The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are the surface roughness and the error between the actual printing height and the theoretical m...The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are the surface roughness and the error between the actual printing height and the theoretical model height.The Taguchi method was employed to establish the correlations between process parameter combinations and multi-objective characterization of metal deposition morphology(height error and roughness).Results show that using the signal-to-noise ratio and grey relational analysis,the optimal parameter combination for multi-layer and multi-pass deposition is determined as follows:laser power of 800 W,powder feeding rate of 0.3 r/min,step distance of 1.6 mm,and scanning speed of 20 mm/s.Subsequently,a Genetic Bayesian-back propagation(GB-BP)network is constructed to predict multi-objective responses.Compared with the traditional back propagation network,the GB-back propagation network improves the prediction accuracy of height error and surface roughness by 43.14%and 71.43%,respectively.This network can accurately predict the multi-objective characterization of morphological quality of multi-layer and multi-pass metal deposited parts.展开更多
The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging at...The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems.展开更多
Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed ...Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed satellites,ground users now can be covered by multiple visible satellites,but also face complex handover issues with such massive high-mobility satellites in multi-layer.The end-to-end routing is also affected by the handover behavior.In this paper,we propose an intelligent handover strategy dedicated to multi-layer LEO mega-constellation networks.Firstly,an analytic model is utilized to rapidly estimate the end-to-end propagation latency as a key handover factor to construct a multi-objective optimization model.Subsequently,an intelligent handover strategy is proposed by employing the Dueling Double Deep Q Network(D3QN)-based deep reinforcement learning algorithm for single-layer constellations.Moreover,an optimal crosslayer handover scheme is proposed by predicting the latency-jitter and minimizing the cross-layer overhead.Simulation results demonstrate the superior performance of the proposed method in the multi-layer LEO mega-constellation,showcasing reductions of up to 8.2%and 59.5%in end-to-end latency and jitter respectively,when compared to the existing handover strategies.展开更多
The idea of a network society was introduced by Western sociologists at the end of the 20th century after in-depth research was conducted from perspectives such as informationalism.Influenced by these developments,the...The idea of a network society was introduced by Western sociologists at the end of the 20th century after in-depth research was conducted from perspectives such as informationalism.Influenced by these developments,the concept of constructing a network society also emerged in China.Over the past 30 years,China has made significant progress and achievements in constructing a network society,both in terms of its fundamental construction and social development.It is important that these advancements be summarized and reviewed.China’s network society construction can be divided into two relatively independent yet interconnected components,based on their focal points:its foundational infrastructure and its social development.These two components of China’s network society are managed by different departments.China has integrated the fundamental construction of its network society with the social development of its network society,thereby achieving unified planning,collaborative advancement,and coordinated development.This approach aims to harmonize two aspects:building China’s cyberspace strength and contributing to Chinese informatization,thereby advancing Chinese modernization.展开更多
The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through acceler...The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through accelerated life testing.In the absence of lifetime data,the hidden long-term correlation between performance degradation data is challenging to mine effectively,which is the main factor that restricts the prediction precision and engineering application of the residual life prediction method.To address this problem,a novel method based on the multi-layer perception neural network and bidirectional long short-term memory network is proposed.Firstly,a nonlinear health indicator(HI)calculation method based on kernel principal component analysis(KPCA)and exponential weighted moving average(EWMA)is designed.Then,using the raw vibration data and HI,a multi-layer perceptron(MLP)neural network is trained to further calculate the HI of the online bearing in real time.Furthermore,The bidirectional long short-term memory model(BiLSTM)optimized by particle swarm optimization(PSO)is used to mine the time series features of HI and predict the remaining service life.Performance verification experiments and comparative experiments are carried out on the XJTU-SY bearing open dataset.The research results indicate that this method has an excellent ability to predict future HI and remaining life.展开更多
The importance and complexity of prioritizing construction projects (PCP) in urban road network planning lead to the necessity to develop an aided decision making program (ADMP). Cost benefit ratio model and stage rol...The importance and complexity of prioritizing construction projects (PCP) in urban road network planning lead to the necessity to develop an aided decision making program (ADMP). Cost benefit ratio model and stage rolled method are chosen as the theoretical foundations of the program, and then benefit model is improved to accord with the actuality of urban traffic in China. Consequently, program flows, module functions and data structures are designed, and particularly an original data structure of road ...展开更多
