The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging at...The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems.展开更多
Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed ...Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed satellites,ground users now can be covered by multiple visible satellites,but also face complex handover issues with such massive high-mobility satellites in multi-layer.The end-to-end routing is also affected by the handover behavior.In this paper,we propose an intelligent handover strategy dedicated to multi-layer LEO mega-constellation networks.Firstly,an analytic model is utilized to rapidly estimate the end-to-end propagation latency as a key handover factor to construct a multi-objective optimization model.Subsequently,an intelligent handover strategy is proposed by employing the Dueling Double Deep Q Network(D3QN)-based deep reinforcement learning algorithm for single-layer constellations.Moreover,an optimal crosslayer handover scheme is proposed by predicting the latency-jitter and minimizing the cross-layer overhead.Simulation results demonstrate the superior performance of the proposed method in the multi-layer LEO mega-constellation,showcasing reductions of up to 8.2%and 59.5%in end-to-end latency and jitter respectively,when compared to the existing handover strategies.展开更多
Cutting off or controlling the enemy’s power supply at critical moments or strategic locations may result in a cascade failure,thus gaining an advantage in a war.However,the exist-ing cascading failure modeling analy...Cutting off or controlling the enemy’s power supply at critical moments or strategic locations may result in a cascade failure,thus gaining an advantage in a war.However,the exist-ing cascading failure modeling analysis of interdependent net-works is insufficient for describing the load characteristics and dependencies of subnetworks,and it is difficult to use for model-ing and failure analysis of power-combat(P-C)coupling net-works.This paper considers the physical characteristics of the two subnetworks and studies the mechanism of fault propaga-tion between subnetworks and across systems.Then the surviv-ability of the coupled network is evaluated.Firstly,an integrated modeling approach for the combat system and power system is predicted based on interdependent network theory.A heteroge-neous one-way interdependent network model based on proba-bility dependence is constructed.Secondly,using the operation loop theory,a load-capacity model based on combat-loop betweenness is proposed,and the cascade failure model of the P-C coupling system is investigated from three perspectives:ini-tial capacity,allocation strategy,and failure mechanism.Thirdly,survivability indexes based on load loss rate and network sur-vival rate are proposed.Finally,the P-C coupling system is con-structed based on the IEEE 118-bus system to demonstrate the proposed method.展开更多
In order to investigate the influence of hybrid coupling on the synchronization of delayed neural networks, by choosing an improved delay-dependent Lyapunov-Krasovskii functional, one less conservative asymptotical cr...In order to investigate the influence of hybrid coupling on the synchronization of delayed neural networks, by choosing an improved delay-dependent Lyapunov-Krasovskii functional, one less conservative asymptotical criterion based on linear matrix inequality (LMI) is established. The Kronecker product and convex combination techniques are employed. Also the bounds of time-varying delays and delay derivatives are fully considered. By adjusting the inner coupling matrix parameters and using the Matlab LMI toolbox, the design and applications of addressed coupled networks can be realized. Finally, the efficiency and applicability of the proposed results are illustrated by a numerical example with simulations.展开更多
Based on the introduction of the connotations and characteristics of tourism industrial eco-network,it has expatiated on the connotations of and approaches to enterprise coupling in tourism industrial eco-network.As t...Based on the introduction of the connotations and characteristics of tourism industrial eco-network,it has expatiated on the connotations of and approaches to enterprise coupling in tourism industrial eco-network.As there are different understandings and definitions of these connotations,the following four aspects must be achieved in order to realize coupling in the real sense for the enterprises in the network.① Establish the idea of "the whole is larger than the sum of all the parts",and construct interests community of tourism industrial eco-network.② Construct cooperation mechanism of joint struggle to transfer the advantages of the single to the advantages of the whole.③ Create and maintain strong service culture.④ Avoid as many service blunders as possible and construct damage warning mechanism in industrial eco-network.With the construction of the game model of tourism enterprise coupling and corresponding analysis,the results indicate that the mode of loose cooperation between enterprises in the tourism industry could hardly reach any forceful binding agreements.Consequently it is hard to realize the coordinated effects brought about by the cooperative game of tourism enterprise coupling and these enterprises would often come to a "prisoner dilemma" because of present tiny benefits.In the end,it suggests that during the process of competition tourism enterprises should also strengthen mutual cooperation as relying upon the platform of industrial eco-network.展开更多
