期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
Convolutional Sparse Coding in Gradient Domain for MRI Reconstruction 被引量:1
1
作者 Jiaojiao Xiong Hongyang Lu +1 位作者 Minghui Zhang Qiegen Liu 《自动化学报》 EI CSCD 北大核心 2017年第10期1841-1849,共9页
关键词 梯度图像 稀疏编码 MRI 卷积 应用 分割图像 空间采样 磁共振成像
在线阅读 下载PDF
Structured sparsity assisted online convolution sparse coding and its application on weak signature detection 被引量:1
2
作者 Huijie MA Shunming LI +2 位作者 Jiantao LU Zongzhen ZHANG Siqi GONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第1期266-276,共11页
Due to the strong background noise and the acquisition system noise,the useful characteristics are often difficult to be detected.To solve this problem,sparse coding captures a concise representation of the high-level... Due to the strong background noise and the acquisition system noise,the useful characteristics are often difficult to be detected.To solve this problem,sparse coding captures a concise representation of the high-level features in the signal using the underlying structure of the signal.Recently,an Online Convolutional Sparse Coding(OCSC)denoising algorithm has been proposed.However,it does not consider the structural characteristics of the signal,the sparsity of each iteration is not enough.Therefore,a threshold shrinkage algorithm considering neighborhood sparsity is proposed,and a training strategy from loose to tight is developed to further improve the denoising performance of the algorithm,called Variable Threshold Neighborhood Online Convolution Sparse Coding(VTNOCSC).By embedding the structural sparse threshold shrinkage operator into the process of solving the sparse coefficient and gradually approaching the optimal noise separation point in the training,the signal denoising performance of the algorithm is greatly improved.VTNOCSC is used to process the actual bearing fault signal,the noise interference is successfully reduced and the interest features are more evident.Compared with other existing methods,VTNOCSC has better denoising performance. 展开更多
