layered Neural Networks
16
作者 Betere Job Isaac Hiroshi Kinjo +1 位作者 Kunihiko Nakazono Naoki Oshiro 《Journal of Electrical Engineering》 2018年第5期289-294,共6页
This paper presents a study on the improvement of MLNNs(multi-layer neural networks)performance by an activity function for multi logic training patterns.Our model network has L hidden layers of two inputs and three,f... This paper presents a study on the improvement of MLNNs(multi-layer neural networks)performance by an activity function for multi logic training patterns.Our model network has L hidden layers of two inputs and three,four to six output training using BP(backpropagation)neural network.We used logic functions of XOR(exclusive OR),OR,AND,NAND(not AND),NXOR(not exclusive OR)and NOR(not OR)as the multi logic teacher signals to evaluate the training performance of MLNNs by an activity function for information and data enlargement in signal processing(synaptic divergence state).We specifically used four activity functions from which we modified one and called it L&exp.function as it could give the highest training abilities compared to the original activity functions of Sigmoid,ReLU and Step during simulation and training in the network.And finally,we propose L&exp.function as being good for MLNNs and it may be applicable for signal processing of data and information enlargement because of its performance training characteristics with multiple training logic patterns hence can be adopted in machine deep learning. 展开更多
关键词 multi-layer NEURAL networks LEARNING performance multi logic training patterns ACTIVITY FUNCTION BP NEURAL network deep LEARNING
在线阅读 下载PDF
A Well Productivity Model for Multi-Layered Marine and Continental Transitional Reservoirs with Complex Fracture Networks
17
作者 Huiyan Zhao Xuezhong Chen +3 位作者 Zhijian Hu Man Chen Bo Xiong Jianying Yang 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1313-1330,共18页
Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory... Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production. 展开更多
关键词 Marine-continental transitional reservoir multi-layered reservoir seepage mechanisms apparent permeability hydraulic horizontal well productivity model
在线阅读 下载PDF
A Kind of Second-Order Learning Algorithm Based on Generalized Cost Criteria in Multi-Layer Feed-Forward Neural Networks
18
作者 张长江 付梦印 金梅 《Journal of Beijing Institute of Technology》 EI CAS 2003年第2期119-124,共6页
A kind of second order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluct... A kind of second order algorithm--recursive approximate Newton algorithm was given by Karayiannis. The algorithm was simplified when it was formulated. Especially, the simplification to matrix Hessian was very reluctant, which led to the loss of valuable information and affected performance of the algorithm to certain extent. For multi layer feed forward neural networks, the second order back propagation recursive algorithm based generalized cost criteria was proposed. It is proved that it is equivalent to Newton recursive algorithm and has a second order convergent rate. The performance and application prospect are analyzed. Lots of simulation experiments indicate that the calculation of the new algorithm is almost equivalent to the recursive least square multiple algorithm. The algorithm and selection of networks parameters are significant and the performance is more excellent than BP algorithm and the second order learning algorithm that was given by Karayiannis. 展开更多
关键词 multi layer feed forward neural networks BP algorithm Newton recursive algorithm
在线阅读 下载PDF
Energy-Efficient Bandwidth and Power Allocation in Relay-Assisted Multi-Layer Heterogeneous Networks with Energy Harvesting
19
作者 高锦程 赵宜升 +1 位作者 陈加法 陈忠辉 《Journal of Shanghai Jiaotong university(Science)》 EI 2023年第6期822-830,共9页
Aiming at excessive users existing in a pico base station(PBS)in the multi-layer heterogeneous networks,the resource allocation problem of maximizing the energy efficiency of the networks is investigated in this paper... Aiming at excessive users existing in a pico base station(PBS)in the multi-layer heterogeneous networks,the resource allocation problem of maximizing the energy efficiency of the networks is investigated in this paper.By deploying a relay node with energy harvesting function,the data of some users in the PBS can be transferred to an adjacent idle PBS.The bandwidth and transmitting power of users and the relay node are both considered to formulate the resource allocation optimization problem.The objective is to maximize the energy eficiency of the whole heterogeneous networks under the constraints of the user's minimum data rate and energy consumption.The suboptimal solution is obtained by using the particle swarm optimization(PSO)algorithm and quantum-behaved particle swarm optimization(QPSO)algorithm.Simulation results show that the adopted methods have higher energy efficiency than the conventional fixed power and bandwidth method.In addition,the time complexity of the adopted methods is relatively low. 展开更多
关键词 energy harvesting heterogeneous networks energy efficiency
原文传递
Efficient Object Segmentation and Recognition Using Multi-Layer Perceptron Networks
20
作者 Aysha Naseer Nouf Abdullah Almujally +2 位作者 Saud S.Alotaibi Abdulwahab Alazeb Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2024年第1期1381-1398,共18页
Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on ... Object segmentation and recognition is an imperative area of computer vision andmachine learning that identifies and separates individual objects within an image or video and determines classes or categories based on their features.The proposed system presents a distinctive approach to object segmentation and recognition using Artificial Neural Networks(ANNs).The system takes RGB images as input and uses a k-means clustering-based segmentation technique to fragment the intended parts of the images into different regions and label thembased on their characteristics.Then,two distinct kinds of features are obtained from the segmented images to help identify the objects of interest.An Artificial Neural Network(ANN)is then used to recognize the objects based on their features.Experiments were carried out with three standard datasets,MSRC,MS COCO,and Caltech 101 which are extensively used in object recognition research,to measure the productivity of the suggested approach.The findings from the experiment support the suggested system’s validity,as it achieved class recognition accuracies of 89%,83%,and 90.30% on the MSRC,MS COCO,and Caltech 101 datasets,respectively. 展开更多
关键词 K-region fusion segmentation recognition feature extraction artificial neural network computer vision
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部