期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Multi-Layer Feature Extraction with Deformable Convolution for Fabric Defect Detection 被引量:1
1
作者 Jielin Jiang Chao Cui +1 位作者 Xiaolong Xu Yan Cui 《Intelligent Automation & Soft Computing》 2024年第4期725-744,共20页
In the textile industry,the presence of defects on the surface of fabric is an essential factor in determining fabric quality.Therefore,identifying fabric defects forms a crucial part of the fabric production process.... In the textile industry,the presence of defects on the surface of fabric is an essential factor in determining fabric quality.Therefore,identifying fabric defects forms a crucial part of the fabric production process.Traditional fabric defect detection algorithms can only detect specific materials and specific fabric defect types;in addition,their detection efficiency is low,and their detection results are relatively poor.Deep learning-based methods have many advantages in the field of fabric defect detection,however,such methods are less effective in identifying multiscale fabric defects and defects with complex shapes.Therefore,we propose an effective algorithm,namely multilayer feature extraction combined with deformable convolution(MFDC),for fabric defect detection.In MFDC,multi-layer feature extraction is used to fuse the underlying location features with high-level classification features through a horizontally connected top-down architecture to improve the detection of multi-scale fabric defects.On this basis,a deformable convolution is added to solve the problem of the algorithm’s weak detection ability of irregularly shaped fabric defects.In this approach,Roi Align and Cascade-RCNN are integrated to enhance the adaptability of the algorithm in materials with complex patterned backgrounds.The experimental results show that the MFDC algorithm can achieve good detection results for both multi-scale fabric defects and defects with complex shapes,at the expense of a small increase in detection time. 展开更多
关键词 Fabric defect detection multi-layer features deformable convolution
在线阅读 下载PDF
Digital modulation classification using multi-layer perceptron and time-frequency features
2
作者 Yuan Ye Mei Wenbo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期249-254,共6页
Considering that real communication signals corrupted by noise are generally nonstationary, and timefrequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributio... Considering that real communication signals corrupted by noise are generally nonstationary, and timefrequency distributions are especially suitable for the analysis of nonstationary signals, time-frequency distributions are introduced for the modulation classification of communication signals: The extracted time-frequency features have good classification