The existing Low-Earth-Orbit(LEO)positioning performance cannot meet the requirements of Unmanned Aerial Vehicle(UAV)clusters for high-precision real-time positioning in the Global Navigation Satellite System(GNSS)den...The existing Low-Earth-Orbit(LEO)positioning performance cannot meet the requirements of Unmanned Aerial Vehicle(UAV)clusters for high-precision real-time positioning in the Global Navigation Satellite System(GNSS)denial conditions.Therefore,this paper proposes a UAV Clusters Information Geometry Fusion Positioning(UC-IGFP)method using pseudoranges from the LEO satellites.A novel graph model for linking and computing between the UAV clusters and LEO satellites was established.By utilizing probability to describe the positional states of UAVs and sensor errors,the distributed multivariate Probability Fusion Cooperative Positioning(PF-CP)algorithm is proposed to achieve high-precision cooperative positioning and integration of the cluster.Criteria to select the centroid of the cluster were set.A new Kalman filter algorithm that is suitable for UAV clusters was designed based on the global benchmark and Riemann information geometry theory,which overcomes the discontinuity problem caused by the change of cluster centroids.Finally,the UC-IGFP method achieves the LEO continuous highprecision positioning of UAV clusters.The proposed method effectively addresses the positioning challenges caused by the strong direction of signal beams from LEO satellites and the insufficient constraint quantity of information sources at the edge nodes of the cluster.It significantly improves the accuracy and reliability of LEO-UAV cluster positioning.The results of comprehensive simulation experiments show that the proposed method has a 30.5%improvement in performance over the mainstream positioning methods,with a positioning error of 14.267 m.展开更多
Images with complementary spectral information can be recorded using image sensors that can identify visible and near-infrared spectrum.The fusion of visible and nearinfrared(NIR)aims to enhance the quality of images ...Images with complementary spectral information can be recorded using image sensors that can identify visible and near-infrared spectrum.The fusion of visible and nearinfrared(NIR)aims to enhance the quality of images acquired by video monitoring systems for the ease of user observation and data processing.Unfortunately,current fusion algorithms produce artefacts and colour distortion since they cannot make use of spectrum properties and are lacking in information complementarity.Therefore,an information complementarity fusion(ICF)model is designed based on physical signals.In order to separate high-frequency noise from important information in distinct frequency layers,the authors first extracted texture-scale and edge-scale layers using a two-scale filter.Second,the difference map between visible and near-infrared was filtered using the extended-DoG filter to produce the initial visible-NIR complementary weight map.Then,to generate a guide map,the near-infrared image with night adjustment was processed as well.The final complementarity weight map was subsequently derived via an arctanI function mapping using the guide map and the initial weight maps.Finally,fusion images were generated with the complementarity weight maps.The experimental results demonstrate that the proposed approach outperforms the state-of-the-art in both avoiding artificial colours as well as effectively utilising information complementarity.展开更多
Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an inte...Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.展开更多
Research indicates that microbe activity within the human body significantly influences health by being closely linked to various diseases.Accurately predicting microbe-disease interactions(MDIs)offers critical insigh...Research indicates that microbe activity within the human body significantly influences health by being closely linked to various diseases.Accurately predicting microbe-disease interactions(MDIs)offers critical insights for disease intervention and pharmaceutical research.Current advanced AI-based technologies automatically generate robust representations of microbes and diseases,enabling effective MDI predictions.However,these models continue to face significant challenges.A major issue is their reliance on complex feature extractors and classifiers,which substantially diminishes the models’generalizability.To address this,we introduce a novel graph autoencoder framework that utilizes decoupled representation learning and multi-scale information fusion strategies to efficiently infer potential MDIs.Initially,we randomly mask portions of the input microbe-disease graph based on Bernoulli distribution to boost self-supervised training and minimize noise-related performance degradation.Secondly,we employ decoupled representation learning technology,compelling the graph neural network(GNN)to independently learn the weights for each feature subspace,thus enhancing its expressive power.Finally,we implement multi-scale information fusion technology to amalgamate the multi-layer outputs of GNN,reducing information loss due to occlusion.Extensive experiments on public datasets demonstrate that our model significantly surpasses existing top MDI prediction models.This indicates that our model can accurately predict unknown MDIs and is likely to aid in disease discovery and precision pharmaceutical research.Code and data are accessible at:https://github.com/shmildsj/MDI-IFDRL.展开更多
This paper presents an innovative Soft Design Science Methodology for improving information systems security using multi-layered security approach. The study applied Soft Design Science Methodology to address the prob...This paper presents an innovative Soft Design Science Methodology for improving information systems security using multi-layered security approach. The study applied Soft Design Science Methodology to address the problematic situation on how information systems security can be improved. In addition, Soft Design Science Methodology was compounded with mixed research methodology. This holistic approach helped for research methodology triangulation. The study assessed security requirements and developed a framework for improving information systems security. The study carried out maturity level assessment to determine security status quo in the education sector in Tanzania. The study identified security requirements gap (IT security controls, IT security measures) using ISO/IEC 21827: Systems Security Engineering-Capability Maturity Model (SSE-CMM) with a rating scale of 0 - 5. The results of this study show that maturity level across security domain is 0.44 out of 5. The finding shows that the implementation of IT security controls and security