期刊文献+
共找到78,362篇文章
< 1 2 250 >
每页显示 20 50 100
Intelligent Parameter Decision-Making and Multi-objective Prediction for Multi-layer and Multi-pass LDED Process
1
作者 Li Yaguan Nie Zhenguo +2 位作者 Li Huilin Wang Tao Huang Qingxue 《稀有金属材料与工程》 北大核心 2026年第1期47-58,共12页
The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are the surface roughness and the error between the actual printing height and the theoretical m... The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are the surface roughness and the error between the actual printing height and the theoretical model height.The Taguchi method was employed to establish the correlations between process parameter combinations and multi-objective characterization of metal deposition morphology(height error and roughness).Results show that using the signal-to-noise ratio and grey relational analysis,the optimal parameter combination for multi-layer and multi-pass deposition is determined as follows:laser power of 800 W,powder feeding rate of 0.3 r/min,step distance of 1.6 mm,and scanning speed of 20 mm/s.Subsequently,a Genetic Bayesian-back propagation(GB-BP)network is constructed to predict multi-objective responses.Compared with the traditional back propagation network,the GB-back propagation network improves the prediction accuracy of height error and surface roughness by 43.14%and 71.43%,respectively.This network can accurately predict the multi-objective characterization of morphological quality of multi-layer and multi-pass metal deposited parts. 展开更多
关键词 multi-layer and multi-pass laser cladding Taguchi method grey relational analysis GB-BP network
原文传递
General analytical solutions for one-dimensional diffusion of degradable organic contaminant in the multi-layered media containing geomembranes
2
作者 JIANG Wen-hao GE Shang-qi LI Jiang-shan 《Journal of Central South University》 2025年第10期3895-3910,共16页
In practical engineering construction,multi-layered barriers containing geomembranes are extensively applied to retard the migration of pollutants.However,the associated analytical theory on pollutants diffusion still... In practical engineering construction,multi-layered barriers containing geomembranes are extensively applied to retard the migration of pollutants.However,the associated analytical theory on pollutants diffusion still needs to be further improved.In this work,general analytical solutions are derived for one-dimensional diffusion of degradable organic contaminant(DOC)in the multi-layered media containing geomembranes under a time-varying concentration boundary condition,where the variable substitution and separated variable approaches are employed.These analytical solutions with clear expressions can be used not only to study the diffusion behaviors of DOC in bottom and vertical composite barrier systems,but also to verify other complex numerical models.The proposed general analytical solutions are then fully validated via three comparative analyses,including comparisons with the experimental measurements,an existing analytical solution,and a finite-difference solution.Ultimately,the influences of different factors on the composite cutoff wall’s(CCW,which consists of two soil-bentonite layers and a geomembrane)service performance are investigated through a composite vertical barrier system as the application example.The findings obtained from this investigation can provide scientific guidance for the barrier performance evaluation and the engineering design of CCWs.This application example also exhibits the necessity and effectiveness of the developed analytical solutions. 展开更多
关键词 general analytical solutions degradable organic contaminant diffusion behavior multi-layered media containing geomembranes composite barrier system
在线阅读 下载PDF
Multi-layer multi-pass friction rolling additive manufacturing of Al alloy:Toward complex large-scale high-performance components 被引量:1
3
作者 Haibin Liu Run Hou +2 位作者 Chenghao Wu Ruishan Xie Shujun Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期425-438,共14页
At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-laye... At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components. 展开更多
关键词 aluminum alloy additive manufacturing SOLID-STATE friction stir welding multi-layer multi-pass
在线阅读 下载PDF
基于UPLC-Orbitrap Fusion Lumos Tribrid-MS的女贞子酒蒸前后血清药物化学对比分析
4
作者 刘昊霖 郑历史 +3 位作者 孙淑仃 赵迪 李焕茹 冯素香 《中华中医药学刊》 北大核心 2026年第1期175-186,I0027,共13页