关键词 Dictionary learning Online convolutional sparse coding(OCSC) Signal denoising Signal processing Weak signature detection
原文传递
Performance Evaluation of Super-Resolution Methods Using Deep-Learning and Sparse-Coding for Improving the Image Quality of Magnified Images in Chest Radiographs
3
作者 Kensuke Umehara Junko Ota +4 位作者 Naoki Ishimaru Shunsuke Ohno Kentaro Okamoto Takanori Suzuki Takayuki Ishida 《Open Journal of Medical Imaging》 2017年第3期100-111,共12页
Purpose: To detect small diagnostic signals such as lung nodules in chest radiographs, radiologists magnify a region-of-interest using linear interpolation methods. However, such methods tend to generate over-smoothed... Purpose: To detect small diagnostic signals such as lung nodules in chest radiographs, radiologists magnify a region-of-interest using linear interpolation methods. However, such methods tend to generate over-smoothed images with artifacts that can make interpretation difficult. The purpose of this study was to investigate the effectiveness of super-resolution methods for improving the image quality of magnified chest radiographs. Materials and Methods: A total of 247 chest X-rays were sampled from the JSRT database, then divided into 93 training cases with non-nodules and 154 test cases with lung nodules. We first trained two types of super-resolution methods, sparse-coding super-resolution (ScSR) and super-resolution convolutional neural network (SRCNN). With the trained super-resolution methods, the high-resolution image was then reconstructed using the super-resolution methods from a low-resolution image that was down-sampled from the original test image. We compared the image quality of the super-resolution methods and the linear interpolations (nearest neighbor and bilinear interpolations). For quantitative evaluation, we measured two image quality metrics: peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). For comparative evaluation of the super-resolution