information, and they are insensitive to signal to noise ratio (SNR) variation. According to good classification by the correct rate of a neural network classifier, a multilayer perceptron (MLP) classifier with better generalization, as well as, addition of time-frequency features set for classifying six different modulation types has been proposed. Computer simulations show that the MLP classifier outperforms the decision-theoretic classifier at low SNRs, and the classification experiments for real MPSK signals verify engineering significance of the MLP classifier. 展开更多
关键词 Digital modulation classification Time-frequency feature Time-frequency distribution multi-layer perceptron.
在线阅读 下载PDF
SSC-SeNet:一种融合点云与影像数据的露天矿区建筑物语义分割算法 被引量:1
3
作者 冯媛媛 李朝奎 +1 位作者 刘松焕 田沁 《吉林大学学报(地球科学版)》 北大核心 2025年第5期1757-1773,共17页
矿区建筑物分割大多采用U-Net编码器-解码器网络结构,而编码器-解码器结构并未充分利用语义特征和空间特征从而导致分割精度低。针对现有建筑物提取方法存在的缺陷,提出了语义空间一致性语义分割网络(semantic spatial consistency sema... 矿区建筑物分割大多采用U-Net编码器-解码器网络结构,而编码器-解码器结构并未充分利用语义特征和空间特征从而导致分割精度低。针对现有建筑物提取方法存在的缺陷,提出了语义空间一致性语义分割网络(semantic spatial consistency semantic segmentation network,SSC-SeNet)。该网络首先利用多通道结构,实现了语义特征、空间特征和一致性特征的提取融合;其次在主通道的前三层坐标卷积处引入空间提取通道,并针对空间特征的进一步提取设计了Gabor傅里叶滤波器;然后在主通道的每一层常规卷积块处引入语义提取通道,提高了语义特征提取能力;最后采用特征融合模块将空间提取通道、语义提取通道和主通道的特征进行融合,并生成最后的分割图像。在分辨率为0.03 m的湘潭锰矿建筑物数据集上进行的试验结果表明,SSC-SeNet的交并比高达88.47%,整体准确度达97.09%,均显著优于U-Net等传统网络。此外,得益于其轻量化特点,该模型成功克服了过拟合问题。 展开更多
关键词 矿区建筑物提取 语义分割 SSC-senet 注意力机制 坐标卷积 卷积神经网络 特征融合
在线阅读 下载PDF
Dynamic Multi-Layer Perceptron for Fetal Health Classification Using Cardiotocography Data
4
作者 Uddagiri Sirisha Parvathaneni Naga Srinivasu +4 位作者 Panguluri Padmavathi Seongki Kim Aruna Pavate Jana Shafi Muhammad Fazal Ijaz 《Computers, Materials & Continua》 SCIE EI 2024年第8期2301-2330,共30页
Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To kn... Fetal health care is vital in ensuring the health of pregnant women and the fetus.Regular check-ups need to be taken by the mother to determine the status of the fetus’growth and identify any potential problems.To know the status of the fetus,doctors monitor blood reports,Ultrasounds,cardiotocography(CTG)data,etc.Still,in this research,we have considered CTG data,which provides information on heart rate and uterine contractions during pregnancy.Several researchers have proposed various methods for classifying the status of fetus growth.Manual processing of CTG data is time-consuming and unreliable.So,automated tools should be used to classify fetal health.This study proposes a novel neural network-based architecture,the Dynamic Multi-Layer Perceptron model,evaluated from a single layer to several layers to classify fetal health.Various strategies were applied,including pre-processing data using techniques like Balancing,Scaling,Normalization hyperparameter tuning,batch normalization,early stopping,etc.,to enhance the model’s performance.A comparative analysis of the proposed method is done against the traditional machine learning models to showcase its accuracy(97%).An ablation study without any pre-processing techniques is also illustrated.This study easily provides valuable interpretations for healthcare professionals in the decision-making process. 展开更多