目的基于超高效液相色谱-四极杆-静电场轨道阱-线性离子阱质谱法(ultra performance liquid chromatography-orbitrap fusion lumos tribrid-mass spectrometry,UPLC-Orbitrap Fusion Lumos Tribrid-MS)对大鼠灌胃女贞子、酒女贞子水提... 目的基于超高效液相色谱-四极杆-静电场轨道阱-线性离子阱质谱法(ultra performance liquid chromatography-orbitrap fusion lumos tribrid-mass spectrometry,UPLC-Orbitrap Fusion Lumos Tribrid-MS)对大鼠灌胃女贞子、酒女贞子水提液后血清中的移行成分进行对比分析。方法雄性Sprague-Dawley(SD)大鼠随机分为空白组、女贞子组(10.8 g·kg^(-1)·d^(-1))和酒女贞子组(10.8 g·kg^(-1)·d^(-1)),每组6只,给药组分别灌胃给予女贞子、酒女贞子水提液,空白组灌胃等体积纯净水,早晚各1次,连续5 d,末次给药1 h后腹主动脉取血,制备血清样品。采用Accucore^(TM) C_(18)(100 mm×2.1 mm,2.6μm)色谱柱,流动相为乙腈(A)-0.1%甲酸水(B),梯度洗脱(0~5 min,95%B→85%B;5~10 min,85%B→73%B;10~24 min,73%B→15%B),流速0.2 mL·min^(-1),进样量5μL,正、负离子模式扫描,扫描范围m/z 120~1200。采用Compound Discoverer 3.3软件,根据质谱数据和相关文献对女贞子、酒女贞子入血原型成分和代谢产物进行分析鉴定;采用多元统计分析方法对比女贞子、酒女贞子含药血清间的差异性成分。结果在给予女贞子水提液大鼠血清中共鉴定得到64个入血成分,包括40个原型成分和24个代谢产物;在给予酒女贞子水提液大鼠血清中共鉴定得到57个入血成分,包括35个原型成分和22个代谢产物。原型成分主要包括苯乙醇苷类、环烯醚萜类、三萜类、黄酮类等,代谢途径主要包括羟基化、甲基化、葡萄糖醛酸化等。根据变量重要性投影(variable importance in projection,VIP)值>1,t检验(Student's t test)结果P<0.05筛选出特女贞苷、女贞苷酸等12个差异性入血成分,其中7个原型成分、5个代谢产物。结论女贞子酒蒸后血清移行成分发生明显改变,可为阐明女贞子、酒女贞子药效物质基础提供理论依据。 展开更多
关键词 女贞子 炮制 血清药物化学 UPLC-Orbitrap fusion Lumos Tribrid-MS 多元统计分析
原文传递
Camera-Radar Fusion Sensing System Based on Multi-Layer Perceptron 被引量:1
5
作者 YAO Tong WANG Chunxiang QIAN Yeqiang 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第5期561-568,共8页
Environmental perception is a key technology for autonomous driving.Owing to the limitations of a single sensor,multiple sensors are often used in practical applications.However,multi-sensor fusion faces some problems... Environmental perception is a key technology for autonomous driving.Owing to the limitations of a single sensor,multiple sensors are often used in practical applications.However,multi-sensor fusion faces some problems,such as the choice of sensors and fusion methods.To solve these issues,we proposed a machine learning-based fusion sensing system that uses a camera and radar,and that can be used in intelligent vehicles.First,the object detection algorithm is used to detect the image obtained by the camera;in sequence,the radar data is preprocessed,coordinate transformation is performed,and a multi-layer perceptron model for correlating the camera detection results with the radar data is proposed.The proposed fusion sensing system was verified by comparative experiments in a real-world environment.The experimental results show that the system can effectively integrate camera and radar data results,and obtain accurate and comprehensive object information in front of intelligent vehicles. 展开更多
关键词 intelligent vehicle environmental perception system sensor fusion multi-layer perceptron
原文传递
Multi-Layered Deep Learning Features Fusion for Human Action Recognition 被引量:4
6
作者 Sadia Kiran Muhammad Attique Khan +5 位作者 Muhammad Younus Javed Majed Alhaisoni Usman Tariq Yunyoung Nam Robertas Damaševicius Muhammad Sharif 《Computers, Materials & Continua》 SCIE EI 2021年第12期4061-4075,共15页
Human Action Recognition(HAR)is an active research topic in machine learning for the last few decades.Visual surveillance,robotics,and pedestrian detection are the main applications for action recognition.Computer vis... Human Action Recognition(HAR)is an active research topic in machine learning for the last few decades.Visual surveillance,robotics,and pedestrian detection are the main applications for action recognition.Computer vision researchers have introduced many HAR techniques,but they still face challenges such as redundant features and the cost of computing.In this article,we proposed a new method for the use of deep learning for HAR.In the proposed method,video frames are initially pre-processed using a global contrast approach and later used to train a deep learning model using domain transfer learning.The Resnet-50 Pre-Trained Model is used as a deep learning model in this work.Features are extracted from two layers:Global Average Pool(GAP)and Fully Connected(FC).The features of both layers are fused by the Canonical Correlation Analysis(CCA).Then features are selected using the Shanon Entropy-based threshold function.The selected features are finally passed to multiple classifiers for final classification.Experiments are conducted on five publicly available datasets as IXMAS,UCF Sports,YouTube,UT-Interaction,and KTH.The accuracy of these data sets was 89.6%,99.7%,100%,96.7%and 96.6%,respectively.Comparison with existing techniques has shown that the proposed method provides improved accuracy for HAR.Also,the proposed method is computationally fast based on the time of execution. 展开更多
关键词 Action recognition transfer learning features fusion features selection CLASSIFICATION