From the viewpoint of energy saving and improving transmission efficiency, the ZL50E wheel loader is taken as the study object. And the system model is analyzed based on the transmission system of the construction veh...From the viewpoint of energy saving and improving transmission efficiency, the ZL50E wheel loader is taken as the study object. And the system model is analyzed based on the transmission system of the construction vehicle. A new four-parameter shift schedule is presented, which can keep the torque converter working in the high efficiency area. The control algorithm based on the Elman recursive neural network is applied, and four-parameter control system is developed which is based on industrial computer. The system is used to collect data accurately and control 4D180 power-shift gearbox of ZL50E wheel loader shift timely. An experiment is done on automatic transmission test-bed, and the result indicates that the control system could reliably and safely work and improve the efficiency of hydraulic torque converter. Four-parameter shift strategy that takes into account the power consuming of the working pump has important operating significance and reflects the actual working status of construction vehicle.展开更多
In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper c...In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation.展开更多
With the rapid increase of Unmanned Aircraft Vehicle(UAV) numbers,the contradiction between extensive flight demands and limited low-altitude airspace resources has become increasingly prominent.To ensure the safety a...With the rapid increase of Unmanned Aircraft Vehicle(UAV) numbers,the contradiction between extensive flight demands and limited low-altitude airspace resources has become increasingly prominent.To ensure the safety and efficiency of low-altitude UAV operations,the low-altitude UAV public air route creatively proposed by the Chinese Academy of Sciences(CAS) and supported by the Civil Aviation Administration of China(CAAC) has been gradually recognized.However,present planning research on UAV low-altitude air route is not enough to explore how to use the ground transportation infrastructure,how to closely combine the surface pattern characteristics,and how to form the mechanism of "network".Based on the solution proposed in the early stage and related researches,this paper further deepens the exploration of the low-altitude public air route network and the implementation of key technologies and steps with an actual case study in Tianjin,China.Firstly,a path-planning environment consisting of favorable spaces,obstacle spaces,and mobile communication spaces for UAV flights was pre-constructed.Subsequently,air routes were planned by using the conflict detection and path re-planning algorithm.Our study also assessed the network by computing the population exposure risk index(PERI) and found that the index value was greatly reduced after the construction of the network,indicating that the network can effectively reduce the operational risk.In this study,a low-altitude UAV air route network in an actual region was constructed using multidisciplinary approaches such as remote sensing,geographic information,aviation,and transportation;it indirectly verified the rationality of the outcomes.This can provide practical solutions to low-altitude traffic problems in urban areas.展开更多
To increase airspace capacity, alleviate flight delay,and improve network robustness, an optimization method of multi-layer air transportation networks is put forward based on Laplacian energy maximization. The effect...To increase airspace capacity, alleviate flight delay,and improve network robustness, an optimization method of multi-layer air transportation networks is put forward based on Laplacian energy maximization. The effectiveness of taking Laplacian energy as a measure of network robustness is validated through numerical experiments. The flight routes addition optimization model is proposed with the principle of maximizing Laplacian energy. Three methods including the depth-first search( DFS) algorithm, greedy algorithm and Monte-Carlo tree search( MCTS) algorithm are applied to solve the proposed problem. The trade-off between system performance and computational efficiency is compared through simulation experiments. Finally, a case study on Chinese airport network( CAN) is conducted using the proposed model. Through encapsulating it into multi-layer infrastructure via k-core decomposition algorithm, Laplacian energy maximization for the sub-networks is discussed which can provide a useful tool for the decision-makers to optimize the robustness of the air transportation network on different scales.展开更多
The turn-key construction project is implemented in Taiwan not by a single company but by a make-shift group of several companies. Hence,problems to coordinate the professional construction management (PCM) and the su...The turn-key construction project is implemented in Taiwan not by a single company but by a make-shift group of several companies. Hence,problems to coordinate the professional construction management (PCM) and the supervising architectural company often occur for the lack of long-term experience to work together. The various factors that affect the implementation of turn-key projects currently practiced in Taiwan are analyzed using the analytic network process (ANP). The objective is to study how the twelve key factors in the four layers of "Role assignment","Signing contract","Operational procedures" and "Losing capital investment" affect the progress of implementing the turn-key project in Taiwan. The results reveal that "Delay in payment" has the most negative influence with 15.62% weighing factor; "Latent risk" comes next with 11.14% weighing factor,and "Responsibility of construction company for project quality" is the third with 10.79% weighing factor.展开更多