关键词 Fetal health cardiotocography data deep learning dynamic multi-layer perceptron feature engineering
在线阅读 下载PDF
Impact of Portable Executable Header Features on Malware Detection Accuracy
5
作者 Hasan H.Al-Khshali Muhammad Ilyas 《Computers, Materials & Continua》 SCIE EI 2023年第1期153-178,共26页
One aspect of cybersecurity,incorporates the study of Portable Executables(PE)files maleficence.Artificial Intelligence(AI)can be employed in such studies,since AI has the ability to discriminate benign from malicious... One aspect of cybersecurity,incorporates the study of Portable Executables(PE)files maleficence.Artificial Intelligence(AI)can be employed in such studies,since AI has the ability to discriminate benign from malicious files.In this study,an exclusive set of 29 features was collected from trusted implementations,this set was used as a baseline to analyze the presented work in this research.A Decision Tree(DT)and Neural Network Multi-Layer Perceptron(NN-MLPC)algorithms were utilized during this work.Both algorithms were chosen after testing a few diverse procedures.This work implements a method of subgrouping features to answer questions such as,which feature has a positive impact on accuracy when added?Is it possible to determine a reliable feature set to distinguish a malicious PE file from a benign one?when combining features,would it have any effect on malware detection accuracy in a PE file?Results obtained using the proposed method were improved and carried few observations.Generally,the obtained results had practical and numerical parts,for the practical part,the number of features and which features included are the main factors impacting the calculated accuracy,also,the combination of features is as crucial in these calculations.Numerical results included,finding accuracies with enhanced values,for example,NN_MLPC attained 0.979 and 0.98;for DT an accuracy of 0.9825 and 0.986 was attained. 展开更多
关键词 AI driven cybersecurity artificial intelligence CYBERSECURITY Decision Tree Neural Network multi-layer Perceptron Classifier portable executable(PE)file header features
在线阅读 下载PDF
DM-L Based Feature Extraction and Classifier Ensemble for Object Recognition
6
作者 Hamayun A. Khan 《Journal of Signal and Information Processing》 2018年第2期92-110,共19页