measures for ensuring security goals are lacking or conducted in ad-hoc. Thus, for improving the security of information systems, organisations should implement security controls and security measures in each security domain (multi-layer security). This research provides a framework for enhancing information systems security during capturing, processing, storage and transmission of information. This research has several practical contributions. Firstly, it contributes to the body of knowledge of information systems security by providing a set of security requirements for ensuring information systems security. Secondly, it contributes empirical evidence on how information systems security can be improved. Thirdly, it contributes on the applicability of Soft Design Science Methodology on addressing the problematic situation in information systems security. The research findings can be used by decision makers and lawmakers to improve existing cyber security laws, and enact laws for data privacy and sharing of open data.展开更多
Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classification...Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classifications and mathematical methods of MSIF, a structural damage detection method based on MSIF is presented, which is to fuse two or more damage character vectors from different structural damage diagnosis methods on the character-level. In an experiment of concrete plates, modal information is measured and analyzed. The structural damage detection method based on MSIF is taken to localize cracks of concrete plates and it is proved to be effective. Results of damage detection by the method based on MSIF are compared with those from the modal strain energy method and the flexibility method. Damage, which can hardly be detected by using the single damage identification method, can be diagnosed by the damage detection method based on the character-level MSIF technique. Meanwhile multi-location damage can be identified by the method based on MSIF. This method is sensitive to structural damage and different mathematical methods for MSIF have different preconditions and applicabilities for diversified structures. How to choose mathematical methods for MSIF should be discussed in detail in health monitoring systems of actual structures.展开更多
The fiber strapdown inertial navigation system (FSINS)/dead reckoning (DR)/Beidou double-star integrated navigation scheme is proposed aiming at the need of land fighting-vehicle independence positioning. The meas...The fiber strapdown inertial navigation system (FSINS)/dead reckoning (DR)/Beidou double-star integrated navigation scheme is proposed aiming at the need of land fighting-vehicle independence positioning. The measurement information fusion technology is studied by introducing the FSINS/DR/Beidou double-star integrated scheme. Several specific methods for the information fusion are discussed, and a Kalman filter is designed for the information fusion. Experimental results show that the design of the integrated scheme can improve the positioning accuracy of the navigation system.展开更多
This paper presents a new information fusion filter in integrated navigation. The method can improve the fault-tolerant performance and make well fault detection, isolation and reconfiguration of the integrated naviga...This paper presents a new information fusion filter in integrated navigation. The method can improve the fault-tolerant performance and make well fault detection, isolation and reconfiguration of the integrated navigation system exist. Based on three sensors'(strapdown system, GPS receiver, Doppler radar) information fusion, a fault-tolerant navigation system is designed with this information fusion filter and two-ellipsoid overlap test. Simulation results show that the design is efficient with the soft-failure of gyro, accelerator, GPS receiver and Doppler radar.展开更多
An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the ve...An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the vehicle contour in an image is. first detected, and then the vertical and the horizontal symmetry axes of the license plate are detected using the symmetry axis of the vehicle contour as a reference. The vehicle location in an image is determined using license plate symmetry axes and the vertical and the horizontal projection maps of the vehicle edge image. A dataset consisting of 450 images (15 classes of vehicles) is used to test the proposed method. The experimental results indicate that compared with the vehicle contour-based, the license plate location-based, the vehicle texture-based and the Gabor feature-based methods, the proposed method is the best with a detection accuracy of 90.7% and an elapsed time of 125 ms.展开更多
To cope with the market demand dynamically,enterprise needs to obtain the production status of work in process real-timely,but the information of machining progress has feature of uncertainty and can not reflect the s...To cope with the market demand dynamically,enterprise needs to obtain the production status of work in process real-timely,but the information of machining progress has feature of uncertainty and can not reflect the status of production field effectively.In this work,to overcome the ineffectiveness of computer numerical control(CNC) machining progress information extraction and its application restriction in practice because of heterogeneous system of CNC machine,based on information fusion by analyzing multi-sources information,estimating CNC machining status and predicting the machining progress through tracking tool coordinates,a CNC machining progress monitoring method is presented.The multi-sources heterogeneous information includes machining path,real-time spindle power information,manual input data and tool position.On the method of obtaining this multi-sources heterogeneous information,the method which helps explore numerical control(NC) program,monitor spindle power of CNC,collect human-computer interaction(HCI) information,obtain real-time tool coordinates and express the knowledge concerned in this field is analyzed; The decision rule of CNC machining status in the way of fusing multi-sources information in manufacturing process is summarized,as well as the machining progress tracking method in accordance with real-time tool coordinates and machining path is presented.Finally,the method discussed is proved feasible by the verification of machining progress tracking through simulation experiment.The proposed research realizes the effective integration of CNC machining progress information,and enables enterprises an efficient way to share CNC information and configure CNC resources optimally.展开更多