In multi-layer satellite-terrestrial network, Contact Graph Routing(CGR) uses the contact information among satellites to compute routes. However, due to the resource constraints in satellites, it is extravagant to co...In multi-layer satellite-terrestrial network, Contact Graph Routing(CGR) uses the contact information among satellites to compute routes. However, due to the resource constraints in satellites, it is extravagant to configure lots of the potential contacts into contact plans. What's more, a huge contact plan makes the computing more complex, which further increases computing time. As a result, how to design an efficient contact plan becomes crucial for multi-layer satellite network, which usually has a large scaled topology. In this paper, we propose a distributed contact plan design scheme for multi-layer satellite network by dividing a large contact plan into several partial parts. Meanwhile, a duration based inter-layer contact selection algorithm is proposed to handle contacts disruption problem. The performance of the proposed design was evaluated on our Identifier/Locator split based satellite-terrestrial network testbed with 79 simulation nodes. Experiments showed that the proposed design is able to reduce the data delivery delay.展开更多
Nowadays,carbon frameworks derived from natural biomaterials have attracted extensive attention for electromagnetic interference(EMI)shielding due to their renewability and affordability.However,it is critical and cha...Nowadays,carbon frameworks derived from natural biomaterials have attracted extensive attention for electromagnetic interference(EMI)shielding due to their renewability and affordability.However,it is critical and challenging to achieve effective regulation of shielding effectiveness(SE)as well as weaken the strong EM reflection of highly conductive biomass-based carbon materials.Herein,commercial cotton pads with oriented structure were selected as carbonaceous precursor to fabricate aligned carbon networks by pyrolysis,and the EMI SE of the samples with increased temperature of 800-1000℃ can be accurately controlled in the effective range of~21.7-29.1,~27.7-37.1 and~32.7-43.3 d B with high reflection coefficient of>0.8 by changing the cross-angle between the electric-field direction of incident EM waves and the fiber-orientation direction due to the occurrence of opposite internal electric field.Moreover,the further construction of Salisbury absorber-liked double-layer structure could result in an ultralow reflection coefficient of only~0.06 but enhanced SE variation range up to~38.7-49.3 d B during the adjustment of cross-angle,possibly due to the destructive interference of EM waves in the double-layer carbon networks.This work would provide a simple and effective way for constructing high-performance biomass carbon materials with adjustable EMI shielding and ultra-low reflectivity.展开更多
Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawin...Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawings, documentation and the like are still incomplete. As such, various techniques have been applied to accurately estimate construction costs at an early stage, when project information is limited. While the various techniques have their pros and cons, there has been little effort made to determine the best technique in terms of cost estimating performance. The objective of this research is to compare the accuracy of three estimating techniques (regression analysis (RA), neural network (NN), and support vector machine techniques (SVM)) by performing estimations of construction costs. By comparing the accuracy of these techniques using historical cost data, it was found that NN model showed more accurate estimation results than the RA and SVM models. Consequently, it is determined that NN model is most suitable for estimating the cost of school building projects.展开更多
Under the background of the rapid development of ground mobile communication,the advantages of high coverage,survivability,and flexibility of satellite communication provide air support to the construction of space in...Under the background of the rapid development of ground mobile communication,the advantages of high coverage,survivability,and flexibility of satellite communication provide air support to the construction of space information network.According to the requirements of the future space information communication,a software-defined Space-Air-Ground Integrated network architecture was proposed.It consisted of layered structure satellite backbone network,deep space communication network,the stratosphere communication network and the ground network.The Space-Air-Ground Integrated network was supported by the satellite backbone network.It provided data relay for the missions such as deep space exploration and controlled the deep-space spacecraft when needed.In addition,it safeguarded the anti-destructibility of stratospheric communication and assisted the stratosphere to supplement ground network communication.In this paper,algorithm requirements of the congestion control and routing of satellite backbone protocols for heterogeneous users’services were proposed.The algorithm requirements of distinguishing different service objects for the deep space communication and stratospheric communication network protocols were described.Considering the realistic demand for the dynamic coverage of the satellite backbone network and node cost,the multi-layer satellite backbone network architecture was constructed.On this basis,the proposed Software-defined Space-Air-Ground Integrated network architecture could be built as a large,scalable and efficient communication network that could be integrated into space,air,and ground.展开更多
Osteocytes reside as three-dimensionally(3D) networked cells in the lacunocanalicular structure of bones and regulate bone and mineral homeostasis. Despite of their important regulatory roles, in vitro studies of os...Osteocytes reside as three-dimensionally(3D) networked cells in the lacunocanalicular structure of bones and regulate bone and mineral homeostasis. Despite of their important regulatory roles, in vitro studies of osteocytes have been challenging because:(1) current cell lines do not sufficiently represent the phenotypic features of mature osteocytes and(2) primary cells rapidly differentiate to osteoblasts upon isolation. In this study, we used a 3D perfusion culture approach to:(1) construct the 3D cellular network of primary murine osteocytes by biomimetic assembly with microbeads and(2) reproduce ex vivo the phenotype of primary murine osteocytes, for the first time to our best knowledge. In order to enable 3D construction with a sufficient