Deep Learning is a powerful technique that is widely applied to Image Recognition and Natural Language Processing tasks amongst many other tasks. In this work, we propose an efficient technique to utilize pre-trained ... Deep Learning is a powerful technique that is widely applied to Image Recognition and Natural Language Processing tasks amongst many other tasks. In this work, we propose an efficient technique to utilize pre-trained Convolutional Neural Network (CNN) architectures to extract powerful features from images for object recognition purposes. We have built on the existing concept of extending the learning from pre-trained CNNs to new databases through activations by proposing to consider multiple deep layers. We have exploited the progressive learning that happens at the various intermediate layers of the CNNs to construct Deep Multi-Layer (DM-L) based Feature Extraction vectors to achieve excellent object recognition performance. Two popular pre-trained CNN architecture models i.e. the VGG_16 and VGG_19 have been used in this work to extract the feature sets from 3 deep fully connected multiple layers namely “fc6”, “fc7” and “fc8” from inside the models for object recognition purposes. Using the Principal Component Analysis (PCA) technique, the Dimensionality of the DM-L feature vectors has been reduced to form powerful feature vectors that have been fed to an external Classifier Ensemble for classification instead of the Softmax based classification layers of the two original pre-trained CNN models. The proposed DM-L technique has been applied to the Benchmark Caltech-101 object recognition database. Conventional wisdom may suggest that feature extractions based on the deepest layer i.e. “fc8” compared to “fc6” will result in the best recognition performance but our results have proved it otherwise for the two considered models. Our experiments have revealed that for the two models under consideration, the “fc6” based feature vectors have achieved the best recognition performance. State-of-the-Art recognition performances of 91.17% and 91.35% have been achieved by utilizing the “fc6” based feature vectors for the VGG_16 and VGG_19 models respectively. The recognition performance has been achieved by considering 30 sample images per class whereas the proposed system is capable of achieving improved performance by considering all sample images per class. Our research shows that for feature extraction based on CNNs, multiple layers should be considered and then the best layer can be selected that maximizes the recognition performance. 展开更多
关键词 DEEP Learning Object Recognition CNN DEEP multi-layer feature Extraction Principal Component Analysis CLASSIFIER ENSEMBLE Caltech-101 BENCHMARK Database
在线阅读 下载PDF
基于KPCA-SENet的晶闸管退化特征提取与表征方法
7
作者 陈权 吴骏 +3 位作者 陈忠 祝琳 郑常宝 黄宇 《半导体技术》 北大核心 2025年第8期851-859,共9页