在线阅读 下载PDF
MULTI-LAYER TRACK FUSION ALGORITHM BASED ON SUPPORTING DEGREE MATRIX 被引量:2
7
作者 Zhang Wei Quan Li Zhang Ke 《Journal of Electronics(China)》 2012年第3期229-236,共8页
The random noises of multi-sensor and the environment make observations uncertain and correlative, so the performance of fusion algorithms is reduced by using observations directly. To solve this problem, a multi-laye... The random noises of multi-sensor and the environment make observations uncertain and correlative, so the performance of fusion algorithms is reduced by using observations directly. To solve this problem, a multi-layer track fusion algorithm based on supporting degree matrix is proposed. Combined with the track fusion algorithm based on filtering step by step, it uses multi-sensor observations to establish supporting degree matrix and realize multi-layer fusion. Simulation results show its estimation precision is higher than the original algorithm and is increased by 20% around. Therefore, it solves the problem of target tracking further in the distributed track fusion system. 展开更多
关键词 Track fusion Filtering step by step Supporting degree matrix Target tracking
在线阅读 下载PDF
A Multi-Layer Progressive Analysis Method for Collision Energy Flow in Rail Trains
8
作者 Jingke Zhang Tao Zhu +4 位作者 Xiaorui Wang Bing Yang Shoune Xiao Guangwu Yang Yuru Li 《Chinese Journal of Mechanical Engineering》 2025年第5期425-439,共15页
The huge impact kinetic energy cannot be quickly dissipated by the energy-absorbing structure and transferred to the other vehicle through the car body structure,which will cause structural damage and threaten the liv... The huge impact kinetic energy cannot be quickly dissipated by the energy-absorbing structure and transferred to the other vehicle through the car body structure,which will cause structural damage and threaten the lives of the occupants.Therefore,it is necessary to understand the laws of energy conversion,dissipation and transfer during train collisions.This study proposes a multi-layer progressive analysis method of energy flow during train collisions,considering the characteristics of the train.In this method,the train collision system is divided into conversion,dissipation,and transfer layers from the perspective of the train,collision interface,and car body structure to analyze the energy conversion,dissipation and transfer characteristics.Taking the collision process of a rail train as an example,a train collision energy transfer path analysis model was established based on power flow theory.The results show that when the maximum mean acceleration of the vehicle meets the standard requirements,the jerk may exceed the allowable limit of the human body,and there is a risk of injury to the occupants of a secondary collision.The decay rate of the collision energy along the direction of train operation reaches 79%.As the collision progresses,the collision energy gradually converges in the structure with holes,and the structure deforms when the gathered energy is greater than the maximum energy the structure can withstand.The proposed method helps to understand the train collision energy flow law and provides theoretical support for the train crashworthiness design in the future. 展开更多
关键词 Train Cllision multi-layer Progression Energy Flow Energy Conversion Energy Dissipation Energy Transfer
在线阅读 下载PDF
Intrusion Detection Model on Network Data with Deep Adaptive Multi-Layer Attention Network(DAMLAN)
9
作者 Fatma S.Alrayes Syed Umar Amin +2 位作者 Nada Ali Hakami Mohammed K.Alzaylaee Tariq Kashmeery 《Computer Modeling in Engineering & Sciences》 2025年第7期581-614,共34页
The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging at... The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems. 展开更多
关键词 Intrusion detection deep adaptive networks multi-layer attention DAMLAN network security anomaly detection
在线阅读 下载PDF
An improved model for predicting thermal contact resistance at multi-layered rock interface
10
作者 WEN Min-jie XIE Jia-hao +4 位作者 LI Li-chen TIAN Yi EL NAGGAR M.Hesham MEI Guo-xiong WU Wen-bing 《Journal of Central South University》 2025年第1期229-243,共15页
This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi... This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi analytical solutions of temperature increment and displacement of multi-layered composite structures are obtained by using the Laplace transform method,upon which the effects of thermal resistance coefficient,partition coefficient,thermal conductivity ratio and heat capacity ratio on the responses are studied.The results show that the generalized imperfect thermal contact model can realistically describe the imperfect thermal contact problem.Accordingly,it may degenerate into other thermal contact models by adjusting the thermal resistance coefficient and partition coefficient. 展开更多