The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activa...The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activation dynamics in neural networks, and the stability of computing in structural analysis and design were stated briefly. It was successfully applied to nonlinear neural network to evaluate the stability of underground stope structure in a gold mine. With the application of BP network, it is proven that the neuro-com- puting is a practical and advanced tool for solving large-scale underground rock engineering problems.展开更多
All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend or/network topologies are tasks o...All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend or/network topologies are tasks of both great theoretical importance and broad practical significance. In this paper we study the oscillatory behaviors of excitable complex networks (ECNs) and find some interesting dynamic behaviors of ECNs in oscillatory probability, the multiplicity of oscillatory attractors, period distribution, and different types of oscillatory patterns (e.g., periodic, quasiperiodic, and chaotic). In these aspects, we further explore strikingly sharp differences among network dynamics induced by different topologies (random or scale-free topologies) and different interaction structures (symmetric or asymmetric couplings). The mechanisms behind these differences are explained physically.展开更多
In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper c...In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation.展开更多
This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is trans...This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is transformed into the stability analysis of some linear switched delay systems. Then, when all subnetworks are synchronizable, a delay-dependent sufficient condition is given in terms of linear matrix inequalities (LMIs) which guarantees the solvability of the synchronization problem under an average dwell time scheme. We extend this result to the case that not all subnetworks are synchronizable. It is shown that in addition to average dwell time, if the ratio of the total activation time of synchronizable and non-synchronizable subnetworks satisfy an extra condition, then the problem is also solvable. Two numerical examples of delayed dynamical networks with switching topology are given, which demonstrate the effectiveness of obtained results.展开更多
To increase airspace capacity, alleviate flight delay,and improve network robustness, an optimization method of multi-layer air transportation networks is put forward based on Laplacian energy maximization. The effect...To increase airspace capacity, alleviate flight delay,and improve network robustness, an optimization method of multi-layer air transportation networks is put forward based on Laplacian energy maximization. The effectiveness of taking Laplacian energy as a measure of network robustness is validated through numerical experiments. The flight routes addition optimization model is proposed with the principle of maximizing Laplacian energy. Three methods including the depth-first search( DFS) algorithm, greedy algorithm and Monte-Carlo tree search( MCTS) algorithm are applied to solve the proposed problem. The trade-off between system performance and computational efficiency is compared through simulation experiments. Finally, a case study on Chinese airport network( CAN) is conducted using the proposed model. Through encapsulating it into multi-layer infrastructure via k-core decomposition algorithm, Laplacian energy maximization for the sub-networks is discussed which can provide a useful tool for the decision-makers to optimize the robustness of the air transportation network on different scales.展开更多
The mutual coupling between neurons in a realistic neuronal system is much complex, and a two-layer neuronal network is designed to investigate the transition of electric activities of neurons. The Hindmarsh–Rose neu...The mutual coupling between neurons in a realistic neuronal system is much complex, and a two-layer neuronal network is designed to investigate the transition of electric activities of neurons. The Hindmarsh–Rose neuron model is used to describe the local dynamics of each neuron, and neurons in the two-layer networks are coupled in dislocated type. The coupling intensity between two-layer networks, and the coupling ratio(Pro), which defines the percentage involved in the coupling in each layer, are changed to observe the synchronization transition of collective behaviors in the two-layer networks. It is found that the two-layer networks of neurons becomes synchronized with increasing the coupling intensity and coupling ratio(Pro) beyond certain thresholds. An ordered wave in the first layer is useful to wake up the rest state in the second layer, or suppress the spatiotemporal state in the second layer under coupling by generating target wave or spiral waves. And the scheme of dislocation coupling can be used to suppress spatiotemporal chaos and excite quiescent neurons.展开更多