晶闸管长期使用后会出现不可逆的性能下降,达到一定阈值后引发电路故障的概率会大幅上升,给特高压系统带来严重风险。为了保证特高压电网系统的安全运行,晶闸管的可靠性分析与退化状态评估尤为重要。通过仿真模拟加速寿命试验获取晶闸... 晶闸管长期使用后会出现不可逆的性能下降,达到一定阈值后引发电路故障的概率会大幅上升,给特高压系统带来严重风险。为了保证特高压电网系统的安全运行,晶闸管的可靠性分析与退化状态评估尤为重要。通过仿真模拟加速寿命试验获取晶闸管的通态压降、反向恢复电荷、反向漏电流及反向恢复峰值电流的退化数据。首先通过结合局部均值分解(LMD)和自适应阈值对称小波基(symN)的方法进行降噪预处理,再通过结合核主成分分析(KPCA)与通道域注意力机制(SENet)对退化特征进行提取与融合,最后通过转换函数拟合建立综合退化指标(CDI),实现对晶闸管的退化表征。采用多个指标对该方法进行验证,结果表明CDI与退化特征参数及退化时间呈现出高度的相关性,证实了该方法的有效性。 展开更多
关键词 晶闸管 可靠性 特征提取 退化 表征方法 核主成分分析与通道注意力机制(KPCA-senet)
原文传递
A Robust Rating Prediction Model for Recommendation Systems Based on Fake User Detection and Multi-Layer Feature Fusion
8
作者 Zhigeng Han Ting Zhou +2 位作者 Geng Chen Jian Chen Chunshuo Fu 《Big Data Mining and Analytics》 2025年第2期292-309,共18页
The effectiveness of recommendation systems heavily relies on accurately predicting user ratings for items based on user preferences and item attributes derived from ratings and reviews.However,the increasing presence... The effectiveness of recommendation systems heavily relies on accurately predicting user ratings for items based on user preferences and item attributes derived from ratings and reviews.However,the increasing presence of fake user data in these ratings and reviews poses significant challenges,hindering feature extraction,diminishing rating prediction accuracy,and eroding user trust in the system.To tackle this issue,we propose a robust rating prediction model for recommendation systems that integrates fake user detection and multi-layer feature fusion.Our model utilizes a GraphSAGE-based submodel to filter out fake user data from rating data and review texts.To strengthen fake user detection,we enhance GraphSAGE by selecting aggregation neighbors based on the collusion fraud degree among users,and employ an attention mechanism to weigh the contribution of each neighbor during representation aggregation.Furthermore,we introduce a multi-layer feature fusion submodel to integrate diverse features extracted from the filtered ratings and reviews.For deep feature extraction from review texts,we implement a temporal attention mechanism to analyze the relevance of reviews over time.For shallow feature extraction from rating data,we incorporate trust evaluation mechanism and cloud model to assess the influence of trusted neighbors’ratings.In our evaluation,we compare our model against six baseline models for fake user detection and four rating prediction models across five datasets.The results demonstrate that our model exhibits significant performance advantages in both fake user detection and rating prediction. 展开更多
关键词 recommendation system rating prediction fake user detection multi-layer feature fusion Graph Neural Network(GNN)
原文传递
联合SENet异构层特征融合与集成学习的材质图像识别 被引量:8
9
作者 张红斌 熊其鹏 +3 位作者 蒋子良 石皞炜 周娟 武晋鹏 《控制与决策》 EI CSCD 北大核心 2022年第6期1632-1642,共11页