number of viable cells, we used a proliferated osteoblastic population of healthy cells outgrown from digested bone chips. The diameter of microbeads was controlled to:(1) distribute and entrap cells within the interstitial spaces between the microbeads and(2) maintain average cell-to-cell distance to be about 19 mm. The entrapped cells formed a 3D cellular network by extending and connecting their processes through openings between the microbeads. Also, with increasing culture time, the entrapped cells exhibited the characteristic gene expressions(SOST and FGF23) and nonproliferative behavior of mature osteocytes. In contrast, 2D-cultured cells continued their osteoblastic differentiation and proliferation. This 3D biomimetic approach is expected to provide a new means of:(1) studying flow-induced shear stress on the mechanotransduction function of primary osteocytes,(2) studying physiological functions of 3D-networked osteocytes with in vitro convenience,and(3) developing clinically relevant human bone disease models.展开更多
Artificial neural networks(ANNs)are one of the hottest topics in computer science and artificial intelligence due to their potential and advantages in analyzing real-world problems in various disciplines,including but...Artificial neural networks(ANNs)are one of the hottest topics in computer science and artificial intelligence due to their potential and advantages in analyzing real-world problems in various disciplines,including but not limited to physics,biology,chemistry,and engineering.However,ANNs lack several key characteristics of biological neural networks,such as sparsity,scale-freeness,and small-worldness.The concept of sparse and scale-free neural networks has been introduced to fill this gap.Network sparsity is implemented by removing weak weights between neurons during the learning process and replacing them with random weights.When the network is initialized,the neural network is fully connected,which means the number of weights is four times the number of neurons.In this study,considering that a biological neural network has some degree of initial sparsity,we design an ANN with a prescribed level of initial sparsity.The neural network is tested on handwritten digits,Arabic characters,CIFAR-10,and Reuters newswire topics.Simulations show that it is possible to reduce the number of weights by up to 50%without losing prediction accuracy.Moreover,in both cases,the testing time is dramatically reduced compared with fully connected ANNs.展开更多
To meet society’s needs for undergraduate students to have engineering skills and to develop students’ability to operate Linux and engage in network software development,this paper proposes the construction of a new...To meet society’s needs for undergraduate students to have engineering skills and to develop students’ability to operate Linux and engage in network software development,this paper proposes the construction of a new specialized course for network engineering major--Linux system and network programming.This paper analyzes the course’s advantages,presents the contents of this course,designs a series of teaching methods aimed at improving students’engineering ability,proposes a course assessment method that will encourage students to practice,lists the development requirements for an examination software designed for this course,and finally,presents the results of our practice in teaching this course.展开更多
The construction phase of a project is a critical factor that significantly impacts its overall success.The construction environment is characterized by uncertainty and dynamism,involving nonlinear relationships among...The construction phase of a project is a critical factor that significantly impacts its overall success.The construction environment is characterized by uncertainty and dynamism,involving nonlinear relationships among various factors that affect construction quality.This study utilized 987 construction inspection records from 1993 to 2022,obtained from the Taiwan residents Public Construction Management Information System(PCMIS),to determine the relationships between construction factors and quality.First,fuzzy logic was applied to calculate the weights of 499 defects,and 25 critical construction factors were selected based on these weight values.Next,a deep neural network was used to identify the relationship between the critical construction factors(input variables)and construction quality(output variable).Finally,the prediction model’s performance was evaluated to confirm the impact of these critical construction factors on project outcomes.This study employed an innovative hybrid soft computing technique,com-bining fuzzy logic and an artificial neural network,to effectively predict the relationship between critical construction factors and construction quality,achieving a model accuracy of 96.08%.Project managers can utilize the findings of this study to enhance project management practices and establish effective construction management strategies,thereby improving project construction quality.展开更多
基金National Natural Science Foundation of China(52175237)。
文摘The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are the surface roughness and the error between the actual printing height and the theoretical model height.The Taguchi method was employed to establish the correlations between process parameter combinations and multi-objective characterization of metal deposition morphology(height error and roughness).Results show that using the signal-to-noise ratio and grey relational analysis,the optimal parameter combination for multi-layer and multi-pass deposition is determined as follows:laser power of 800 W,powder feeding rate of 0.3 r/min,step distance of 1.6 mm,and scanning speed of 20 mm/s.Subsequently,a Genetic Bayesian-back propagation(GB-BP)network is constructed to predict multi-objective responses.Compared with the traditional back propagation network,the GB-back propagation network improves the prediction accuracy of height error and surface roughness by 43.14%and 71.43%,respectively.This network can accurately predict the multi-objective characterization of morphological quality of multi-layer and multi-pass metal deposited parts.