Gas-path performance estimation plays an important role in aero-engine health management, and Kalman Filter(KF) is a well-known technique to estimate performance degradation. In previous studies, it is assumed that di...Gas-path performance estimation plays an important role in aero-engine health management, and Kalman Filter(KF) is a well-known technique to estimate performance degradation. In previous studies, it is assumed that different kinds of sensors are with the same sampling rate, and they are used for state estimation by the KF simultaneously. However, it is hard to achieve state estimation using various kinds of sensor measurements at the same sampling rate due to a complex network and physical characteristic differences between sensors, especially in an advanced multisensor architecture. For this purpose, a multi-rate sensor fusion using the information filtering approach is proposed based on the square-root cubature rule, which is called Multi-rate Squareroot Cubature Information Filter(MSCIF) to track engine performance degradation. Soft measurement synchronization of the MSCIF is designed to provide a sensor fusion condition for multiple sampling rates of measurement, and a fault sensor is isolated by maximum likelihood validation before state estimation. The contribution of this paper is to supply a novel multi-rate informationfilter approach for sensor fault tolerant health estimation of an aero-engine in a multi-sensor system. Tests are conducted for aero-engine performance degradation estimation with multiple sampling rates of sensor measurement on both digital simulation and semi-physical experiment.Experimental results illustrate the superiority of the proposed algorithm in terms of degradation estimation accuracy and robustness to sensor failure in a multi-sensor system.展开更多
Multi-Source Information Fusion(MSIF),as a comprehensive interdisciplinary field based on modern information technology,has gained significant research value and extensive application prospects in various domains,attr...Multi-Source Information Fusion(MSIF),as a comprehensive interdisciplinary field based on modern information technology,has gained significant research value and extensive application prospects in various domains,attracting high attention and interest from scholars,engineering experts,and practitioners worldwide.Despite achieving fruitful results in both theoretical and applied aspects over the past five decades,there remains a lack of comprehensive and systematic review articles that provide an overview of recent development in MSIF.In light of this,this paper aims to assist researchers and individuals interested in gaining a quick understanding of the relevant theoretical techniques and development trends in MSIF,which conducts a statistical analysis of academic reports and related application achievements in the field of MSIF over the past two decades,and provides a brief overview of the relevant theories,methodologies,and application domains,as well as key issues and challenges currently faced.Finally,an analysis and outlook on the future development directions of MSIF are presented.展开更多
To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode ...To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode data fusion algorithm. The algorithm adopts a prorated algorithm relate to the incertitude evaluation to convert the probability evaluation into the precognition probability in an identity frame, and ensures the adaptability of different data from different source to the mixed system. To guarantee real time fusion, a combination of time domain fusion and space domain fusion is established, this not only assure the fusion of data chain in different time of the same sensor, but also the data fusion from different sensors distributed in different platforms and the data fusion among different modes. The feasibility and practicability are approved through computer simulation.展开更多
In order to meet the demand of testability analysis and evaluation for complex equipment under a small sample test in the equipment life cycle, the hierarchical hybrid testability model- ing and evaluation method (HH...In order to meet the demand of testability analysis and evaluation for complex equipment under a small sample test in the equipment life cycle, the hierarchical hybrid testability model- ing and evaluation method (HHTME), which combines the testabi- lity structure model (TSM) with the testability Bayesian networks model (TBNM), is presented. Firstly, the testability network topo- logy of complex equipment is built by using the hierarchical hybrid testability modeling method. Secondly, the prior conditional prob- ability distribution between network nodes is determined through expert experience. Then the Bayesian method is used to update the conditional probability distribution, according to history test information, virtual simulation information and similar product in- formation. Finally, the learned hierarchical hybrid testability model (HHTM) is used to estimate the testability of equipment. Compared with the results of other modeling methods, the relative deviation of the HHTM is only 0.52%, and the evaluation result is the most accu rate.展开更多
A condition monitoring method of deep-hole drilling based on multi-sensor information fusion is discussed.The signal of vibration and cutting force are collected when the condition of deep-hole drilling on stainless s...A condition monitoring method of deep-hole drilling based on multi-sensor information fusion is discussed.The signal of vibration and cutting force are collected when the condition of deep-hole drilling on stainless steel 0Cr17Ni4Cu4Nb is normal or abnormal.Four eigenvectors are extracted on time-domain and frequency-domain analysis of the signals.Then the four eigenvectors are combined and sent to neural networks to dispose.The fusion results indicate that multi-sensor information fusion is superior to single-sensor information,and that cutting force signal can reflect the condition of cutting tool better than vibration signal.展开更多
For a single-structure deep learning fault diagnosis model,its disadvantages are an insufficient feature extraction and weak fault classification capability.This paper proposes a multi-scale deep feature fusion intell...For a single-structure deep learning fault diagnosis model,its disadvantages are an insufficient feature extraction and weak fault classification capability.This paper proposes a multi-scale deep feature fusion intelligent fault diagnosis method based on information entropy.First,a normal autoencoder,denoising autoencoder,sparse autoencoder,and contractive autoencoder are used in parallel to construct a multi-scale deep neural network feature extraction structure.A deep feature fusion strategy based on information entropy is proposed to obtain low-dimensional features and ensure the robustness of the model and the quality of deep features.Finally,the advantage of the deep belief network probability model is used as the fault classifier to identify the faults.The effectiveness of the proposed method was verified by a gearbox test-bed.Experimental results show that,compared with traditional and existing intelligent fault diagnosis methods,the proposed method can obtain representative information and features from the raw data with higher classification accuracy.展开更多