methods, we measured the computation time per image. Results: The PSNRs and SSIMs for the ScSR and the SRCNN schemes were significantly higher than those of the linear interpolation methods (p p p Conclusion: Super-resolution methods provide significantly better image quality than linear interpolation methods for magnified chest radiograph images. Of the two tested schemes, the SRCNN scheme processed the images fastest;thus, SRCNN could be clinically superior for processing radiographs in terms of both image quality and processing speed. 展开更多
关键词 Deep LEARNING SUPER-RESOLUTION SUPER-RESOLUTION convolutional NEURAL Network (SRCNN) sparse-coding SUPER-RESOLUTION (ScSR) CHEST X-Ray
在线阅读 下载PDF
基于低秩与卷积稀疏约束的压缩感知光谱成像重构方法 被引量:1
4
作者 郭高 王攀 +2 位作者 李杰 席特立 邵晓鹏 《光子学报》 北大核心 2025年第6期172-187,共16页
针对压缩感知光谱成像快速重建需求,提出了一种基于低秩与卷积稀疏约束的压缩感知光谱成像重建方法,首先将压缩感知光谱采集系统的重构任务,在卷积稀疏编码的框架下分解成为两部分的重构结果叠加,即低频的平滑主体结构部分和高频的纹理... 针对压缩感知光谱成像快速重建需求,提出了一种基于低秩与卷积稀疏约束的压缩感知光谱成像重建方法,首先将压缩感知光谱采集系统的重构任务,在卷积稀疏编码的框架下分解成为两部分的重构结果叠加,即低频的平滑主体结构部分和高频的纹理细节部分。针对高频的纹理细节部分的重构,提出基于卷积稀疏编码框架,对卷积字典对应的稀疏特征图进行ℓ_(2,1)范数约束,保证了对光谱数据中光谱维度的先验约束,从而提高重构数据中光谱维度的准确度。针对低频的平滑主体部分重构,提出使用全局的卷积稀疏编码,由于使用了针对低频部分所训练的卷积字典,因此使用核范数对卷积特征图进行约束。通过整合两部分的重建约束,实现了对压缩感知光谱成像系统的分步重构。通过仿真实验验证了所提方法的重构结果,在空间与光谱维度相较于主流前沿的重建方法均取得了更高的重构精度,其中空间维度上峰值信噪比至少可提升2 dB以上。 展开更多
关键词 压缩感知 光谱成像 卷积稀疏编码 火箭尾焰光谱 最优化求解
在线阅读 下载PDF
基于加权引导滤波与梯度域卷积稀疏的CT重建
5
作者 马燕 白艳萍 +1 位作者 续婷 程蓉 《测试技术学报》 2025年第5期558-564,572,共8页
对于不完整的医学CT扫描数据,传统算法无法保证重建图像满足诊断要求。针对这种情况,提出了一种基于加权引导滤波与梯度域卷积稀疏编码结合的CT重建算法。该算法首先采用惩罚最小二乘法迭代重建初始CT图像;其次,利用加权引导滤波获取图... 对于不完整的医学CT扫描数据,传统算法无法保证重建图像满足诊断要求。针对这种情况,提出了一种基于加权引导滤波与梯度域卷积稀疏编码结合的CT重建算法。该算法首先采用惩罚最小二乘法迭代重建初始CT图像;其次,利用加权引导滤波获取图像的低频分量,采用带有梯度约束的卷积稀疏编码处理图像的高频分量;最后,将两段分量相结合得到的新图像作为输入继续进行最小二乘逼近,反复迭代重建,直到获得更清晰的图像。实验结果表明,与其他卷积稀疏算法及组稀疏算法相比,该算法可有效抑制噪声和伪影,恢复更多图像的结构和边缘细节信息,获得更优的重建图像。 展开更多
关键词 计算机断层成像 卷积稀疏编码 加权引导滤波 稀疏角度 图像重建
在线阅读 下载PDF
信息驱动的模块化可见光-红外图像融合算法
6
作者 罗涛 陈宁 +2 位作者 朱先有 易何远 段伟文 《浙江科技大学学报》 2025年第3期270-279,316,共11页