基金Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2025R319)Riyadh,Saudi Arabia and Prince Sultan University for covering the article processing charges(APC)associated with this publication.Special acknowledgement to Automated Systems&Soft Computing Lab(ASSCL),Prince Sultan University,Riyadh,Saudi Arabia.
文摘The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems.
基金supported by the National Natural Science Foundation of China(No.62401597)Natural Science Foundation of Hunan Province,China(No.2024JJ6469)the Research Project of National University of Defense Technology,China(No.ZK22-02).
文摘Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed satellites,ground users now can be covered by multiple visible satellites,but also face complex handover issues with such massive high-mobility satellites in multi-layer.The end-to-end routing is also affected by the handover behavior.In this paper,we propose an intelligent handover strategy dedicated to multi-layer LEO mega-constellation networks.Firstly,an analytic model is utilized to rapidly estimate the end-to-end propagation latency as a key handover factor to construct a multi-objective optimization model.Subsequently,an intelligent handover strategy is proposed by employing the Dueling Double Deep Q Network(D3QN)-based deep reinforcement learning algorithm for single-layer constellations.Moreover,an optimal crosslayer handover scheme is proposed by predicting the latency-jitter and minimizing the cross-layer overhead.Simulation results demonstrate the superior performance of the proposed method in the multi-layer LEO mega-constellation,showcasing reductions of up to 8.2%and 59.5%in end-to-end latency and jitter respectively,when compared to the existing handover strategies.
基金“Research on Social Change and Network Society Planning in the Internet of Everything Era”(ID:21BSH005),a project under the National Social Science Fund of China
文摘The idea of a network society was introduced by Western sociologists at the end of the 20th century after in-depth research was conducted from perspectives such as informationalism.Influenced by these developments,the concept of constructing a network society also emerged in China.Over the past 30 years,China has made significant progress and achievements in constructing a network society,both in terms of its fundamental construction and social development.It is important that these advancements be summarized and reviewed.China’s network society construction can be divided into two relatively independent yet interconnected components,based on their focal points:its foundational infrastructure and its social development.These two components of China’s network society are managed by different departments.China has integrated the fundamental construction of its network society with the social development of its network society,thereby achieving unified planning,collaborative advancement,and coordinated development.This approach aims to harmonize two aspects:building China’s cyberspace strength and contributing to Chinese informatization,thereby advancing Chinese modernization.
基金supported by the National Key Research and Development Project(Grant Number 2023YFB3709601)the National Natural Science Foundation of China(Grant Numbers 62373215,62373219,62073193)+2 种基金the Key Research and Development Plan of Shandong Province(Grant Numbers 2021CXGC010204,2022CXGC020902)the Fundamental Research Funds of Shandong University(Grant Number 2021JCG008)the Natural Science Foundation of Shandong Province(Grant Number ZR2023MF100).
文摘The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through accelerated life testing.In the absence of lifetime data,the hidden long-term correlation between performance degradation data is challenging to mine effectively,which is the main factor that restricts the prediction precision and engineering application of the residual life prediction method.To address this problem,a novel method based on the multi-layer perception neural network and bidirectional long short-term memory network is proposed.Firstly,a nonlinear health indicator(HI)calculation method based on kernel principal component analysis(KPCA)and exponential weighted moving average(EWMA)is designed.Then,using the raw vibration data and HI,a multi-layer perceptron(MLP)neural network is trained to further calculate the HI of the online bearing in real time.Furthermore,The bidirectional long short-term memory model(BiLSTM)optimized by particle swarm optimization(PSO)is used to mine the time series features of HI and predict the remaining service life.Performance verification experiments and comparative experiments are carried out on the XJTU-SY bearing open dataset.The research results indicate that this method has an excellent ability to predict future HI and remaining life.
文摘The importance and complexity of prioritizing construction projects (PCP) in urban road network planning lead to the necessity to develop an aided decision making program (ADMP). Cost benefit ratio model and stage rolled method are chosen as the theoretical foundations of the program, and then benefit model is improved to accord with the actuality of urban traffic in China. Consequently, program flows, module functions and data structures are designed, and particularly an original data structure of road ...