An effective autonomous navigation system for the integration of star sensor,infrared horizon sensor,magnetometer,radar altimeter and ultraviolet sensor is developed.The requirements of the integrated navigation syste...An effective autonomous navigation system for the integration of star sensor,infrared horizon sensor,magnetometer,radar altimeter and ultraviolet sensor is developed.The requirements of the integrated navigation system manager make optimum use of the various navigation sensors and allow rapid fault detection,isolation and recovery.The normal full fusion feedback method of federated unscented Kalman filter(UKF) cannot meet the needs of it.So a no-reset feedback federated Kalman filter architecture is developed and used in the autonomous navigation system.The minimal skew sigma points are chosen to improve the calculation speed.Simulation results are presented to demonstrate the advantages of the algorithm.These advantages include improved failure detection and correction,improved computational efficiency,and reliability.Additionally,its' accuracy is higher than that of the full fusion feedback method.展开更多
In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as ...In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as roughness, etc). Hence it requires investigating the problem of uncertain information fusion. Robust learning algorithm which adapts to complex environment and the fuzzy inference algorithm which disposes fuzzy information are explored to solve the problem. Based on the fusion technology of neural networks and fuzzy inference algorithm, a multi-sensor uncertain information fusion system is modeled. Also RANFIS learning algorithm and fusing weight synthesized inference algorithm are developed from the ANFIS algorithm according to the concept of robust neural networks. This fusion system mainly consists of RANFIS confidence estimator, fusing weight synthesized inference knowledge base and weighted fusion section. The simulation result demonstrates that the proposed fusion model and algorithm have the capability of uncertain information fusion, thus is obviously advantageous compared with the conventional Kalman weighted fusion algorithm.展开更多
The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, ...The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, welding time), thus much more original information is obtained. In this way, the difficulty caused by measuring indirectly weld nugget size can be decreased in spot welding quality control, and the stability of spot welding quality can be improved. According to this method, two-dimensional fuzzy controllers are designed with the information fusion result as input and the thyristor control signal as output. The spot welding experimental results indicate that the spot welding quality intelligent control method based on multiscnsor information fusion technology can compensate the influence caused by variable factors in welding process and ensure the stability of welding quality.展开更多
Analyzing the service behavior of high dams and establishing early-warning systems for them have become increasingly important in ensuring their long-term service.Current analysis methods used to obtain safety monitor...Analyzing the service behavior of high dams and establishing early-warning systems for them have become increasingly important in ensuring their long-term service.Current analysis methods used to obtain safety monitoring data are suited only to single survey point data.Unreliable or even paradoxical results are inevitably obtained when processing large amounts of monitoring data,thereby causing difficulty in acquiring precise conclusions.Therefore,we have developed a new method based on multi-source information fusion for conducting a comprehensive analysis of prototype monitoring data of high dams.In addition,we propose the use of decision information entropy analysis for building a diagnosis and early-warning system for the long-term service of high dams.Data metrics reduction is achieved using information fusion at the data level.A Bayesian information fusion is then conducted at the decision level to obtain a comprehensive diagnosis.Early-warning outcomes can be released after sorting analysis results from multi-positions in the dam according to importance.A case study indicates that the new method can effectively handle large amounts of monitoring data from numerous survey points.It can likewise obtain precise real-time results and export comprehensive early-warning outcomes from multi-positions of high dams.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.62171375,62271397,62001392,62101458,62173276,61803310 and 61801394)the Shenzhen Science and Technology Innovation ProgramChina(No.JCYJ20220530161615033)。
文摘The existing Low-Earth-Orbit(LEO)positioning performance cannot meet the requirements of Unmanned Aerial Vehicle(UAV)clusters for high-precision real-time positioning in the Global Navigation Satellite System(GNSS)denial conditions.Therefore,this paper proposes a UAV Clusters Information Geometry Fusion Positioning(UC-IGFP)method using pseudoranges from the LEO satellites.A novel graph model for linking and computing between the UAV clusters and LEO satellites was established.By utilizing probability to describe the positional states of UAVs and sensor errors,the distributed multivariate Probability Fusion Cooperative Positioning(PF-CP)algorithm is proposed to achieve high-precision cooperative positioning and integration of the cluster.Criteria to select the centroid of the cluster were set.A new Kalman filter algorithm that is suitable for UAV clusters was designed based on the global benchmark and Riemann information geometry theory,which overcomes the discontinuity problem caused by the change of cluster centroids.Finally,the UC-IGFP method achieves the LEO continuous highprecision positioning of UAV clusters.The proposed method effectively addresses the positioning challenges caused by the strong direction of signal beams from LEO satellites and the insufficient constraint quantity of information sources at the edge nodes of the cluster.It significantly improves the accuracy and reliability of LEO-UAV cluster positioning.The results of comprehensive simulation experiments show that the proposed method has a 30.5%improvement in performance over the mainstream positioning methods,with a positioning error of 14.267 m.