材质图像识别具备广阔的应用前景,如衣物识别、机器人拾取、工业检测等.受光照强度和拍摄角度等影响,材质图像易发生变化,而挖掘鲁棒、高效的图像特征是应对该变化的关键.对此,提出SECF^(2)模型:抽取SENet中具有良好互补性的异构层特征... 材质图像识别具备广阔的应用前景,如衣物识别、机器人拾取、工业检测等.受光照强度和拍摄角度等影响,材质图像易发生变化,而挖掘鲁棒、高效的图像特征是应对该变化的关键.对此,提出SECF^(2)模型:抽取SENet中具有良好互补性的异构层特征;改进聚类典型相关性分析模型,实现异构层特征融合,生成刻画材质图像的深层视觉语义,它是一种判别性更强且鲁棒的新特征;采用深层视觉语义训练分类模型并执行集成学习,完成材质图像识别.实验表明:SECF^(2)模型在两个材质图像数据集上都有效,其中Fabric上的识别精准度较最强基线提升8.85%;SECF^(2)模型还具备较强通用性,在图像情感分析基准数据集上取得优异的表现.此外,SECF^(2)仅需两个特征和一次融合,模型复杂度降低且实时效率优良. 展开更多
关键词 材质图像识别 深层视觉语义 特征融合 senet cluster-CCA 集成学习
原文传递
SENet生成对抗网络在图像语义描述中的应用 被引量:5
10
作者 刘仲民 陈恒 胡文瑾 《光学精密工程》 EI CAS CSCD 北大核心 2023年第9期1379-1389,共11页
针对图像语义描述过程中存在的语句描述不够准确及情感色彩涉及较少等问题,提出一种基于SENet生成对抗网络的图像语义描述方法。该方法在生成器模型特征提取阶段增加通道注意力机制,使网络能够更加充分和完整地提取图像中显著区域的特征... 针对图像语义描述过程中存在的语句描述不够准确及情感色彩涉及较少等问题,提出一种基于SENet生成对抗网络的图像语义描述方法。该方法在生成器模型特征提取阶段增加通道注意力机制,使网络能够更加充分和完整地提取图像中显著区域的特征,将提取后的图像特征输入到编码器中。在原始文本语料库中加入情感语料库且通过自然语言处理生成词向量,将词向量与编码后的图像特征相结合输入到解码器中,通过不断对抗训练生成一段符合该图像所示内容的情感描述语句。最后通过仿真实验与现有方法进行对比,该方法的BLEU指标相比SentiCap方法提高了15%左右,其他相关指标均有提升。在自对比实验中,该方法在CIDEr指标上提高3%左右。该网络能够很好地提取图像特征,使描述图像的语句更加准确,情感色彩更加丰富。 展开更多
关键词 图像语义描述 生成器模型 特征提取 对抗训练 通道注意力
在线阅读 下载PDF
融合多层特征SENet和多尺度宽残差的高光谱图像地物分类 被引量:8
11
作者 于慧伶 霍镜宇 张怡卓 《实验室研究与探索》 CAS 北大核心 2020年第7期28-34,44,共8页
提出了一种融合多层特征SENet和多尺度宽残差的高光谱图像地物分类的方法。实验选取Indian Pines和Pavia University为研究对象,结果表明,SE-Inception-Resnet-MSWideResnet(SEIR-MSWR)网络结构的总体分类精度为99.33%、99.52%,Kappa系... 提出了一种融合多层特征SENet和多尺度宽残差的高光谱图像地物分类的方法。实验选取Indian Pines和Pavia University为研究对象,结果表明,SE-Inception-Resnet-MSWideResnet(SEIR-MSWR)网络结构的总体分类精度为99.33%、99.52%,Kappa系数为0.98时,分类效果最优,相较于支持向量机(Support Vector Machine,SVM)、K最近邻法(K-NearestNeighbor,KNN),宽残差网络(Wide Resnet Network,WRN)以及InceptionV2-Resnet,总体分类精度分别提高了20.86%、20.09%、5.48%、3.39%、23.1%、16.89%、6.66%、2.58%,Kappa系数分别提高了0.18、0.17、0.06、0.04、0.22、0.17、0.07、0.03,均表现出良好的性能。该方法更好地提取了高光谱图像的本质特征,进而提高了高光谱图像地物的分类精度。 展开更多
关键词 高光谱图像分类 地物分类 主成分分析法 多层特征senet 多尺度宽残差 加权平均
在线阅读 下载PDF
Tri-BERT-SENet:融合多特征的恶意网页识别 被引量:6
12
作者 杨立圣 罗文华 《小型微型计算机系统》 CSCD 北大核心 2023年第4期875-880,共6页
传统恶意网页识别缺乏全局性、系统性考量,没有将网页作为有机整体,而是独立针对标签结构、URL地址、文本内容等特定层面特征开展研究,导致准确率较低.虽然已有学者提出融合特征思想,但依旧使用机器学习算法予以实现,特征工程工作量巨大... 传统恶意网页识别缺乏全局性、系统性考量,没有将网页作为有机整体,而是独立针对标签结构、URL地址、文本内容等特定层面特征开展研究,导致准确率较低.虽然已有学者提出融合特征思想,但依旧使用机器学习算法予以实现,特征工程工作量巨大,识别效率低下.针对上述问题,提出一种基于多特征融合的Tri-BERT-SENet模型,用于完成恶意网页的识别任务.利用获取得到的HTML特征、网页URL特征以及网页文本特征,结合BERT模型的上下文感知能力,将特征转化为3个BERT模型输出;之后将模型输出作为特征通道,使用SENet进行加权计算,最终输出识别结果.实验结果表明,与传统机器学习模型以及使用BERT对单一特征的识别方法相比,该检测方法在恶意网页识别的准确率上有较大提升. 展开更多
关键词 恶意网页识别 特征融合 BERT senet
在线阅读 下载PDF
融合卷积神经网络和注意力机制的负荷识别方法 被引量:2
13
作者 赵毅涛 李钊 +3 位作者 刘兴龙 骆钊 王钢 沈鑫 《电力工程技术》 北大核心 2025年第1期227-235,共9页
对居民住宅进行非侵入式负荷监测(non-intrusive load monitoring,NILM)是智能电网用户需求侧的重要研究内容,居民负荷的能耗分析和用电管理是实现节能减排、可持续发展的关键环节。针对传统算法识别性能差、难以适应当下复杂用电环境... 对居民住宅进行非侵入式负荷监测(non-intrusive load monitoring,NILM)是智能电网用户需求侧的重要研究内容,居民负荷的能耗分析和用电管理是实现节能减排、可持续发展的关键环节。针对传统算法识别性能差、难以适应当下复杂用电环境的问题,文中从增强分类算法特征提取性能的优化思路出发,提出融合卷积神经网络(convolutional neural network,CNN)和自注意力机制的NILM负荷识别方法。首先,采集8种不同家用电器的电力数据,建立U-I轨迹曲线数据库;其次,采用挤压-激励网络(squeeze-and-excitation network,SENet)注意力机制提升CNN的特征聚合能力,完成对不同电器U-I轨迹曲线的特征提取和负荷识别;最后,对私有数据集和PLAID数据集进行测试,算例结果表明,所提方法在不同运行场景下均具有较高的识别准确率和较好的泛化性能。 展开更多