关键词 multi-layered structures general thermal contact model thermal contact resistance GL thermoelastic theory Laplace transform
在线阅读 下载PDF
Numerical Exploration on Load Transfer Characteristics and Optimization of Multi-Layer Composite Pavement Structures Based on Improved Transfer Matrix Method
11
作者 Guo-Zhi Li Hua-Ping Wang +2 位作者 Si-Kai Wang Jing-Cheng Zhou Ping Xiang 《Computer Modeling in Engineering & Sciences》 2025年第12期3165-3195,共31页
Transportation structures such as composite pavements and railway foundations typically consist of multi-layered media designed to withstand high bearing capacity.A theoretical understanding of load transfer mechanism... Transportation structures such as composite pavements and railway foundations typically consist of multi-layered media designed to withstand high bearing capacity.A theoretical understanding of load transfer mechanisms in these multi-layer composites is essential,as it offers intuitive insights into parametric influences and facilitates enhanced structural performance.This paper employs an improved transfer matrix method to address the limitations of existing theoretical approaches for analyzing multi-layer composite structures.By establishing a twodimensional composite pavement model,it investigates load transfer characteristics and validates the accuracy through finite element simulation.The proposed method offers a straightforward analytical approach for examining internal interactions between structural layers.Case studies indicate that the concrete surface layer is the main load-bearing layer for most vertical normal and shear stresses.The soil base layer reduces the overall mechanical response of the substructure,while horizontal actions increase the risk of interfacial slip and cracking.Structural optimization analysis demonstrates that increasing the thickness of the concrete surface layer,enhancing the thickness and stiffness of the soil base layer,or incorporating gradient layers can significantly mitigate these risks of interfacial slip and cracking.The findings of this study can guide the optimization design,parameter analysis,and damage prevention of multi-layer composite structures. 展开更多
关键词 multi-layer composite pavement improved theoretical analysis transfer matrix method structural optimization damage prevention
在线阅读 下载PDF
Routing cost-integrated intelligent handover strategy for multi-layer LEO mega-constellation networks
12
作者 Zhenglong YIN Quan CHEN +2 位作者 Lei YANG Yong ZHAO Xiaoqian CHEN 《Chinese Journal of Aeronautics》 2025年第6期487-500,共14页
Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed ... Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed satellites,ground users now can be covered by multiple visible satellites,but also face complex handover issues with such massive high-mobility satellites in multi-layer.The end-to-end routing is also affected by the handover behavior.In this paper,we propose an intelligent handover strategy dedicated to multi-layer LEO mega-constellation networks.Firstly,an analytic model is utilized to rapidly estimate the end-to-end propagation latency as a key handover factor to construct a multi-objective optimization model.Subsequently,an intelligent handover strategy is proposed by employing the Dueling Double Deep Q Network(D3QN)-based deep reinforcement learning algorithm for single-layer constellations.Moreover,an optimal crosslayer handover scheme is proposed by predicting the latency-jitter and minimizing the cross-layer overhead.Simulation results demonstrate the superior performance of the proposed method in the multi-layer LEO mega-constellation,showcasing reductions of up to 8.2%and 59.5%in end-to-end latency and jitter respectively,when compared to the existing handover strategies. 展开更多
关键词 multi-layer LEO mega-constellation networks HANDOVER Routing cost Dueling Double Deep Q Network(D3QN)
原文传递
Experimental investigation on dynamic stab resistance of highperformance multi-layer textile materials
13
作者 Mulat Alubel Abtew François Boussu +1 位作者 Irina Cristian Bekinew Kitaw Dejene 《Defence Technology(防务技术)》 2025年第5期1-14,共14页
Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the... Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the effects of textile structure,layering,and ply orientation on the stab resistance of multi-layer textiles.Three 3D warp interlock(3DWI)structures({f1},{f2},{f3})and a 2D woven fabric({f4}),all made of high-performance p-aramid yarns,were engineered and manufactured.Multi-layer specimens were prepared and subjected to drop-weight stabbing tests following HOSBD standards.Stabbing performance metrics,including Depth of Trauma(DoT),Depth of Penetration(DoP),and trauma deformation(Ymax,Xmax),were investigated and analyzed.Statistical analyses(Two-and One-Way ANOVA)indicated that fabric type and layer number significantly impacted DoP(P<0.05),while ply orientation significantly affected DoP(P<0.05)but not DoT(P>0.05).Further detailed analysis revealed that 2D woven fabrics exhibited greater trauma deformation than 3D WIF structures.Increasing the number of layers reduced both DoP and DoT across all fabric structures,with f3 demonstrating the best performance in multi-layer configurations.Aligned ply orientations also enhanced stab resistance,underscoring the importance of alignment in dissipating impact energy. 展开更多
关键词 2D/3D woven fabrics High-performance fibers Protective textiles multi-layer panels Impact ply orientation Dynamic stab resistance
在线阅读 下载PDF
A Multi-Layers Information Fused Deep Architecture for Skin Cancer Classification in Smart Healthcare
14
作者 Veena Dillshad Muhammad Attique Khan +5 位作者 Muhammad Nazir Jawad Ahmad Dina Abdulaziz AlHammadi Taha Houda Hee-Chan Cho Byoungchol Chang 《Computers, Materials & Continua》 2025年第6期5299-5321,共23页
Globally,skin cancer is a prevalent form of malignancy,and its early and accurate diagnosis is critical for patient survival.Clinical evaluation of skin lesions is essential,but several challenges,such as long waiting... Globally,skin cancer is a prevalent form of malignancy,and its early and accurate diagnosis is critical for patient survival.Clinical evaluation of skin lesions is essential,but several challenges,such as long waiting times and subjective interpretations,make this task difficult.The recent advancement of deep learning in healthcare has shownmuch success in diagnosing and classifying skin cancer and has assisted dermatologists in clinics.Deep learning improves the speed and precision of skin cancer diagnosis,leading to earlier prediction and treatment.In this work,we proposed a novel deep architecture for skin cancer classification in innovative healthcare.The proposed framework performed data augmentation at the first step to resolve the imbalance issue in the selected dataset.The proposed architecture is based on two customized,innovative Convolutional neural network(CNN)models based on small depth and filter sizes.In the first model,four residual blocks are added in a squeezed fashion with a small filter size.In the second model,five residual blocks are added with smaller depth and more useful weight information of the lesion region.To make models more useful,we selected the hyperparameters through Bayesian Optimization,in which the learning rate is selected.After training the proposed models,deep features are extracted and fused using a novel information entropy-controlled Euclidean Distance technique.The final features are passed on to the classifiers,and classification results are obtained.Also,the proposed trained model is interpreted through LIME-based localization on the HAM10000 dataset.The experimental process of the proposed architecture is performed on two dermoscopic datasets,HAM10000 and ISIC2019.We obtained an improved accuracy of 90.8%and 99.3%on these datasets,respectively.Also,the proposed architecture returned 91.6%for the cancer localization.In conclusion,the proposed architecture accuracy is compared with several pre-trained and state-of-the-art(SOTA)techniques and shows improved performance. 展开更多
关键词 Smart health skin cancer internet of things deep learning residual blocks fusion optimization
在线阅读 下载PDF
Analysis on diffusion-induced stress for multi-layer spherical core-shell electrodes in Li-ion batteries
15
作者 Siyuan Yang Chuanwei Li +4 位作者 Zhifeng Qi Lipan Xin Linan Li Shibin Wang Zhiyong Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第9期587-593,共7页