In multi-layer satellite-terrestrial network, Contact Graph Routing(CGR) uses the contact information among satellites to compute routes. However, due to the resource constraints in satellites, it is extravagant to co...In multi-layer satellite-terrestrial network, Contact Graph Routing(CGR) uses the contact information among satellites to compute routes. However, due to the resource constraints in satellites, it is extravagant to configure lots of the potential contacts into contact plans. What's more, a huge contact plan makes the computing more complex, which further increases computing time. As a result, how to design an efficient contact plan becomes crucial for multi-layer satellite network, which usually has a large scaled topology. In this paper, we propose a distributed contact plan design scheme for multi-layer satellite network by dividing a large contact plan into several partial parts. Meanwhile, a duration based inter-layer contact selection algorithm is proposed to handle contacts disruption problem. The performance of the proposed design was evaluated on our Identifier/Locator split based satellite-terrestrial network testbed with 79 simulation nodes. Experiments showed that the proposed design is able to reduce the data delivery delay.展开更多
Several software network models are constructed based on the relationships between classes in the object-oriented software systems.Then,a variety of well-known open source software applications are statistically analy...Several software network models are constructed based on the relationships between classes in the object-oriented software systems.Then,a variety of well-known open source software applications are statistically analyzed by using these models.The results show that: (1) Dependency network does play a key role in software architecture;(2) The exponents of in-degree and total-degree distribution functions of different networks differ slightly,while the exponent of out-degree varies obviously;(3) Weak-coupling relationships have greater impact on software architecture than strong-coupling relationships.Finally,a theoretically analysis on these statistical phenomena is proposed from the perspectives of software develop technology,develop process and developer’s habits,respectively.展开更多
Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many ...Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many resources and takes too long to compute,while neural network forecasting lacks regional data to train regional forecasting models.In this study,we used the DUAL wind model to build typhoon wind fields,and constructed a typhoon database of 75 processes in the northern South China Sea using the coupled Advanced Circulation-Simulating Waves Nearshore(ADCIRC-SWAN)model.Then,a neural network with a Res-U-Net structure was trained using the typhoon database to forecast the typhoon processes in the validation dataset,and an excellent storm surge forecasting effect was achieved in the Pearl River Estuary region.The storm surge forecasting effect of stronger typhoons was improved by adding a branch structure and transfer learning.展开更多
Coal and coalbed methane(CBM)coordinated exploitation is a key technology for the safe exploitation of both resources.However,existing studies lack the quantification and evaluation of the degree of coordination betwe...Coal and coalbed methane(CBM)coordinated exploitation is a key technology for the safe exploitation of both resources.However,existing studies lack the quantification and evaluation of the degree of coordination between coal mining and coalbed methane extraction.In this study,the concept of coal and coalbed methane coupling coordinated exploitation was proposed,and the corresponding evaluation model was established using the Bayesian principle.On this basis,the objective function of coal and coalbed methane coordinated exploitation deployment was established,and the optimal deployment was determined through a cuckoo search.The results show that clarifying the coupling coordinated level of coal and coalbed methane resource exploitation in coal mines is conducive to adjusting the deployment plan in advance.The case study results show that the evaluation and intelligent deployment method proposed in this paper can effectively evaluate the coupling coordinated level of coal and coalbed methane resource exploitation and intelligently optimize the deployment of coal mine operations.The optimization results demonstrate that the safe and efficient exploitation of coal and CBM resources is promoted,and coal mining and coalbed methane extraction processes show greater cooperation.The observations and findings of this study provide a critical reference for coal mine resource exploitation in the future.展开更多
Under the background of the rapid development of ground mobile communication,the advantages of high coverage,survivability,and flexibility of satellite communication provide air support to the construction of space in...Under the background of the rapid development of ground mobile communication,the advantages of high coverage,survivability,and flexibility of satellite communication provide air support to the construction of space information network.According to the requirements of the future space information communication,a software-defined Space-Air-Ground Integrated network architecture was proposed.It consisted of layered structure satellite backbone network,deep space communication network,the stratosphere communication network and the ground network.The Space-Air-Ground Integrated network was supported by the satellite backbone network.It provided data relay for the missions such as deep space exploration and controlled the deep-space spacecraft when needed.In addition,it safeguarded the anti-destructibility of stratospheric communication and assisted the stratosphere to supplement ground network communication.In this paper,algorithm requirements of the congestion control and routing of satellite backbone protocols for heterogeneous users’services were proposed.The algorithm requirements of distinguishing different service objects for the deep space communication and stratospheric communication network protocols were described.Considering the realistic demand for the dynamic coverage of the satellite backbone network and node cost,the multi-layer satellite backbone network architecture was constructed.On this basis,the proposed Software-defined Space-Air-Ground Integrated network architecture could be built as a large,scalable and efficient communication network that could be integrated into space,air,and ground.展开更多