【目的】现有的图像融合算法常存在模型冗余与计算量过大及任务间强耦合的问题,不能满足工程应用中的实际需求。针对此,提出一种信息驱动的模块化可见光-红外图像融合算法。【方法】首先,采用注意力卷积稀疏编码器从源图像中提取跨模态... 【目的】现有的图像融合算法常存在模型冗余与计算量过大及任务间强耦合的问题,不能满足工程应用中的实际需求。针对此,提出一种信息驱动的模块化可见光-红外图像融合算法。【方法】首先,采用注意力卷积稀疏编码器从源图像中提取跨模态特征编码;然后,提出互信息(mutual information,MI)驱动的特征引导损失函数和信息熵损失函数以指导特征滤波模块提取同源与孤立特征;最后,建立图像融合模块,对特征进行针对性处理并融合,经解码得到信息最大化保留的高品质融合图像。【结果】在5个不同数据集上的测试结果表明,与同类研究相比,本研究提出的算法在图像融合MI指标上实现了8.3%的平均改进;在目标识别的下游任务中,本算法生成的融合图像相较于原始图像精度最高提升了20.1%;此外,与同类研究相比,本研究提出的算法也实现了计算量与参数量的相对轻量。【结论】本算法可为图像融合算法的精度提高及性能优化提供理论参考。 展开更多
关键词 多模态图像融合 卷积稀疏编码 特征提取 信息熵 互信息
在线阅读 下载PDF
NC地区页岩储层叠前反演道集信噪比提升方法与效果
7
作者 邸志欣 杜鑫 +2 位作者 潘薪羽 刘沛然 成云 《复杂油气藏》 2025年第4期387-395,共9页
叠前反演是页岩储层预测的重要工具,结合测井、地震属性等其他地质和地球物理数据,可构建页岩研究区储层综合模型,提高对储层描述的精度,但它对叠前反演道集质量要求比较高。对页岩目标区NC地区偏移后地震道集进行分析时发现,叠前数据... 叠前反演是页岩储层预测的重要工具,结合测井、地震属性等其他地质和地球物理数据,可构建页岩研究区储层综合模型,提高对储层描述的精度,但它对叠前反演道集质量要求比较高。对页岩目标区NC地区偏移后地震道集进行分析时发现,叠前数据仍存在明显的噪声污染,严重影响到资料信噪比,限制了叠前反演的可靠性和储层预测的精度。因此提出采用基于卷积稀疏编码理论的噪声衰减算法来压制剩余噪声,提高地震叠前道集的信噪比,通过模型试算和实际资料叠前道集优化处理,在NC地区页岩储层反演中取得了显著的效果,叠前道集信噪比取得了显著的改善,有效提升了地震叠前反演的精度和分辨率。 展开更多
关键词 叠前反演 噪声 道集优化 信噪比 卷积稀疏编码
在线阅读 下载PDF
基于CNN的高速铁路侵限异物特征快速提取算法 被引量:39
8
作者 王洋 余祖俊 +1 位作者 朱力强 郭保青 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第5期1267-1275,共9页
高速铁路异物侵限检测系统用来检测是否有异物侵入高速铁路安全限界。为增加系统的可靠性,提出了一种基于卷积神经网络(CNN)的特征快速提取算法。针对特征计算速度缓慢的问题,提出简化的全连接网络结构;针对准确率因简化网络结构而下降... 高速铁路异物侵限检测系统用来检测是否有异物侵入高速铁路安全限界。为增加系统的可靠性,提出了一种基于卷积神经网络(CNN)的特征快速提取算法。针对特征计算速度缓慢的问题,提出简化的全连接网络结构;针对准确率因简化网络结构而下降的问题,提出将卷积层的卷积核进行预先训练;最后为防止因全连接而导致的对称性特征提取,提出加入稀疏性参数的快速特征提取算法。改进后的卷积神经网络,在保证准确率的基础上加快了计算速度,同时满足了实时性和高准确率的要求。实验表明处理单幅图像的速度为0.15 s,准确率为99.5%。 展开更多
关键词 异物识别 卷积神经网络 预先训练卷积核 快速特征提取 稀疏编码
在线阅读 下载PDF
基于语音卷积稀疏迁移学习和并行优选的帕金森病分类算法研究 被引量:2
9
作者 张小恒 李勇明 +4 位作者 王品 曾孝平 颜芳 张艳玲 承欧梅 《电子与信息学报》 EI CSCD 北大核心 2019年第7期1641-1649,共9页
基于语音数据分析的帕金森病(PD)诊断存在样本量小、训练与测试数据分布差异明显的问题。为了解决这些问题,需要从降维和样本扩充两个方面同时进行。因此,该文提出结合加噪加权卷积稀疏迁移学习和样本特征并行优选的PD分类算法。该算法... 基于语音数据分析的帕金森病(PD)诊断存在样本量小、训练与测试数据分布差异明显的问题。为了解决这些问题,需要从降维和样本扩充两个方面同时进行。因此,该文提出结合加噪加权卷积稀疏迁移学习和样本特征并行优选的PD分类算法。该算法可从源域的公共语音库中学习有利于表达PD语音特征的有效结构信息,同时完成降维和样本间接扩充。样本特征并行优选考虑到了样本和语音特征间的关系,从而有助于获取高质量的特征。首先,对公共语音库进行特征提取构造公共特征库;然后,以公共特征库对PD目标域的训练数据集及测试数据集进行稀疏编码,这里分别采用传统稀疏编码(SC)与卷积稀疏编码(CSC)两种稀疏编码方法;接着,对编码后的语音样本段和特征数据进行同时优选;最后,采用支撑向量机(SVM)进行分类。实验结果表明,该算法针对受试者的分类准确率最高值达到了95.0%,均值达到了86.0%,较相关被比较算法有较大提高。此外,研究还发现,相较于传统稀疏编码方法,卷积稀疏编码更有利于提取PD语音数据的高层特征;同样,迁移学习也有利于提高该算法性能。 展开更多