基金supports in part by the Natural Science Foundation of China(NSFC)under contract No.62171253the Young Elite Scientists Sponsorship Program by CAST under program No.2022QNRC001,as well as the Fundamental Research Funds for the Central Universities.
文摘Images with complementary spectral information can be recorded using image sensors that can identify visible and near-infrared spectrum.The fusion of visible and nearinfrared(NIR)aims to enhance the quality of images acquired by video monitoring systems for the ease of user observation and data processing.Unfortunately,current fusion algorithms produce artefacts and colour distortion since they cannot make use of spectrum properties and are lacking in information complementarity.Therefore,an information complementarity fusion(ICF)model is designed based on physical signals.In order to separate high-frequency noise from important information in distinct frequency layers,the authors first extracted texture-scale and edge-scale layers using a two-scale filter.Second,the difference map between visible and near-infrared was filtered using the extended-DoG filter to produce the initial visible-NIR complementary weight map.Then,to generate a guide map,the near-infrared image with night adjustment was processed as well.The final complementarity weight map was subsequently derived via an arctanI function mapping using the guide map and the initial weight maps.Finally,fusion images were generated with the complementarity weight maps.The experimental results demonstrate that the proposed approach outperforms the state-of-the-art in both avoiding artificial colours as well as effectively utilising information complementarity.
基金supported by the National Natural Science Foundation of China(Grant No.61773142).
文摘Intercepting high-maneuverability hypersonic targets in near-space environments poses significant challenges due to their extreme speeds and evasive capabilities.To address these challenges,this study presents an integrated approach that combines a Three-Dimensional Finite-Time Optimal Cooperative Guidance Law(FTOC)with an Information Fusion Anti-saturation Predefined-time Observer(IFAPO).The proposed FTOC guidance law employs a nonlinear,non-quadratic finite-time optimal control strategy designed for rapid convergence within the limited timeframes of near-space interceptions,avoiding the need for remaining flight time estimation or linear decoupling inherent in traditional methods.To complement the guidance strategy,the IFAPO leverages multi-source information fusion theory and incorporates anti-saturation mechanisms to enhance target maneuver estimation.This method ensures accurate and real-time prediction of target acceleration while maintaining predefined convergence performance,even under complex interception conditions.By integrating the FTOC guidance law and IFAPO,the approach optimizes cooperative missile positioning,improves interception success rates,and minimizes fuel consumption,addressing practical constraints in military applications.Simulation results and comparative analyses confirm the effectiveness of the integrated approach,demonstrating its capability to achieve cooperative interception of highly maneuvering targets with enhanced efficiency and reduced economic costs,aligning with realistic combat scenarios.
基金supported by the Natural Science Foundation of Wenzhou University of Technology,China(Grant No.:ky202211).
文摘Research indicates that microbe activity within the human body significantly influences health by being closely linked to various diseases.Accurately predicting microbe-disease interactions(MDIs)offers critical insights for disease intervention and pharmaceutical research.Current advanced AI-based technologies automatically generate robust representations of microbes and diseases,enabling effective MDI predictions.However,these models continue to face significant challenges.A major issue is their reliance on complex feature extractors and classifiers,which substantially diminishes the models’generalizability.To address this,we introduce a novel graph autoencoder framework that utilizes decoupled representation learning and multi-scale information fusion strategies to efficiently infer potential MDIs.Initially,we randomly mask portions of the input microbe-disease graph based on Bernoulli distribution to boost self-supervised training and minimize noise-related performance degradation.Secondly,we employ decoupled representation learning technology,compelling the graph neural network(GNN)to independently learn the weights for each feature subspace,thus enhancing its expressive power.Finally,we implement multi-scale information fusion technology to amalgamate the multi-layer outputs of GNN,reducing information loss due to occlusion.Extensive experiments on public datasets demonstrate that our model significantly surpasses existing top MDI prediction models.This indicates that our model can accurately predict unknown MDIs and is likely to aid in disease discovery and precision pharmaceutical research.Code and data are accessible at:https://github.com/shmildsj/MDI-IFDRL.