In recent years,most studies of complex networks have focused on a single network and ignored the interaction of multiple networks,much less the coupling mechanisms between multiplex networks.In this paper we investig...In recent years,most studies of complex networks have focused on a single network and ignored the interaction of multiple networks,much less the coupling mechanisms between multiplex networks.In this paper we investigate synchronization phenomena in multilayer networks with nonidentical topological structures based on three specific coupling mechanisms:assortative,disassortative,and anti-assortative couplings.We find rich and complex synchronous dynamic phenomena in coupled networks.We also study the behavior of effective frequencies for layers I and II to understand the underlying microscopic dynamics occurring under the three different coupling mechanisms.In particular,the coupling mechanisms proposed here have strong robustness and effectiveness and can produce abundant synchronization phenomena in coupled networks.展开更多
In this paper,the fixed-time outer synchronization of complex networks with noise coupling is investigated.Based on the theory of fixed-time stability and matrix inequalities,sufficient conditions for fixed-time outer...In this paper,the fixed-time outer synchronization of complex networks with noise coupling is investigated.Based on the theory of fixed-time stability and matrix inequalities,sufficient conditions for fixed-time outer synchronization are established and the estimation of the upper bound of the setting time is obtained.The result shows that the setting time can be adjusted to a desired value regardless of the initial states.Numerical simulations are performed to verify the effectiveness of the theoretical results.The effects of control parameters and the density of controlled nodes on the converging time are studied.展开更多
Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in connection strengths. In addition, the information spreading through a complex network is often ...Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in connection strengths. In addition, the information spreading through a complex network is often associated with time delays due to the finite speed of signal transmission over a distance. Hence, the weighted complex network with coupling delays have meaningful implications in real world, and resultantly gains increasing attention in various fields of science and engineering. Based on the theory of asymptotic stability of linear time-delay systems, synchronization stability of the weighted complex dynamical network with coupling delays is investigated, and simple criteria are obtained for both delay-independent and delay-dependent stabilities of synchronization states. The obtained criteria in this paper encompass the established results in the literature as special cases. Some examples are given to illustrate the theoretical results.展开更多
Artificial neural networks(ANNs)are one of the hottest topics in computer science and artificial intelligence due to their potential and advantages in analyzing real-world problems in various disciplines,including but...Artificial neural networks(ANNs)are one of the hottest topics in computer science and artificial intelligence due to their potential and advantages in analyzing real-world problems in various disciplines,including but not limited to physics,biology,chemistry,and engineering.However,ANNs lack several key characteristics of biological neural networks,such as sparsity,scale-freeness,and small-worldness.The concept of sparse and scale-free neural networks has been introduced to fill this gap.Network sparsity is implemented by removing weak weights between neurons during the learning process and replacing them with random weights.When the network is initialized,the neural network is fully connected,which means the number of weights is four times the number of neurons.In this study,considering that a biological neural network has some degree of initial sparsity,we design an ANN with a prescribed level of initial sparsity.The neural network is tested on handwritten digits,Arabic characters,CIFAR-10,and Reuters newswire topics.Simulations show that it is possible to reduce the number of weights by up to 50%without losing prediction accuracy.Moreover,in both cases,the testing time is dramatically reduced compared with fully connected ANNs.展开更多
基金Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2025R319)Riyadh,Saudi Arabia and Prince Sultan University for covering the article processing charges(APC)associated with this publication.Special acknowledgement to Automated Systems&Soft Computing Lab(ASSCL),Prince Sultan University,Riyadh,Saudi Arabia.
文摘The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems.
基金supported by the National Natural Science Foundation of China(No.62401597)Natural Science Foundation of Hunan Province,China(No.2024JJ6469)the Research Project of National University of Defense Technology,China(No.ZK22-02).