Silicon-based carbon composites are believed as promising anodes in the near future due to their outstanding specific capacity and relatively lower volume effect compared to pure silicon anodes.Herein,a multilayer sph... Silicon-based carbon composites are believed as promising anodes in the near future due to their outstanding specific capacity and relatively lower volume effect compared to pure silicon anodes.Herein,a multilayer spherical core-shell(M-SCS)electrode with a graphite framework prepared with Si@O-MCMB/C nanoparticles is developed,which aims to realize chemically/mechanically stability during the lithiation/delithiation process with high specific capacity.An electrochemical-/mechanical-coupling model for the M-SCS structure is established with various chemical/mechanical boundary conditions.The simulation of finite difference method(FDM)has been conducted based on the proposed coupling model,by which the diffusion-induced stress along both the radial and the circumferential directions is determined.Moreover,factors that influence the diffusion-induced stress of the M-SCS structure have been discussed and analyzed in detail. 展开更多
关键词 multi-layer spherical core-shell electrode diffusion-induced stress
原文传递
Effect of Addition of Er-TiB_(2)Dual-Phase Nanoparticles on Strength-Ductility of Al-Mn-Mg-Sc-Zr Alloy Prepared by Laser Powder Bed Fusion
16
作者 Li Suli Zhang Yanze +5 位作者 Yang Mengjia Zhang Longbo Xie Qidong Yang Laixia MaoFeng Chen Zhen 《稀有金属材料与工程》 北大核心 2026年第1期9-17,共9页
A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5w... A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively. 展开更多
关键词 Al-Mn-Mg-Sc-Zr alloy laser powder bed fusion nano-reinforcing phase synergistic enhancement
原文传递
Multi-layer collaborative optimization fusion for semi-supervised learning
17
作者 Quanbo GE Muhua LIU +3 位作者 Jianchao ZHANG Jianqiang SONG Junlong ZHU Mingchuan ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第11期342-353,共12页
Recently,the Cooperative Training Algorithm(CTA),a well-known Semi-Supervised Learning(SSL)technique,has garnered significant attention in the field of image classification.However,traditional CTA approaches face chal... Recently,the Cooperative Training Algorithm(CTA),a well-known Semi-Supervised Learning(SSL)technique,has garnered significant attention in the field of image classification.However,traditional CTA approaches face challenges such as high computational complexity and low classification accuracy.To overcome these limitations,we present a novel approach called Weighted fusion based Cooperative Training Algorithm(W-CTA),which leverages the cooperative training technique and unlabeled data to enhance classification performance.Moreover,we introduce the K-means Cooperative Training Algorithm(km-CTA)to prevent the occurrence of local optima during the training phase.Finally,we conduct various experiments to verify the performance of the proposed methods.Experimental results show that W-CTA and km-CTA are effective and efficient on CIFAR-10 dataset. 展开更多
关键词 Collaborative training fusion Image classification K-means algorithm Semi-supervised learning
原文传递
Bearing Fault Diagnosis Based on Multimodal Fusion GRU and Swin-Transformer
18
作者 Yingyong Zou Yu Zhang +2 位作者 Long Li Tao Liu Xingkui Zhang 《Computers, Materials & Continua》 2026年第1期1587-1610,共24页
Fault diagnosis of rolling bearings is crucial for ensuring the stable operation of mechanical equipment and production safety in industrial environments.However,due to the nonlinearity and non-stationarity of collect... Fault diagnosis of rolling bearings is crucial for ensuring the stable operation of mechanical equipment and production safety in industrial environments.However,due to the nonlinearity and non-stationarity of collected vibration signals,single-modal methods struggle to capture fault features fully.This paper proposes a rolling bearing fault diagnosis method based on multi-modal information fusion.The method first employs the Hippopotamus Optimization Algorithm(HO)to optimize the number of modes in Variational Mode Decomposition(VMD)to achieve optimal modal decomposition performance.It combines Convolutional Neural Networks(CNN)and Gated Recurrent Units(GRU)to extract temporal features from one-dimensional time-series signals.Meanwhile,the Markovian Transition Field(MTF)is used to transform one-dimensional signals into two-dimensional images for spatial feature mining.Through visualization techniques,the effectiveness of generated images from different parameter combinations is compared to determine the optimal parameter configuration.A multi-modal network(GSTCN)is constructed by integrating Swin-Transformer and the Convolutional Block Attention Module(CBAM),where the attention module is utilized to enhance fault features.Finally,the fault features extracted from different modalities are deeply fused and fed into a fully connected layer to complete fault classification.Experimental results show that the GSTCN model achieves an average diagnostic accuracy of 99.5%across three datasets,significantly outperforming existing comparison methods.This demonstrates that the proposed model has high diagnostic precision and good generalization ability,providing an efficient and reliable solution for rolling bearing fault diagnosis. 展开更多