关键词 非侵入式负荷监测(NILM) 负荷识别 卷积神经网络(CNN) 挤压-激励网络(senet) 注意力机制 特征提取 U-I轨迹
在线阅读 下载PDF
基于双路径多尺度特征融合的4mC位点预测方法
14
作者 黄泽霞 李煨 +1 位作者 邵春莉 耿林 《实验技术与管理》 北大核心 2025年第4期68-77,共10页
针对传统4mC位点预测方法成本高、耗时长问题,提出基于双路径多尺度特征融合的4mC位点预测方法。首先构建以卷积层、双向长短期记忆网络与注意力机制为核心的多层次特征提取模块,获取序列间长期依赖的关键位置信息,提升检测的准确性;然... 针对传统4mC位点预测方法成本高、耗时长问题,提出基于双路径多尺度特征融合的4mC位点预测方法。首先构建以卷积层、双向长短期记忆网络与注意力机制为核心的多层次特征提取模块,获取序列间长期依赖的关键位置信息,提升检测的准确性;然后设计以改进SENet网络为核心的多尺度特征提取模块,实现特征的多尺度细节表达,提升特征的表征能力;进而提出基于并行特征融合的分类优化方法,进一步提升特征的捕获效果;最后设计以带类权重损失函数为核心的输出模块,实现对样本之间不平衡性的调节。实验结果表明,所提方法可有效实现多物种环境下4mC位点的识别,并且预测准确率和鲁棒性均优于现有方法。 展开更多
关键词 4mC位点预测 多尺度特征融合 双向长短期记忆网络 senet网络
在线阅读 下载PDF
Research on Multimodal AIGC Video Detection for Identifying Fake Videos Generated by Large Models
15
作者 Yong Liu Tianning Sun +2 位作者 Daofu Gong Li Di Xu Zhao 《Computers, Materials & Continua》 2025年第10期1161-1184,共24页
To address the high-quality forged videos,traditional approaches typically have low recognition accuracy and tend to be easily misclassified.This paper tries to address the challenge of detecting high-quality deepfake... To address the high-quality forged videos,traditional approaches typically have low recognition accuracy and tend to be easily misclassified.This paper tries to address the challenge of detecting high-quality deepfake videos by promoting the accuracy of Artificial Intelligence Generated Content(AIGC)video authenticity detection with a multimodal information fusion approach.First,a high-quality multimodal video dataset is collected and normalized,including resolution correction and frame rate unification.Next,feature extraction techniques are employed to draw out features from visual,audio,and text modalities.Subsequently,these features are fused into a multilayer perceptron and attention mechanisms-based multimodal feature matrix.Finally,the matrix is fed into a multimodal information fusion layer in order to construct and train a deep learning model.Experimental findings show that the multimodal fusion model achieves an accuracy of 93.8%for the detection of video authenticity,showing significant improvement against other unimodal models,as well as affirming better performance and resistance of the model to AIGC video authenticity detection. 展开更多
关键词 Multimodal information fusion artificial intelligence generated content authenticity detection feature extraction multi-layer perceptron attention mechanism
在线阅读 下载PDF
注意力机制和Faster RCNN相结合的绝缘子识别 被引量:44
16
作者 赵文清 程幸福 +1 位作者 赵振兵 翟永杰 《智能系统学报》 CSCD 北大核心 2020年第1期92-98,共7页