文摘Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed satellites,ground users now can be covered by multiple visible satellites,but also face complex handover issues with such massive high-mobility satellites in multi-layer.The end-to-end routing is also affected by the handover behavior.In this paper,we propose an intelligent handover strategy dedicated to multi-layer LEO mega-constellation networks.Firstly,an analytic model is utilized to rapidly estimate the end-to-end propagation latency as a key handover factor to construct a multi-objective optimization model.Subsequently,an intelligent handover strategy is proposed by employing the Dueling Double Deep Q Network(D3QN)-based deep reinforcement learning algorithm for single-layer constellations.Moreover,an optimal crosslayer handover scheme is proposed by predicting the latency-jitter and minimizing the cross-layer overhead.Simulation results demonstrate the superior performance of the proposed method in the multi-layer LEO mega-constellation,showcasing reductions of up to 8.2%and 59.5%in end-to-end latency and jitter respectively,when compared to the existing handover strategies.
基金supported by the National Natural Science Foundation of China(72271242)Hunan Provincial Natural Science Foundation of China for Excellent Young Scholars(2022JJ20046).
文摘Cutting off or controlling the enemy’s power supply at critical moments or strategic locations may result in a cascade failure,thus gaining an advantage in a war.However,the exist-ing cascading failure modeling analysis of interdependent net-works is insufficient for describing the load characteristics and dependencies of subnetworks,and it is difficult to use for model-ing and failure analysis of power-combat(P-C)coupling net-works.This paper considers the physical characteristics of the two subnetworks and studies the mechanism of fault propaga-tion between subnetworks and across systems.Then the surviv-ability of the coupled network is evaluated.Firstly,an integrated modeling approach for the combat system and power system is predicted based on interdependent network theory.A heteroge-neous one-way interdependent network model based on proba-bility dependence is constructed.Secondly,using the operation loop theory,a load-capacity model based on combat-loop betweenness is proposed,and the cascade failure model of the P-C coupling system is investigated from three perspectives:ini-tial capacity,allocation strategy,and failure mechanism.Thirdly,survivability indexes based on load loss rate and network sur-vival rate are proposed.Finally,the P-C coupling system is con-structed based on the IEEE 118-bus system to demonstrate the proposed method.
基金The National Natural Science Foundation of China (No.60764001, 60835001,60875035, 61004032)the Postdoctoral Key Research Fund of Southeast Universitythe Natural Science Foundation of Jiangsu Province(No.BK2008294)
文摘In order to investigate the influence of hybrid coupling on the synchronization of delayed neural networks, by choosing an improved delay-dependent Lyapunov-Krasovskii functional, one less conservative asymptotical criterion based on linear matrix inequality (LMI) is established. The Kronecker product and convex combination techniques are employed. Also the bounds of time-varying delays and delay derivatives are fully considered. By adjusting the inner coupling matrix parameters and using the Matlab LMI toolbox, the design and applications of addressed coupled networks can be realized. Finally, the efficiency and applicability of the proposed results are illustrated by a numerical example with simulations.
基金Supported by Sichuan Circular Economy Research Centre of Sichuan Province Key Research Base of Philosophy and Social Science in2008(XHJJ-0808)~~
文摘Based on the introduction of the connotations and characteristics of tourism industrial eco-network,it has expatiated on the connotations of and approaches to enterprise coupling in tourism industrial eco-network.As there are different understandings and definitions of these connotations,the following four aspects must be achieved in order to realize coupling in the real sense for the enterprises in the network.① Establish the idea of "the whole is larger than the sum of all the parts",and construct interests community of tourism industrial eco-network.② Construct cooperation mechanism of joint struggle to transfer the advantages of the single to the advantages of the whole.③ Create and maintain strong service culture.④ Avoid as many service blunders as possible and construct damage warning mechanism in industrial eco-network.With the construction of the game model of tourism enterprise coupling and corresponding analysis,the results indicate that the mode of loose cooperation between enterprises in the tourism industry could hardly reach any forceful binding agreements.Consequently it is hard to realize the coordinated effects brought about by the cooperative game of tourism enterprise coupling and these enterprises would often come to a "prisoner dilemma" because of present tiny benefits.In the end,it suggests that during the process of competition tourism enterprises should also strengthen mutual cooperation as relying upon the platform of industrial eco-network.