基金supported by Research Fund for Doctoral Program of Higher Education of China (No.20020183003)
文摘From the viewpoint of energy saving and improving transmission efficiency, the ZL50E wheel loader is taken as the study object. And the system model is analyzed based on the transmission system of the construction vehicle. A new four-parameter shift schedule is presented, which can keep the torque converter working in the high efficiency area. The control algorithm based on the Elman recursive neural network is applied, and four-parameter control system is developed which is based on industrial computer. The system is used to collect data accurately and control 4D180 power-shift gearbox of ZL50E wheel loader shift timely. An experiment is done on automatic transmission test-bed, and the result indicates that the control system could reliably and safely work and improve the efficiency of hydraulic torque converter. Four-parameter shift strategy that takes into account the power consuming of the working pump has important operating significance and reflects the actual working status of construction vehicle.
基金This project (No. 49070196) is funded by the National Science Foundation of China.
文摘In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation.
基金National Key Research and Development Program of China,No.2017YFB0503005Key Research Program of the Chinese Academy of Sciences,No.ZDRW-KT-2020-2+1 种基金National Natural Science Foundation of China,No.41971359,No.41771388Tianjin Intelligent Manufacturing Project Technology of Intelligent Networking by Autonomous Control UAVs for Observation and Application,No.Tianjin-IMP-2。
文摘With the rapid increase of Unmanned Aircraft Vehicle(UAV) numbers,the contradiction between extensive flight demands and limited low-altitude airspace resources has become increasingly prominent.To ensure the safety and efficiency of low-altitude UAV operations,the low-altitude UAV public air route creatively proposed by the Chinese Academy of Sciences(CAS) and supported by the Civil Aviation Administration of China(CAAC) has been gradually recognized.However,present planning research on UAV low-altitude air route is not enough to explore how to use the ground transportation infrastructure,how to closely combine the surface pattern characteristics,and how to form the mechanism of "network".Based on the solution proposed in the early stage and related researches,this paper further deepens the exploration of the low-altitude public air route network and the implementation of key technologies and steps with an actual case study in Tianjin,China.Firstly,a path-planning environment consisting of favorable spaces,obstacle spaces,and mobile communication spaces for UAV flights was pre-constructed.Subsequently,air routes were planned by using the conflict detection and path re-planning algorithm.Our study also assessed the network by computing the population exposure risk index(PERI) and found that the index value was greatly reduced after the construction of the network,indicating that the network can effectively reduce the operational risk.In this study,a low-altitude UAV air route network in an actual region was constructed using multidisciplinary approaches such as remote sensing,geographic information,aviation,and transportation;it indirectly verified the rationality of the outcomes.This can provide practical solutions to low-altitude traffic problems in urban areas.
基金The National Natural Science Foundation of China(No.61573098,71401072)the Natural Science Foundation of Jiangsu Province(No.BK20130814)
文摘To increase airspace capacity, alleviate flight delay,and improve network robustness, an optimization method of multi-layer air transportation networks is put forward based on Laplacian energy maximization. The effectiveness of taking Laplacian energy as a measure of network robustness is validated through numerical experiments. The flight routes addition optimization model is proposed with the principle of maximizing Laplacian energy. Three methods including the depth-first search( DFS) algorithm, greedy algorithm and Monte-Carlo tree search( MCTS) algorithm are applied to solve the proposed problem. The trade-off between system performance and computational efficiency is compared through simulation experiments. Finally, a case study on Chinese airport network( CAN) is conducted using the proposed model. Through encapsulating it into multi-layer infrastructure via k-core decomposition algorithm, Laplacian energy maximization for the sub-networks is discussed which can provide a useful tool for the decision-makers to optimize the robustness of the air transportation network on different scales.
文摘The turn-key construction project is implemented in Taiwan not by a single company but by a make-shift group of several companies. Hence,problems to coordinate the professional construction management (PCM) and the supervising architectural company often occur for the lack of long-term experience to work together. The various factors that affect the implementation of turn-key projects currently practiced in Taiwan are analyzed using the analytic network process (ANP). The objective is to study how the twelve key factors in the four layers of "Role assignment","Signing contract","Operational procedures" and "Losing capital investment" affect the progress of implementing the turn-key project in Taiwan. The results reveal that "Delay in payment" has the most negative influence with 15.62% weighing factor; "Latent risk" comes next with 11.14% weighing factor,and "Responsibility of construction company for project quality" is the third with 10.79% weighing factor.