关键词 迁移学习 帕金森病 稀疏编码 卷积稀疏编码 语音样本特征并行优选
在线阅读 下载PDF
基于四通道卷积稀疏编码的图像超分辨率重建方法 被引量:2
10
作者 陈晨 赵建伟 曹飞龙 《计算机应用》 CSCD 北大核心 2018年第6期1777-1783,共7页
针对图像分辨率较低的问题,提出了一种基于四通道卷积稀疏编码的图像超分辨率重建方法。首先,该方法将输入图像依次翻转90°作为四通道的各自输入,通过低通滤波和梯度算子将输入图像分解成高频和低频部分;接着,分别利用卷积稀疏编... 针对图像分辨率较低的问题,提出了一种基于四通道卷积稀疏编码的图像超分辨率重建方法。首先,该方法将输入图像依次翻转90°作为四通道的各自输入,通过低通滤波和梯度算子将输入图像分解成高频和低频部分;接着,分别利用卷积稀疏编码方法和三次插值方法对各通道低分辨率图像的高频部分和低频部分进行重建;最后,对四通道输出图像加权求均值获得重建的高分辨率图像。实验结果表明,所提方法比一些经典的超分辨率重建方法在峰值信噪比(PSNR)、结构相似度(SSIM)和抗噪性上具有更好的重建效果。所提方法不仅克服了重叠补丁破环图像补丁间一致性的缺陷,还提高了重建图像的细节轮廓,加强了重建图像的稳定性。 展开更多
关键词 图像重建 超分辨率 卷积稀疏编码 四通道 稳定性
在线阅读 下载PDF
基于SCMA和卷积编码的联合检测译码算法 被引量:2
11
作者 赵宏伟 刘春阳 +1 位作者 许利 罗霞 《系统工程与电子技术》 EI CSCD 北大核心 2021年第3期847-853,共7页
随着卫星星座及卫星数量的不断增多,卫星测控中海量用户多址问题亟待解决。稀疏码分多址接入(sparse code multiple access,SCMA)技术能在有限信道资源上承载更多用户,有望解决大规模卫星的多址测控问题。针对传统的SCMA译码方式——消... 随着卫星星座及卫星数量的不断增多,卫星测控中海量用户多址问题亟待解决。稀疏码分多址接入(sparse code multiple access,SCMA)技术能在有限信道资源上承载更多用户,有望解决大规模卫星的多址测控问题。针对传统的SCMA译码方式——消息传递算法(massage passing algorithm,MPA)译码性能不理想的问题,提出基于SCMA和卷积编码的联合检测译码(joint detection and decoding,JDD)算法,进行多轮对数似然信息的更新以及多卫星数据交叉提供概率域的迭代,以提高系统译码性能。分析和仿真结果表明,采用基于SCMA和卷积编码的JDD算法可有效提高天基测控系统用户容量,并保证在算法复杂度适中的情况下有效提高系统误比特性能。 展开更多
关键词 稀疏码多址接入 卷积编码 似然信息交换 联合迭代译码
在线阅读 下载PDF
多媒体信号处理的数学理论前沿进展 被引量:1
12
作者 熊红凯 戴文睿 +4 位作者 林宙辰 吴飞 于俊清 申扬眉 徐明星 《中国图象图形学报》 CSCD 北大核心 2020年第1期1-18,共18页
深度学习模型广泛应用于多媒体信号处理领域,通过引入非线性能够极大地提升性能,但是其黑箱结构无法解析地给出最优点和优化条件。因此如何利用传统信号处理理论,基于变换/基映射模型逼近深度学习模型,解析优化问题,成为当前研究的前沿... 深度学习模型广泛应用于多媒体信号处理领域,通过引入非线性能够极大地提升性能,但是其黑箱结构无法解析地给出最优点和优化条件。因此如何利用传统信号处理理论,基于变换/基映射模型逼近深度学习模型,解析优化问题,成为当前研究的前沿问题。本文从信号处理的基础理论出发,分析了当前针对高维非线性非规则结构方法的数学模型和理论边界,主要包括:结构化稀疏表示模型、基于框架理论的深度网络模型、多层卷积稀疏编码模型以及图信号处理理论。详细描述了基于组稀疏性和层次化稀疏性的表示模型和优化方法,分析基于半离散框架和卷积稀疏编码构建深度/多层网络模型,进一步在非欧氏空间上扩展形成图信号处理模型,并对国内外关于记忆网络的研究进展进行了比较。最后,展望了多媒体信号处理的理论模型发展,认为图信号处理通过解析谱图模型的数学性质,解释其中的关联性,为建立广义的大规模非规则多媒体信号处理模型提供理论基础,是未来研究的重要领域之一。 展开更多