基金This work was financially supported by the Key Project for National Science of "9.5" (Reward Ⅱ for National Science and Technol
文摘The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activation dynamics in neural networks, and the stability of computing in structural analysis and design were stated briefly. It was successfully applied to nonlinear neural network to evaluate the stability of underground stope structure in a gold mine. With the application of BP network, it is proven that the neuro-com- puting is a practical and advanced tool for solving large-scale underground rock engineering problems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174034,11135001,11205041,and 11305112)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20130282)
文摘All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend or/network topologies are tasks of both great theoretical importance and broad practical significance. In this paper we study the oscillatory behaviors of excitable complex networks (ECNs) and find some interesting dynamic behaviors of ECNs in oscillatory probability, the multiplicity of oscillatory attractors, period distribution, and different types of oscillatory patterns (e.g., periodic, quasiperiodic, and chaotic). In these aspects, we further explore strikingly sharp differences among network dynamics induced by different topologies (random or scale-free topologies) and different interaction structures (symmetric or asymmetric couplings). The mechanisms behind these differences are explained physically.
基金This project (No. 49070196) is funded by the National Science Foundation of China.
文摘In a large area of the east—central Asian continent there is a unified seismic network system composed of two families of large—seismic belts that intersect conjugately. Such a seismic network in the middle—upper crust is actually a response to the plastic flow network in the lower lithosphere including the lower crust and lithospheric mantle. The existence of the unified plastic flow system confirms that the driving force for intraplate tectonic deformation results mainly from the compression of the India plate, while the long-range transmission of the force is carried out chiefly by means of plastic flow. The plastic flow network has a control over the intraplate tectonic deformation.
基金the National Natural Science Foundation of China (No.60874024, 60574013).
文摘This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is transformed into the stability analysis of some linear switched delay systems. Then, when all subnetworks are synchronizable, a delay-dependent sufficient condition is given in terms of linear matrix inequalities (LMIs) which guarantees the solvability of the synchronization problem under an average dwell time scheme. We extend this result to the case that not all subnetworks are synchronizable. It is shown that in addition to average dwell time, if the ratio of the total activation time of synchronizable and non-synchronizable subnetworks satisfy an extra condition, then the problem is also solvable. Two numerical examples of delayed dynamical networks with switching topology are given, which demonstrate the effectiveness of obtained results.
基金The National Natural Science Foundation of China(No.61573098,71401072)the Natural Science Foundation of Jiangsu Province(No.BK20130814)
文摘To increase airspace capacity, alleviate flight delay,and improve network robustness, an optimization method of multi-layer air transportation networks is put forward based on Laplacian energy maximization. The effectiveness of taking Laplacian energy as a measure of network robustness is validated through numerical experiments. The flight routes addition optimization model is proposed with the principle of maximizing Laplacian energy. Three methods including the depth-first search( DFS) algorithm, greedy algorithm and Monte-Carlo tree search( MCTS) algorithm are applied to solve the proposed problem. The trade-off between system performance and computational efficiency is compared through simulation experiments. Finally, a case study on Chinese airport network( CAN) is conducted using the proposed model. Through encapsulating it into multi-layer infrastructure via k-core decomposition algorithm, Laplacian energy maximization for the sub-networks is discussed which can provide a useful tool for the decision-makers to optimize the robustness of the air transportation network on different scales.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11265008,11372122,and 11365014
文摘The mutual coupling between neurons in a realistic neuronal system is much complex, and a two-layer neuronal network is designed to investigate the transition of electric activities of neurons. The Hindmarsh–Rose neuron model is used to describe the local dynamics of each neuron, and neurons in the two-layer networks are coupled in dislocated type. The coupling intensity between two-layer networks, and the coupling ratio(Pro), which defines the percentage involved in the coupling in each layer, are changed to observe the synchronization transition of collective behaviors in the two-layer networks. It is found that the two-layer networks of neurons becomes synchronized with increasing the coupling intensity and coupling ratio(Pro) beyond certain thresholds. An ordered wave in the first layer is useful to wake up the rest state in the second layer, or suppress the spatiotemporal state in the second layer under coupling by generating target wave or spiral waves. And the scheme of dislocation coupling can be used to suppress spatiotemporal chaos and excite quiescent neurons.