基金supported by National High Technology of China ("863 program") under Grant No. 2015AA015702NSAF under Grant No. U1530118+1 种基金NSFC under Grant No. 61602030National Basic Research Program of China ("973 program") under Grant No. 2013CB329101
文摘In multi-layer satellite-terrestrial network, Contact Graph Routing(CGR) uses the contact information among satellites to compute routes. However, due to the resource constraints in satellites, it is extravagant to configure lots of the potential contacts into contact plans. What's more, a huge contact plan makes the computing more complex, which further increases computing time. As a result, how to design an efficient contact plan becomes crucial for multi-layer satellite network, which usually has a large scaled topology. In this paper, we propose a distributed contact plan design scheme for multi-layer satellite network by dividing a large contact plan into several partial parts. Meanwhile, a duration based inter-layer contact selection algorithm is proposed to handle contacts disruption problem. The performance of the proposed design was evaluated on our Identifier/Locator split based satellite-terrestrial network testbed with 79 simulation nodes. Experiments showed that the proposed design is able to reduce the data delivery delay.
基金financial supports from Natural Science Foundation of Ningbo(202003N4026)S&T Innovation 2025 Major Special Programme of Ningbo(2018B10054)National Natural Science Foundation of China(62001065 and 51603218)。
文摘Nowadays,carbon frameworks derived from natural biomaterials have attracted extensive attention for electromagnetic interference(EMI)shielding due to their renewability and affordability.However,it is critical and challenging to achieve effective regulation of shielding effectiveness(SE)as well as weaken the strong EM reflection of highly conductive biomass-based carbon materials.Herein,commercial cotton pads with oriented structure were selected as carbonaceous precursor to fabricate aligned carbon networks by pyrolysis,and the EMI SE of the samples with increased temperature of 800-1000℃ can be accurately controlled in the effective range of~21.7-29.1,~27.7-37.1 and~32.7-43.3 d B with high reflection coefficient of>0.8 by changing the cross-angle between the electric-field direction of incident EM waves and the fiber-orientation direction due to the occurrence of opposite internal electric field.Moreover,the further construction of Salisbury absorber-liked double-layer structure could result in an ultralow reflection coefficient of only~0.06 but enhanced SE variation range up to~38.7-49.3 d B during the adjustment of cross-angle,possibly due to the destructive interference of EM waves in the double-layer carbon networks.This work would provide a simple and effective way for constructing high-performance biomass carbon materials with adjustable EMI shielding and ultra-low reflectivity.
文摘Accurate cost estimation at the early stage of a construction project is key factor in a project’s success. But it is difficult to quickly and accurately estimate construction costs at the planning stage, when drawings, documentation and the like are still incomplete. As such, various techniques have been applied to accurately estimate construction costs at an early stage, when project information is limited. While the various techniques have their pros and cons, there has been little effort made to determine the best technique in terms of cost estimating performance. The objective of this research is to compare the accuracy of three estimating techniques (regression analysis (RA), neural network (NN), and support vector machine techniques (SVM)) by performing estimations of construction costs. By comparing the accuracy of these techniques using historical cost data, it was found that NN model showed more accurate estimation results than the RA and SVM models. Consequently, it is determined that NN model is most suitable for estimating the cost of school building projects.
基金This work is supported by Fundamental Research Funds for the Central Universities of China(328201911)C.G.(Chao Guo),the Open Project Program of National Engineering Laboratory for Agri-product Quality Traceability,C.G.(Chao Guo)+2 种基金Beijing Technology and Business University(BTBU)No.AQT-2018Y-B4,C.G.(Chao Guo)Higher Education Department of the Ministry of Education Industry-university Cooperative Education Project,C.G.(Chao Guo)Education and Teaching Reform Project of Beijing Electronic and Technology Institute,C.G.(Chao Guo).
文摘Under the background of the rapid development of ground mobile communication,the advantages of high coverage,survivability,and flexibility of satellite communication provide air support to the construction of space information network.According to the requirements of the future space information communication,a software-defined Space-Air-Ground Integrated network architecture was proposed.It consisted of layered structure satellite backbone network,deep space communication network,the stratosphere communication network and the ground network.The Space-Air-Ground Integrated network was supported by the satellite backbone network.It provided data relay for the missions such as deep space exploration and controlled the deep-space spacecraft when needed.In addition,it safeguarded the anti-destructibility of stratospheric communication and assisted the stratosphere to supplement ground network communication.In this paper,algorithm requirements of the congestion control and routing of satellite backbone protocols for heterogeneous users’services were proposed.The algorithm requirements of distinguishing different service objects for the deep space communication and stratospheric communication network protocols were described.Considering the realistic demand for the dynamic coverage of the satellite backbone network and node cost,the multi-layer satellite backbone network architecture was constructed.On this basis,the proposed Software-defined Space-Air-Ground Integrated network architecture could be built as a large,scalable and efficient communication network that could be integrated into space,air,and ground.