关键词 MULTI-MODAL GRU swin-transformer CBAM CNN feature fusion
在线阅读 下载PDF
Trajectory and influencing factors of changes in anxiety and depression in elderly patients after lumbar interbody fusion
19
作者 Xiao-Feng Liu Yan-Hua Wu +4 位作者 Guang-Xi Huang Bin Yu Hui-Juan Xu Meng-Hua Qiu Lin Kang 《World Journal of Psychiatry》 2026年第1期312-321,共10页
BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery... BACKGROUND Lumbar interbody fusion(LIF)is the primary treatment for lumbar degenerative diseases.Elderly patients are prone to anxiety and depression after undergoing surgery,which affects their postoperative recovery speed and quality of life.Effective prevention of anxiety and depression in elderly patients has become an urgent problem.AIM To investigate the trajectory of anxiety and depression levels in elderly patients after LIF,and the influencing factors.METHODS Random sampling was used to select 239 elderly patients who underwent LIF from January 2020 to December 2024 in Shenzhen Pingle Orthopedic Hospital.General information and surgery-related indices were recorded,and participants completed measures of psychological status,lumbar spine dysfunction,and quality of life.A latent class growth model was used to analyze the post-LIF trajectory of anxiety and depression levels,and unordered multi-categorical logistic regression was used to analyze the influencing factors.RESULTS Three trajectories of change in anxiety level were identified:Increasing anxiety(n=26,10.88%),decreasing anxiety(n=27,11.30%),and stable anxiety(n=186,77.82%).Likewise,three trajectories of change in depression level were identified:Increasing depression(n=30,12.55%),decreasing depression(n=26,10.88%),and stable depression(n=183,76.57%).Regression analysis showed that having no partner,female sex,elevated Oswestry dysfunction index(ODI)scores,and reduced 36-Item Short Form Health Survey scores all contributed to increased anxiety levels,whereas female sex,postoperative opioid use,and elevated ODI scores all contributed to increased depression levels.CONCLUSION During clinical observation,combining factors to predict anxiety and depression in post-LIF elderly patients enables timely intervention,quickens recovery,and enhances quality of life. 展开更多
关键词 Lumbar interbody fusion Elderly patients ANXIETY DEPRESSION Trajectory of change Influencing factors
暂未订购
Cephalomedullary fusion nails for treatment of infected stemmed revision total knee arthroplasty:Four case reports
20
作者 Gregory M Georgiadis Isaac A Arefi +3 位作者 Summer M Drees Ajay Nair Drew Wagner Austin C Lawrence 《World Journal of Orthopedics》 2026年第1期189-196,共8页
BACKGROUND Salvage of the infected long stem revision total knee arthroplasty is challenging due to the presence of well-fixed ingrown or cemented stems.Reconstructive options are limited.Above knee amputation(AKA)is ... BACKGROUND Salvage of the infected long stem revision total knee arthroplasty is challenging due to the presence of well-fixed ingrown or cemented stems.Reconstructive options are limited.Above knee amputation(AKA)is often recommended.We present a surgical technique that was successfully used on four such patients to convert them to a knee fusion(KF)using a cephalomedullary nail.CASE SUMMARY Four patients with infected long stem revision knee replacements that refused AKA had a single stage removal of their infected revision total knee followed by a KF.They were all treated with a statically locked antegrade cephalomedullary fusion nail,augmented with antibiotic impregnated bone cement.All patients had successful limb salvage and were ambulatory with assistive devices at the time of last follow-up.All were infection free at an average follow-up of 25.5 months(range 16-31).CONCLUSION Single stage cephalomedullary nailing can result in a successful KF in patients with infected long stem revision total knees. 展开更多
关键词 Knee fusion Knee arthrodesis Intramedullary nail Cephalomedullary nail Total knee infection Case report
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部