文摘This paper presents an innovative Soft Design Science Methodology for improving information systems security using multi-layered security approach. The study applied Soft Design Science Methodology to address the problematic situation on how information systems security can be improved. In addition, Soft Design Science Methodology was compounded with mixed research methodology. This holistic approach helped for research methodology triangulation. The study assessed security requirements and developed a framework for improving information systems security. The study carried out maturity level assessment to determine security status quo in the education sector in Tanzania. The study identified security requirements gap (IT security controls, IT security measures) using ISO/IEC 21827: Systems Security Engineering-Capability Maturity Model (SSE-CMM) with a rating scale of 0 - 5. The results of this study show that maturity level across security domain is 0.44 out of 5. The finding shows that the implementation of IT security controls and security measures for ensuring security goals are lacking or conducted in ad-hoc. Thus, for improving the security of information systems, organisations should implement security controls and security measures in each security domain (multi-layer security). This research provides a framework for enhancing information systems security during capturing, processing, storage and transmission of information. This research has several practical contributions. Firstly, it contributes to the body of knowledge of information systems security by providing a set of security requirements for ensuring information systems security. Secondly, it contributes empirical evidence on how information systems security can be improved. Thirdly, it contributes on the applicability of Soft Design Science Methodology on addressing the problematic situation in information systems security. The research findings can be used by decision makers and lawmakers to improve existing cyber security laws, and enact laws for data privacy and sharing of open data.
基金The National High Technology Research and Develop-ment Program of China(863Program)(No.2006AA04Z416)the Na-tional Science Fund for Distinguished Young Scholars(No.50725828)the Excellent Dissertation Program for Doctoral Degree of Southeast University(No.0705)
文摘Multi-source information fusion (MSIF) is imported into structural damage diagnosis methods to improve the validity of damage detection. After the introduction of the basic theory, the function model, classifications and mathematical methods of MSIF, a structural damage detection method based on MSIF is presented, which is to fuse two or more damage character vectors from different structural damage diagnosis methods on the character-level. In an experiment of concrete plates, modal information is measured and analyzed. The structural damage detection method based on MSIF is taken to localize cracks of concrete plates and it is proved to be effective. Results of damage detection by the method based on MSIF are compared with those from the modal strain energy method and the flexibility method. Damage, which can hardly be detected by using the single damage identification method, can be diagnosed by the damage detection method based on the character-level MSIF technique. Meanwhile multi-location damage can be identified by the method based on MSIF. This method is sensitive to structural damage and different mathematical methods for MSIF have different preconditions and applicabilities for diversified structures. How to choose mathematical methods for MSIF should be discussed in detail in health monitoring systems of actual structures.
文摘The fiber strapdown inertial navigation system (FSINS)/dead reckoning (DR)/Beidou double-star integrated navigation scheme is proposed aiming at the need of land fighting-vehicle independence positioning. The measurement information fusion technology is studied by introducing the FSINS/DR/Beidou double-star integrated scheme. Several specific methods for the information fusion are discussed, and a Kalman filter is designed for the information fusion. Experimental results show that the design of the integrated scheme can improve the positioning accuracy of the navigation system.
文摘This paper presents a new information fusion filter in integrated navigation. The method can improve the fault-tolerant performance and make well fault detection, isolation and reconfiguration of the integrated navigation system exist. Based on three sensors'(strapdown system, GPS receiver, Doppler radar) information fusion, a fault-tolerant navigation system is designed with this information fusion filter and two-ellipsoid overlap test. Simulation results show that the design is efficient with the soft-failure of gyro, accelerator, GPS receiver and Doppler radar.
基金The National Natural Science Foundation of China(No. 40804015,61101163)
文摘An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the vehicle contour in an image is. first detected, and then the vertical and the horizontal symmetry axes of the license plate are detected using the symmetry axis of the vehicle contour as a reference. The vehicle location in an image is determined using license plate symmetry axes and the vertical and the horizontal projection maps of the vehicle edge image. A dataset consisting of 450 images (15 classes of vehicles) is used to test the proposed method. The experimental results indicate that compared with the vehicle contour-based, the license plate location-based, the vehicle texture-based and the Gabor feature-based methods, the proposed method is the best with a detection accuracy of 90.7% and an elapsed time of 125 ms.
基金supported by National Natural Science Foundation of China (Grant No. 50775228)Municipality Key Scientific & Technological Program of Chongqing, China (Grant No. CSTC2007AA2013)+1 种基金Fundamental Research Funds for the Central Universities of China (Grant No. CDJXS11111136)Program for New Century Excellent Talents in University of Ministry of Education of China
文摘To cope with the market demand dynamically,enterprise needs to obtain the production status of work in process real-timely,but the information of machining progress has feature of uncertainty and can not reflect the status of production field effectively.In this work,to overcome the ineffectiveness of computer numerical control(CNC) machining progress information extraction and its application restriction in practice because of heterogeneous system of CNC machine,based on information fusion by analyzing multi-sources information,estimating CNC machining status and predicting the machining progress through tracking tool coordinates,a CNC machining progress monitoring method is presented.The multi-sources heterogeneous information includes machining path,real-time spindle power information,manual input data and tool position.On the method of obtaining this multi-sources heterogeneous information,the method which helps explore numerical control(NC) program,monitor spindle power of CNC,collect human-computer interaction(HCI) information,obtain real-time tool coordinates and express the knowledge concerned in this field is analyzed; The decision rule of CNC machining status in the way of fusing multi-sources information in manufacturing process is summarized,as well as the machining progress tracking method in accordance with real-time tool coordinates and machining path is presented.Finally,the method discussed is proved feasible by the verification of machining progress tracking through simulation experiment.The proposed research realizes the effective integration of CNC machining progress information,and enables enterprises an efficient way to share CNC information and configure CNC resources optimally.