关键词 结构化稀疏表示 基于框架理论的深度卷积网络 多层卷积稀疏编码 图信号处理 多媒体信号处理
原文传递
基于多层次视觉语义特征融合的图像检索算法 被引量:4
13
作者 张霞 郑逢斌 《包装工程》 CAS 北大核心 2018年第19期223-232,共10页
目的为了解决低层特征与中层语义属性间出现的语义鸿沟,以及在将低层特征转化为语义属性的过程中易丢失信息,从而会降低检索精度等问题,设计一种多层次视觉语义特征融合的图像检索算法。方法首先分别提取图像的3种中层特征(深度卷积神... 目的为了解决低层特征与中层语义属性间出现的语义鸿沟,以及在将低层特征转化为语义属性的过程中易丢失信息,从而会降低检索精度等问题,设计一种多层次视觉语义特征融合的图像检索算法。方法首先分别提取图像的3种中层特征(深度卷积神经网络(DCNN)特征、Fisher向量、稀疏编码空间金字塔匹配特征(SCSPM));其次,为了对3种特征进行有效融合,定义一种基于图的半监督学习模型,将提取的3个中层特征进行融合,形成一个多层次视觉语义特征,有效结合3种不同中层特征的互补信息,提高图像特征描述,从而降低检索算法中的语义鸿沟;最后,引入具有视觉特性与语义统一的距离函数,根据提取的多层次视觉语义特征来计算查询图像和训练图像的相似度量,完成图像检索任务。结果实验结果表明,与当前检索方法对比,文中算法具有更高的检索精度与效率。结论所提算法具有良好的检索准确度,在医疗、包装商标等领域具有一定的参考价值。 展开更多
关键词 图像检索 深度卷积神经网络 Fisher向量 稀疏编码空间金字塔匹配 多层次视觉语义特征 半监督学习
在线阅读 下载PDF
多层局部块坐标下降法及其驱动的分类重构网络 被引量:3
14
作者 王金甲 张玉珍 +1 位作者 夏静 王凤嫔 《自动化学报》 EI CSCD 北大核心 2020年第12期2647-2661,共15页
卷积稀疏编码(Convolutional sparse coding,CSC)已广泛应用于信号或图像处理、重构和分类等任务中,基于深度学习思想的多层卷积稀疏编码(Multi-layer convolutional sparse coding,ML-CSC)模型的多层基追踪(Multi-layer basic pursuit,... 卷积稀疏编码(Convolutional sparse coding,CSC)已广泛应用于信号或图像处理、重构和分类等任务中,基于深度学习思想的多层卷积稀疏编码(Multi-layer convolutional sparse coding,ML-CSC)模型的多层基追踪(Multi-layer basic pursuit,ML-BP)问题和多层字典学习问题成为研究热点.但基于傅里叶域的交替方向乘子法(Alternating direction multiplier method,ADMM)求解器和基于图像块(Patch)空间域思想的传统基追踪算法不能容易地扩展到多层情况.在切片(Slice)局部处理思想的基础上,本文提出了一种新的多层基追踪算法:多层局部块坐标下降(Multi-layer local block coordinate descent,ML-LoBCoD)算法.在多层迭代软阈值算法(Multi-layer iterative soft threshold algorithm,ML-ISTA)和对应的迭代展开网络ML-ISTA-Net的启发下,提出了对应的迭代展开网络ML-LoBCoD-Net.ML-LoBCoD-Net实现信号的表征学习功能,输出的最深层卷积稀疏编码用于分类.此外,为了获得更好的信号重构,本文提出了一种新的多层切片卷积重构网络(Multi-layer slice convolutional reconstruction network,ML-SCRN),ML-SCRN实现从信号稀疏编码到信号重构.我们对这两个网络分别进行实验验证.然后将ML-LoBCoD-Net和ML-SCRN进行级联得到ML-LoBCoD-SCRN合并网,同时实现图像的分类和重构.与传统基于全连接层对图像进行重建的方法相比,本文提出的ML-LoBCoD-SCRN合并网所需参数少,收敛速度快,重构精度高.本文将ML-ISTA和多层快速迭代软阈值算法(Multilayer fast iterative soft threshold algorithm,ML-FISTA)构建为ML-ISTA-SCRN和ML-FISTA-SCRN进行对比实验,初步证明了所提出的ML-LoBCoD-SCRN分类重构网在MNIST、CIFAR10和CIFAR100数据集上是有效的,分类准确率、损失函数和信号重构结果都优于ML-ISTA-SCRN和ML-FISTA-SCRN. 展开更多