基金supported by National High Technology of China ("863 program") under Grant No. 2015AA015702NSAF under Grant No. U1530118+1 种基金NSFC under Grant No. 61602030National Basic Research Program of China ("973 program") under Grant No. 2013CB329101
文摘In multi-layer satellite-terrestrial network, Contact Graph Routing(CGR) uses the contact information among satellites to compute routes. However, due to the resource constraints in satellites, it is extravagant to configure lots of the potential contacts into contact plans. What's more, a huge contact plan makes the computing more complex, which further increases computing time. As a result, how to design an efficient contact plan becomes crucial for multi-layer satellite network, which usually has a large scaled topology. In this paper, we propose a distributed contact plan design scheme for multi-layer satellite network by dividing a large contact plan into several partial parts. Meanwhile, a duration based inter-layer contact selection algorithm is proposed to handle contacts disruption problem. The performance of the proposed design was evaluated on our Identifier/Locator split based satellite-terrestrial network testbed with 79 simulation nodes. Experiments showed that the proposed design is able to reduce the data delivery delay.
基金The paper is supported by the National High Technology Research and Development Program of China (863 Program) (No.2009AA01Z439) and the National Natural Science Foundation of China (U0835001)
文摘Several software network models are constructed based on the relationships between classes in the object-oriented software systems.Then,a variety of well-known open source software applications are statistically analyzed by using these models.The results show that: (1) Dependency network does play a key role in software architecture;(2) The exponents of in-degree and total-degree distribution functions of different networks differ slightly,while the exponent of out-degree varies obviously;(3) Weak-coupling relationships have greater impact on software architecture than strong-coupling relationships.Finally,a theoretically analysis on these statistical phenomena is proposed from the perspectives of software develop technology,develop process and developer’s habits,respectively.
基金supported by the National Natural Science Foundation of China(Grant No.42076214)Natural Science Foundation of Shandong Province(Grant No.ZR2024QD057).
文摘Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many resources and takes too long to compute,while neural network forecasting lacks regional data to train regional forecasting models.In this study,we used the DUAL wind model to build typhoon wind fields,and constructed a typhoon database of 75 processes in the northern South China Sea using the coupled Advanced Circulation-Simulating Waves Nearshore(ADCIRC-SWAN)model.Then,a neural network with a Res-U-Net structure was trained using the typhoon database to forecast the typhoon processes in the validation dataset,and an excellent storm surge forecasting effect was achieved in the Pearl River Estuary region.The storm surge forecasting effect of stronger typhoons was improved by adding a branch structure and transfer learning.
基金supported by the Natural Science Foundation of Chongqing,China(No.cstc2020jcyj-msxmX0836)the Fundamental Research Funds for the Central Universities(No.2020CDJ-LHZZ-002)the National Natural Science Foundation of China(No.52074041).
文摘Coal and coalbed methane(CBM)coordinated exploitation is a key technology for the safe exploitation of both resources.However,existing studies lack the quantification and evaluation of the degree of coordination between coal mining and coalbed methane extraction.In this study,the concept of coal and coalbed methane coupling coordinated exploitation was proposed,and the corresponding evaluation model was established using the Bayesian principle.On this basis,the objective function of coal and coalbed methane coordinated exploitation deployment was established,and the optimal deployment was determined through a cuckoo search.The results show that clarifying the coupling coordinated level of coal and coalbed methane resource exploitation in coal mines is conducive to adjusting the deployment plan in advance.The case study results show that the evaluation and intelligent deployment method proposed in this paper can effectively evaluate the coupling coordinated level of coal and coalbed methane resource exploitation and intelligently optimize the deployment of coal mine operations.The optimization results demonstrate that the safe and efficient exploitation of coal and CBM resources is promoted,and coal mining and coalbed methane extraction processes show greater cooperation.The observations and findings of this study provide a critical reference for coal mine resource exploitation in the future.
基金This work is supported by Fundamental Research Funds for the Central Universities of China(328201911)C.G.(Chao Guo),the Open Project Program of National Engineering Laboratory for Agri-product Quality Traceability,C.G.(Chao Guo)+2 种基金Beijing Technology and Business University(BTBU)No.AQT-2018Y-B4,C.G.(Chao Guo)Higher Education Department of the Ministry of Education Industry-university Cooperative Education Project,C.G.(Chao Guo)Education and Teaching Reform Project of Beijing Electronic and Technology Institute,C.G.(Chao Guo).