基金the financial supports of the National Natural Science Foundation of China(No.61304113)the Fundamental Research Funds for the Central Universities,China(No.NS2018018)Qinglan Project of Jiangsu Province
文摘Gas-path performance estimation plays an important role in aero-engine health management, and Kalman Filter(KF) is a well-known technique to estimate performance degradation. In previous studies, it is assumed that different kinds of sensors are with the same sampling rate, and they are used for state estimation by the KF simultaneously. However, it is hard to achieve state estimation using various kinds of sensor measurements at the same sampling rate due to a complex network and physical characteristic differences between sensors, especially in an advanced multisensor architecture. For this purpose, a multi-rate sensor fusion using the information filtering approach is proposed based on the square-root cubature rule, which is called Multi-rate Squareroot Cubature Information Filter(MSCIF) to track engine performance degradation. Soft measurement synchronization of the MSCIF is designed to provide a sensor fusion condition for multiple sampling rates of measurement, and a fault sensor is isolated by maximum likelihood validation before state estimation. The contribution of this paper is to supply a novel multi-rate informationfilter approach for sensor fault tolerant health estimation of an aero-engine in a multi-sensor system. Tests are conducted for aero-engine performance degradation estimation with multiple sampling rates of sensor measurement on both digital simulation and semi-physical experiment.Experimental results illustrate the superiority of the proposed algorithm in terms of degradation estimation accuracy and robustness to sensor failure in a multi-sensor system.
基金co-supported by the National Natural Science Foundation of China(Nos.62233003 and 62073072)the Key Projects of Key R&D Program of Jiangsu Province,China(Nos.BE2020006 and BE2020006-1)the Shenzhen Science and Technology Program,China(Nos.JCYJ20210324132202005 and JCYJ20220818101206014).
文摘Multi-Source Information Fusion(MSIF),as a comprehensive interdisciplinary field based on modern information technology,has gained significant research value and extensive application prospects in various domains,attracting high attention and interest from scholars,engineering experts,and practitioners worldwide.Despite achieving fruitful results in both theoretical and applied aspects over the past five decades,there remains a lack of comprehensive and systematic review articles that provide an overview of recent development in MSIF.In light of this,this paper aims to assist researchers and individuals interested in gaining a quick understanding of the relevant theoretical techniques and development trends in MSIF,which conducts a statistical analysis of academic reports and related application achievements in the field of MSIF over the past two decades,and provides a brief overview of the relevant theories,methodologies,and application domains,as well as key issues and challenges currently faced.Finally,an analysis and outlook on the future development directions of MSIF are presented.
文摘To aim at the multimode character of the data from the airplane detecting system, the paper combines Dempster- Shafer evidence theory and subjective Bayesian algorithm and makes to propose a mixed structure multimode data fusion algorithm. The algorithm adopts a prorated algorithm relate to the incertitude evaluation to convert the probability evaluation into the precognition probability in an identity frame, and ensures the adaptability of different data from different source to the mixed system. To guarantee real time fusion, a combination of time domain fusion and space domain fusion is established, this not only assure the fusion of data chain in different time of the same sensor, but also the data fusion from different sensors distributed in different platforms and the data fusion among different modes. The feasibility and practicability are approved through computer simulation.
基金supported by the National Defense Pre-research Foundation of China(51327030104)
文摘In order to meet the demand of testability analysis and evaluation for complex equipment under a small sample test in the equipment life cycle, the hierarchical hybrid testability model- ing and evaluation method (HHTME), which combines the testabi- lity structure model (TSM) with the testability Bayesian networks model (TBNM), is presented. Firstly, the testability network topo- logy of complex equipment is built by using the hierarchical hybrid testability modeling method. Secondly, the prior conditional prob- ability distribution between network nodes is determined through expert experience. Then the Bayesian method is used to update the conditional probability distribution, according to history test information, virtual simulation information and similar product in- formation. Finally, the learned hierarchical hybrid testability model (HHTM) is used to estimate the testability of equipment. Compared with the results of other modeling methods, the relative deviation of the HHTM is only 0.52%, and the evaluation result is the most accu rate.