关键词 多层卷积稀疏编码 多层基追踪 多层局部块坐标下降法 分类 重构
在线阅读 下载PDF
基于全局和局部信息融合的显著性检测 被引量:2
15
作者 刘尚旺 赵欣莹 杨磊 《河南师范大学学报(自然科学版)》 CAS 北大核心 2020年第3期26-33,共8页
为提高低对比度、复杂自然图像显著性检测的准确率和泛化性能,提出一种贝叶斯框架下的全局和局部信息融合的显著性检测模型.首先,构建深度卷积自编码网络,采用对称编解码结构,监督学习图像全局特征,得到全局显著图;然后,根据全局显著图... 为提高低对比度、复杂自然图像显著性检测的准确率和泛化性能,提出一种贝叶斯框架下的全局和局部信息融合的显著性检测模型.首先,构建深度卷积自编码网络,采用对称编解码结构,监督学习图像全局特征,得到全局显著图;然后,根据全局显著图产生前景和背景码本,利用局部约束线性编码算法进行编码,采用稀疏编码描述局部特征,产生局部显著图;最后,提出采用贝叶斯框架,将全局和局部信息融合,生成最终显著图.实验结果表明,所提模型在ECSSD,DUT-OMRON和PASCAL数据集上F-measure值分别为76.53%、59.45%和72.52%,MAE值分别为0.14328、0.13787和0.18105,且能够有效对低对比度、复杂真实自然图像进行显著性检测. 展开更多
关键词 显著性检测 贝叶斯框架 稀疏编码 深度卷积自编码网络
在线阅读 下载PDF
基于卷积稀疏编码的电容层析成像图像重建 被引量:3
16
作者 张立峰 卢栋臣 《计量学报》 CSCD 北大核心 2023年第7期1075-1079,共5页
针对电容层析成像(ECT)病态性逆问题,提出了一种将卷积稀疏编码模型作为惩罚项嵌入到ECT最小二乘问题的方法,通过预先训练好的滤波器并结合交替方向乘子算法(ADMM)对此模型进行求解,从而完成ECT图像重建。对提出的方法进行了仿真及实验... 针对电容层析成像(ECT)病态性逆问题,提出了一种将卷积稀疏编码模型作为惩罚项嵌入到ECT最小二乘问题的方法,通过预先训练好的滤波器并结合交替方向乘子算法(ADMM)对此模型进行求解,从而完成ECT图像重建。对提出的方法进行了仿真及实验测试,并与LBP、Tikhonov正则化及Landweber迭代算法进行比较。结果表明,提出的方法其重建图像平均相对误差和相关系数分别为0.4389及0.8968,均优于其他3种方法,中心物体及多物体分布的重建质量得到显著提升。 展开更多
关键词 计量学 电容层析成像 图像重建 卷积稀疏编码 交替方向乘子算法 多相流检测
在线阅读 下载PDF
基于深度学习技术的医用影像检测方法研究 被引量:5
17
作者 王进 冯友红 《电子设计工程》 2021年第20期169-173,共5页
为了提升医学影像检测的智能化水平,文中对基于深度学习技术的相关图像处理、重构算法展开了研究。以肺部结节的自动检测为应用场景,对X光胸片的纹理特征提取方法进行研究。从灰度统计特征、灰度差异特征及多尺度高斯微分滤波器纹理特... 为了提升医学影像检测的智能化水平,文中对基于深度学习技术的相关图像处理、重构算法展开了研究。以肺部结节的自动检测为应用场景,对X光胸片的纹理特征提取方法进行研究。从灰度统计特征、灰度差异特征及多尺度高斯微分滤波器纹理特征等多个角度,提取了X光胸片的74个纹理特征作为支持向量机算法模型的输入。同时为了防止训练过程中产生的过拟合现象,解决深度学习算法对于训练样本容量的需求,提高样本数量与特征数量的比例,文中还引入了卷积稀疏编码算法对JSRT数据集进行重构,并按照1∶5的比例对算法仿真所需的数据集进行扩充。在分类器选择上,考虑到数据集中正负样本失衡对于分类器训练造成的不利影响,引入了代价敏感支持向量机算法(CS-SVM)。在公开医学影像数据集上进行的仿真结果表明,采用卷积稀疏编码进行数据集扩充后,算法的灵敏度与特异度指标可达到0.788和0.769,分别提升了2.8%和3.8%。 展开更多
关键词 深度学习 图像重构 特征提取 医学影像 支持向量机 卷积稀疏编码
在线阅读 下载PDF
基于多特征优化的PolSAR数据农作物精细分类方法 被引量:1
18
作者 郭交 王鹤颖 +2 位作者 项诗雨 连嘉茜 王辉 《农业机械学报》 EI CAS CSCD 北大核心 2024年第9期275-285,共11页