基金the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (1R21AR065032 to W.Y.L and J.Z.)the National Science Foundation (DMR 1409779 to W.Y.L and J.Z.)
文摘Osteocytes reside as three-dimensionally(3D) networked cells in the lacunocanalicular structure of bones and regulate bone and mineral homeostasis. Despite of their important regulatory roles, in vitro studies of osteocytes have been challenging because:(1) current cell lines do not sufficiently represent the phenotypic features of mature osteocytes and(2) primary cells rapidly differentiate to osteoblasts upon isolation. In this study, we used a 3D perfusion culture approach to:(1) construct the 3D cellular network of primary murine osteocytes by biomimetic assembly with microbeads and(2) reproduce ex vivo the phenotype of primary murine osteocytes, for the first time to our best knowledge. In order to enable 3D construction with a sufficient number of viable cells, we used a proliferated osteoblastic population of healthy cells outgrown from digested bone chips. The diameter of microbeads was controlled to:(1) distribute and entrap cells within the interstitial spaces between the microbeads and(2) maintain average cell-to-cell distance to be about 19 mm. The entrapped cells formed a 3D cellular network by extending and connecting their processes through openings between the microbeads. Also, with increasing culture time, the entrapped cells exhibited the characteristic gene expressions(SOST and FGF23) and nonproliferative behavior of mature osteocytes. In contrast, 2D-cultured cells continued their osteoblastic differentiation and proliferation. This 3D biomimetic approach is expected to provide a new means of:(1) studying flow-induced shear stress on the mechanotransduction function of primary osteocytes,(2) studying physiological functions of 3D-networked osteocytes with in vitro convenience,and(3) developing clinically relevant human bone disease models.
文摘Artificial neural networks(ANNs)are one of the hottest topics in computer science and artificial intelligence due to their potential and advantages in analyzing real-world problems in various disciplines,including but not limited to physics,biology,chemistry,and engineering.However,ANNs lack several key characteristics of biological neural networks,such as sparsity,scale-freeness,and small-worldness.The concept of sparse and scale-free neural networks has been introduced to fill this gap.Network sparsity is implemented by removing weak weights between neurons during the learning process and replacing them with random weights.When the network is initialized,the neural network is fully connected,which means the number of weights is four times the number of neurons.In this study,considering that a biological neural network has some degree of initial sparsity,we design an ANN with a prescribed level of initial sparsity.The neural network is tested on handwritten digits,Arabic characters,CIFAR-10,and Reuters newswire topics.Simulations show that it is possible to reduce the number of weights by up to 50%without losing prediction accuracy.Moreover,in both cases,the testing time is dramatically reduced compared with fully connected ANNs.
基金supported by the Teaching Research and Reform Project of Qingdao University of Technology under Grant 2024-10335040。
文摘To meet society’s needs for undergraduate students to have engineering skills and to develop students’ability to operate Linux and engage in network software development,this paper proposes the construction of a new specialized course for network engineering major--Linux system and network programming.This paper analyzes the course’s advantages,presents the contents of this course,designs a series of teaching methods aimed at improving students’engineering ability,proposes a course assessment method that will encourage students to practice,lists the development requirements for an examination software designed for this course,and finally,presents the results of our practice in teaching this course.
文摘The construction phase of a project is a critical factor that significantly impacts its overall success.The construction environment is characterized by uncertainty and dynamism,involving nonlinear relationships among various factors that affect construction quality.This study utilized 987 construction inspection records from 1993 to 2022,obtained from the Taiwan residents Public Construction Management Information System(PCMIS),to determine the relationships between construction factors and quality.First,fuzzy logic was applied to calculate the weights of 499 defects,and 25 critical construction factors were selected based on these weight values.Next,a deep neural network was used to identify the relationship between the critical construction factors(input variables)and construction quality(output variable).Finally,the prediction model’s performance was evaluated to confirm the impact of these critical construction factors on project outcomes.This study employed an innovative hybrid soft computing technique,com-bining fuzzy logic and an artificial neural network,to effectively predict the relationship between critical construction factors and construction quality,achieving a model accuracy of 96.08%.Project managers can utilize the findings of this study to enhance project management practices and establish effective construction management strategies,thereby improving project construction quality.