文摘A condition monitoring method of deep-hole drilling based on multi-sensor information fusion is discussed.The signal of vibration and cutting force are collected when the condition of deep-hole drilling on stainless steel 0Cr17Ni4Cu4Nb is normal or abnormal.Four eigenvectors are extracted on time-domain and frequency-domain analysis of the signals.Then the four eigenvectors are combined and sent to neural networks to dispose.The fusion results indicate that multi-sensor information fusion is superior to single-sensor information,and that cutting force signal can reflect the condition of cutting tool better than vibration signal.
基金Supported by National Natural Science Foundation of China and Civil Aviation Administration of China Joint Funded Project(Grant No.U1733108)Key Project of Tianjin Science and Technology Support Program(Grant No.16YFZCSY00860).
文摘For a single-structure deep learning fault diagnosis model,its disadvantages are an insufficient feature extraction and weak fault classification capability.This paper proposes a multi-scale deep feature fusion intelligent fault diagnosis method based on information entropy.First,a normal autoencoder,denoising autoencoder,sparse autoencoder,and contractive autoencoder are used in parallel to construct a multi-scale deep neural network feature extraction structure.A deep feature fusion strategy based on information entropy is proposed to obtain low-dimensional features and ensure the robustness of the model and the quality of deep features.Finally,the advantage of the deep belief network probability model is used as the fault classifier to identify the faults.The effectiveness of the proposed method was verified by a gearbox test-bed.Experimental results show that,compared with traditional and existing intelligent fault diagnosis methods,the proposed method can obtain representative information and features from the raw data with higher classification accuracy.
基金supported by the Aviation Science Foundation(20070852009)
文摘An effective autonomous navigation system for the integration of star sensor,infrared horizon sensor,magnetometer,radar altimeter and ultraviolet sensor is developed.The requirements of the integrated navigation system manager make optimum use of the various navigation sensors and allow rapid fault detection,isolation and recovery.The normal full fusion feedback method of federated unscented Kalman filter(UKF) cannot meet the needs of it.So a no-reset feedback federated Kalman filter architecture is developed and used in the autonomous navigation system.The minimal skew sigma points are chosen to improve the calculation speed.Simulation results are presented to demonstrate the advantages of the algorithm.These advantages include improved failure detection and correction,improved computational efficiency,and reliability.Additionally,its' accuracy is higher than that of the full fusion feedback method.
基金This project was supported by the National Natural Science Foundation of China (60572038)
文摘In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as roughness, etc). Hence it requires investigating the problem of uncertain information fusion. Robust learning algorithm which adapts to complex environment and the fuzzy inference algorithm which disposes fuzzy information are explored to solve the problem. Based on the fusion technology of neural networks and fuzzy inference algorithm, a multi-sensor uncertain information fusion system is modeled. Also RANFIS learning algorithm and fusing weight synthesized inference algorithm are developed from the ANFIS algorithm according to the concept of robust neural networks. This fusion system mainly consists of RANFIS confidence estimator, fusing weight synthesized inference knowledge base and weighted fusion section. The simulation result demonstrates that the proposed fusion model and algorithm have the capability of uncertain information fusion, thus is obviously advantageous compared with the conventional Kalman weighted fusion algorithm.
基金This project is supported by Municipal Key Science Foundation of Shenyang,China(No.1041020-1-04)Provincial Natural Science Foundation of Liaoning,China(No.20031022).
文摘The multisensor information fusion technology is adopted for real time measuring the four parameters which are connected closely with the weld nugget size(welding current, electrode displacement, dynamic resistance, welding time), thus much more original information is obtained. In this way, the difficulty caused by measuring indirectly weld nugget size can be decreased in spot welding quality control, and the stability of spot welding quality can be improved. According to this method, two-dimensional fuzzy controllers are designed with the information fusion result as input and the thyristor control signal as output. The spot welding experimental results indicate that the spot welding quality intelligent control method based on multiscnsor information fusion technology can compensate the influence caused by variable factors in welding process and ensure the stability of welding quality.
基金Project supported by the National Natural Science Foundation of China(Nos.51139001,51179066,51079046,and 50909041)
文摘Analyzing the service behavior of high dams and establishing early-warning systems for them have become increasingly important in ensuring their long-term service.Current analysis methods used to obtain safety monitoring data are suited only to single survey point data.Unreliable or even paradoxical results are inevitably obtained when processing large amounts of monitoring data,thereby causing difficulty in acquiring precise conclusions.Therefore,we have developed a new method based on multi-source information fusion for conducting a comprehensive analysis of prototype monitoring data of high dams.In addition,we propose the use of decision information entropy analysis for building a diagnosis and early-warning system for the long-term service of high dams.Data metrics reduction is achieved using information fusion at the data level.A Bayesian information fusion is then conducted at the decision level to obtain a comprehensive diagnosis.Early-warning outcomes can be released after sorting analysis results from multi-positions in the dam according to importance.A case study indicates that the new method can effectively handle large amounts of monitoring data from numerous survey points.It can likewise obtain precise real-time results and export comprehensive early-warning outcomes from multi-positions of high dams.