文摘Under the background of the rapid development of ground mobile communication,the advantages of high coverage,survivability,and flexibility of satellite communication provide air support to the construction of space information network.According to the requirements of the future space information communication,a software-defined Space-Air-Ground Integrated network architecture was proposed.It consisted of layered structure satellite backbone network,deep space communication network,the stratosphere communication network and the ground network.The Space-Air-Ground Integrated network was supported by the satellite backbone network.It provided data relay for the missions such as deep space exploration and controlled the deep-space spacecraft when needed.In addition,it safeguarded the anti-destructibility of stratospheric communication and assisted the stratosphere to supplement ground network communication.In this paper,algorithm requirements of the congestion control and routing of satellite backbone protocols for heterogeneous users’services were proposed.The algorithm requirements of distinguishing different service objects for the deep space communication and stratospheric communication network protocols were described.Considering the realistic demand for the dynamic coverage of the satellite backbone network and node cost,the multi-layer satellite backbone network architecture was constructed.On this basis,the proposed Software-defined Space-Air-Ground Integrated network architecture could be built as a large,scalable and efficient communication network that could be integrated into space,air,and ground.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.71801066 and 71704046)the Natural Science Foundation of Anhui Province,China(Grant Nos.1808085QG225 and 1908085MA22)+1 种基金the FundamentalResearch Funds for the Central Universities,China(Grant Nos.JZ2020HGTB0021 and JZ2021HGTB0065)the Outstanding Young Talent Support Program in Universities of Anhui Province in 2020 year。
文摘In recent years,most studies of complex networks have focused on a single network and ignored the interaction of multiple networks,much less the coupling mechanisms between multiplex networks.In this paper we investigate synchronization phenomena in multilayer networks with nonidentical topological structures based on three specific coupling mechanisms:assortative,disassortative,and anti-assortative couplings.We find rich and complex synchronous dynamic phenomena in coupled networks.We also study the behavior of effective frequencies for layers I and II to understand the underlying microscopic dynamics occurring under the three different coupling mechanisms.In particular,the coupling mechanisms proposed here have strong robustness and effectiveness and can produce abundant synchronization phenomena in coupled networks.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11711530203 and 11771443the Fundamental Research Funds for the Central Universities under Grant No.2015XKMS076
文摘In this paper,the fixed-time outer synchronization of complex networks with noise coupling is investigated.Based on the theory of fixed-time stability and matrix inequalities,sufficient conditions for fixed-time outer synchronization are established and the estimation of the upper bound of the setting time is obtained.The result shows that the setting time can be adjusted to a desired value regardless of the initial states.Numerical simulations are performed to verify the effectiveness of the theoretical results.The effects of control parameters and the density of controlled nodes on the converging time are studied.
基金supported by National Natural Science Foundation of China under Nos. 10702023 and 10832006China Post-doctoral Special Science Foundation No. 200801020+1 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region under Grant No. 2007110020110supported in part by the Project of Knowledge Innovation Program (PKIP) of Chinese Academy of Sciences
文摘Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in connection strengths. In addition, the information spreading through a complex network is often associated with time delays due to the finite speed of signal transmission over a distance. Hence, the weighted complex network with coupling delays have meaningful implications in real world, and resultantly gains increasing attention in various fields of science and engineering. Based on the theory of asymptotic stability of linear time-delay systems, synchronization stability of the weighted complex dynamical network with coupling delays is investigated, and simple criteria are obtained for both delay-independent and delay-dependent stabilities of synchronization states. The obtained criteria in this paper encompass the established results in the literature as special cases. Some examples are given to illustrate the theoretical results.
文摘Artificial neural networks(ANNs)are one of the hottest topics in computer science and artificial intelligence due to their potential and advantages in analyzing real-world problems in various disciplines,including but not limited to physics,biology,chemistry,and engineering.However,ANNs lack several key characteristics of biological neural networks,such as sparsity,scale-freeness,and small-worldness.The concept of sparse and scale-free neural networks has been introduced to fill this gap.Network sparsity is implemented by removing weak weights between neurons during the learning process and replacing them with random weights.When the network is initialized,the neural network is fully connected,which means the number of weights is four times the number of neurons.In this study,considering that a biological neural network has some degree of initial sparsity,we design an ANN with a prescribed level of initial sparsity.The neural network is tested on handwritten digits,Arabic characters,CIFAR-10,and Reuters newswire topics.Simulations show that it is possible to reduce the number of weights by up to 50%without losing prediction accuracy.Moreover,in both cases,the testing time is dramatically reduced compared with fully connected ANNs.