农作物精细分类在农业资源调查、农作物种植结构监管等诸多领域具有重要意义。极化合成孔径雷达(Polarimetric synthetic aperture radar,PolSAR)能够有效探测伪装和穿透掩盖物,提取多种散射特征信息,获取覆盖农作物生长关键物候阶段的... 农作物精细分类在农业资源调查、农作物种植结构监管等诸多领域具有重要意义。极化合成孔径雷达(Polarimetric synthetic aperture radar,PolSAR)能够有效探测伪装和穿透掩盖物,提取多种散射特征信息,获取覆盖农作物生长关键物候阶段的连续时序信息,有效提升表达作物遥感特征的丰富度,在农作物分类中独具优势。但多时相和多特征的引入必然导致模型运算量剧增,不利于工程应用。针对上述问题,本文提出了一种基于多特征优化的PolSAR数据农作物精细分类方法,首先对PolSAR数据进行多种极化目标分解及参数提取以获得多个散射特征;然后使用基于栈式稀疏自编码网络和ReliefF优选的方法进行特征增强与优化,获取最优特征集;最后构建具有2个分支结构的卷积神经网络,融合不同卷积深度输出的特征,完成农作物的高精度分类。通过对单时相数据的特征分析、单时相数据初步分类实验和多时相数据不同特征集结合分类器的对比实验,证明本文所提方法能够在低维特征输入的前提下,最大程度提取不同作物之间的差异性特征,准确高效地实现对农作物的精细分类,最高分类精度和Kappa系数分别达到97.69%和97.24%。 展开更多
关键词 农作物分类 POLSAR 栈式稀疏自编码网络 RELIEFF 卷积神经网络
在线阅读 下载PDF
二元稀疏卷积纠删码
19
作者 郭网媚 刘丹丹 +1 位作者 陈琦 高晶亮 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2023年第3期112-121,共10页
针对6G无线通信中低延迟、高可靠的要求,提出了二元稀疏卷积纠删码方案,用于二元删除信道中的信息传输。该编码方案是卷积码和低密度校验码的结合。将数据包进行平均分组,然后用分块为系统低密度校验码的生成矩阵、二元随机矩阵和零矩... 针对6G无线通信中低延迟、高可靠的要求,提出了二元稀疏卷积纠删码方案,用于二元删除信道中的信息传输。该编码方案是卷积码和低密度校验码的结合。将数据包进行平均分组,然后用分块为系统低密度校验码的生成矩阵、二元随机矩阵和零矩阵的生成矩阵对数据包分组进行卷积编码。在译码时,信宿可以一边接收一边译码;若一个数据包译码失败,信宿可在接收到后续数据包后将该数据包中的信息一同译出。在该编码方式下,分析了系统的平均包时延和平均最大包时延,并且通过仿真验证了分析结果的正确性。仿真同时也表明在相同的可靠性下,二元稀疏卷积纠删码比系统低密度校验码提高了约30.8%的传输速率;在相同的码率下,二元稀疏卷积纠删码码比Raptor10码具有更高的可靠性。因此,二元稀疏卷积纠删码可用于有低时延、高可靠需求的场景。 展开更多
关键词 信道编码 卷积码 稀疏码 包丢失 二元删除信道
在线阅读 下载PDF
基于多尺度半耦合卷积稀疏编码的遥感地貌影像纹理识别方法 被引量:1
20
作者 王忠丰 范宝国 《计算机测量与控制》 2024年第10期284-290,共7页
遥感地貌影像通常包含大量的数据,具有高度的复杂性和多样性,难以捕捉到不同层次的纹理信息,从而影响识别效果;因此,为提高纹理特征提取的效果,确保识别精度,采用多尺度半耦合卷积稀疏编码对遥感地貌影像纹理识别进行了研究;去除遥感地... 遥感地貌影像通常包含大量的数据,具有高度的复杂性和多样性,难以捕捉到不同层次的纹理信息,从而影响识别效果;因此,为提高纹理特征提取的效果,确保识别精度,采用多尺度半耦合卷积稀疏编码对遥感地貌影像纹理识别进行了研究;去除遥感地貌影像噪声,增强遥感地貌影像整体质量,通过分水岭算法分割遥感地貌影像,探究不同尺度下遥感地貌影像纹理特征区别,以有效捕捉到不同层次的纹理信息,提高遥感地貌影像纹理的识别性能;然后应用灰度共生矩阵(GLCM)获取遥感地貌影像的多尺度纹理特征,构建半耦合卷积稀疏编码模型,完成多尺度纹理特征提取过程的学习与多尺度纹理特征的有效融合,以能够在保持特征丰富性的同时,减少冗余信息,提高纹理识别的准确性;选取适当的分类器——朴素贝叶斯分类器,并对其进行训练;并以此为基础,制定遥感地貌影像纹理识别程序,执行制定程序即可获取地貌纹理识别结果;测试结果显示:应用提出方法获得的遥感地貌影像处理结果清晰度与对比度较高,地貌纹理特征提取结果更加完整与清晰,地貌纹理识别结果与实际结果一致,充分证实了提出方法应用效果更好。 展开更多
关键词 多尺度纹理特征 影像分割 半耦合结构 遥感地貌影像 卷积稀疏编码 纹理识别
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部