针对利用Faster RCNN识别绝缘子图像过程中定位不够准确的问题,提出一种注意力机制和Faster RCNN相结合的绝缘子识别方法。在特征提取阶段引入基于注意力机制的挤压与激励网络(Squeeze-and-Excitation Networks,SENet)结构,使模型能够... 针对利用Faster RCNN识别绝缘子图像过程中定位不够准确的问题,提出一种注意力机制和Faster RCNN相结合的绝缘子识别方法。在特征提取阶段引入基于注意力机制的挤压与激励网络(Squeeze-and-Excitation Networks,SENet)结构,使模型能够关注与目标相关的特征通道并弱化其他无关的特征通道;根据绝缘子的特点,对区域建议网络(region proposal network,RPN)生成锚点(anchor)的比例和尺度进行调整;在全连接层运用注意力机制对周围建议框的特征向量赋予不同权重并进行融合,更新目标建议框的特征向量。实验结果表明:与传统的Faster RCNN算法相比,改进后的算法能够较好地识别出绝缘子。 展开更多
关键词 Faster RCNN 绝缘子 注意力机制 senet 特征通道 RPN 建议框 特征向量
在线阅读 下载PDF
嵌套网络模型下的相似图像检索方法 被引量:2
17
作者 倪翠 王朋 +1 位作者 朱元汀 张东 《应用科学学报》 CAS CSCD 北大核心 2022年第3期400-410,共11页
对深度学习领域的稠密卷积网络(dense convolutional network,DenseNet)进行改进,提出了一种嵌套网络模型下的相似图像检索方法。该方法主要通过嵌入压缩和激励网络(squeeze-and-excitation network,SENet),调整原DenseNet网络结构,优... 对深度学习领域的稠密卷积网络(dense convolutional network,DenseNet)进行改进,提出了一种嵌套网络模型下的相似图像检索方法。该方法主要通过嵌入压缩和激励网络(squeeze-and-excitation network,SENet),调整原DenseNet网络结构,优化特征提取模块,从而提高图像检索的准确率。在整个深度学习的过程中,给图像特征通道设置合理的权值,抑制图像中的无效特征,能够进一步提高图像的检索速度。实验结果表明,所提算法能够加强图像有效特征的传递,无论从精度和速度方面均可得到较好的图像检索结果。 展开更多
关键词 稠密卷积网络 压缩和激励网络 嵌套 抑制无效特征 图像检索
在线阅读 下载PDF
双向特征融合与注意力机制结合的目标检测 被引量:18
18
作者 赵文清 杨盼盼 《智能系统学报》 CSCD 北大核心 2021年第6期1098-1105,共8页
目标检测使用特征金字塔检测不同尺度的物体时,忽略了高层信息和低层信息之间的关系,导致检测效果差;此外,针对某些尺度的目标,检测中容易出现漏检。本文提出双向特征融合与注意力机制结合的方法进行目标检测。首先,对SSD(single shot m... 目标检测使用特征金字塔检测不同尺度的物体时,忽略了高层信息和低层信息之间的关系,导致检测效果差;此外,针对某些尺度的目标,检测中容易出现漏检。本文提出双向特征融合与注意力机制结合的方法进行目标检测。首先,对SSD(single shot multibox detector)模型深层特征层与浅层特征层进行特征融合,然后将得到的特征与深层特征层进行融合。其次,在双向融合中加入了通道注意力机制,增强了语义信息。最后,提出了一种改进的正负样本判定策略,降低目标的漏检率。将本文提出的算法与当前主流算法在VOC数据集上进行了比较,结果表明,本文提出的算法在对目标进行检测时,目标平均准确率有较大提高。 展开更多
关键词 特征金字塔 双向融合 特征提取 senet注意力机制 样本 语义信息 目标检测 深度学习
在线阅读 下载PDF
一种用于石油化工厂环境下的仪表自动检测方法 被引量:4
19
作者 李伟 王飒 +2 位作者 丁健刚 陈昊 肖力炀 《西安石油大学学报(自然科学版)》 CAS 北大核心 2022年第2期102-109,共8页
针对石油化工厂中人工抄表导致的低效、高误差和成本高等弊端,以及仪表图像拍摄条件场景复杂等问题,提出了一种基于改进Faster RCNN模型的工业数字表检测方法。首先,在特征提取网络阶段对卷积层低层和高层的网络特征进行融合,提高模型... 针对石油化工厂中人工抄表导致的低效、高误差和成本高等弊端,以及仪表图像拍摄条件场景复杂等问题,提出了一种基于改进Faster RCNN模型的工业数字表检测方法。首先,在特征提取网络阶段对卷积层低层和高层的网络特征进行融合,提高模型对细粒度细节和小目标的敏感度;其次,结合SENet网络结构,使模型关注不同通道的重要程度,通过分配不同的学习权重来强化对目标的关注度;最后,利用RPN网络进行最后处理,提取出数字表图像的边界框位置信息。结果表明,本文提出的模型检测精度为97.3%,相对于传统目标检测算法来说能更精准地识别出数字表。 展开更多
关键词 Faster RCNN 特征融合 senet 数字表检测
在线阅读 下载PDF
改进的多尺度火焰检测方法 被引量:12
20
作者 侯易呈 王慧琴 王可 《液晶与显示》 CAS CSCD 北大核心 2021年第5期751-759,共9页
网络层数的加深会造成对火焰目标深层特征细节信息表征能力减弱,同时提取了低相关度的冗余特征,导致火焰识别精度不高。针对该问题,提出了一种基于改进Faster R-CNN的火焰检测方法,以提高在深层网络下的火焰识别精度。首先利用ResNet50... 网络层数的加深会造成对火焰目标深层特征细节信息表征能力减弱,同时提取了低相关度的冗余特征,导致火焰识别精度不高。针对该问题,提出了一种基于改进Faster R-CNN的火焰检测方法,以提高在深层网络下的火焰识别精度。首先利用ResNet50网络提取火焰特征,并添加SENet模块降低火焰目标冗余特征;然后将深层特征和浅层特征进行多尺度特征融合,增强深层特征的细节信息;最后训练网络,实现对火焰目标的识别定位。实验通过构建VOC火焰数据集进行网络训练,使用测试集进行检测,并进行特征图可视化对比,相比于改进前模型,本文模型平均精度提高了7.78%,召回率提高了9.05%,精确率提高了12.54%。本文提出的火焰目标检测模型,通过结合注意力机制模块和多尺度特征融合机制,能够有效进行火焰目标特征提取,火焰目标的检测结果更加准确。 展开更多
关键词 目标检测 卷积网络 多尺度特征融合 Faster R-CNN senet
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部