期刊文献+
共找到2,902篇文章
< 1 2 146 >
每页显示 20 50 100
Preparation and properties of antibacterial PVA@MCC composite membrane assisted by ionic liquids and DMSO
1
作者 Pengcheng Hu Aonan Lai Shufeng Zhou 《Chinese Journal of Chemical Engineering》 2025年第3期72-80,共9页
The composite membrane of microcrystalline cellulose(MCC)with polyvinyl alcohol(PVA)was effectively synthesized using ionic liquids(ILs)as the solvent and dimethyl sulfone(DMSO)as the co-solvent through the phase conv... The composite membrane of microcrystalline cellulose(MCC)with polyvinyl alcohol(PVA)was effectively synthesized using ionic liquids(ILs)as the solvent and dimethyl sulfone(DMSO)as the co-solvent through the phase conversion method.The effects of IL structure and the IL/DMSO mass ratio on the solubility of MCC were investigated.The findings indicated that the composite solvent functioned as a non-derivative solvent for MCC dissolution.The inclusion of DMSO decreased the viscosity of ILs and enhanced the rate of MCC dissolution.The solubility of MCC reached 14.5%(mass)when the mass ratio of[Bmim]Cl to DMSO was 1:1.The fabricated MCC membrane exhibited a smooth surface and a dense structure.PVA@MCC demonstrated exceptional mechanical properties and a uniform structure at a mass ratio of 2:1,with an elongation at break of 76%and a tensile strength of 14.6 MPa.The effects of antibacterial agents on the morphology,transmittance,mechanical properties,and antibacterial efficiency of PVA@MCC were investigated.The findings revealed that PVA@MCC fortified with clove oil showcased a flat and smooth surface,devoid of stratification or aggregation,and demonstrated superior mechanical properties compared to its counterparts with chitosan and ZnO additions.The elongation at break of PVA@MCC with clove oil increased to 137.6%,while its tensile strength decreased to 10.4 MPa.PVA@MCC with clove oil exhibited an antibacterial efficiency exceeding 68%against Escherichia coli,Staphylococcus aureus,and Pseudomonas aeruginosa,thereby extending the shelf life of cherry tomatoes by an additional four days at ambient temperature. 展开更多
关键词 Microcrystalline cellulose composite membrane Ionic liquid Antibacterial efficiency Mechanical property
在线阅读 下载PDF
Polyamide Composite Membranes on Electrospun Nanofibers for Osmotic Enrichment of Ionic Liquids from Aqueous Solutions
2
作者 Yu-Jie Shang Bian-Bian Guo +2 位作者 Hao-Nan Li Yong-Jin Li Jing Yang 《Chinese Journal of Polymer Science》 2025年第5期819-827,共9页
The recovery of ionic liquids(ILs)has attracted growing attention as an indispensable process in“green”industrial applications.Forward osmosis(FO)has proven to be a sustainable method for concentrating the very dilu... The recovery of ionic liquids(ILs)has attracted growing attention as an indispensable process in“green”industrial applications.Forward osmosis(FO)has proven to be a sustainable method for concentrating the very dilute aqueous solutions of ILs at ambient temperature,in which semi-permeable membranes play a vital role in determining the recovery efficiency.Herein,we use interfacial polymerization method to prepare thin-film composite membranes consisting of polyamide skin layer and electrospun nanofibrous substrate with tunable water permeability and IL selectivity for osmotic enrichment of imidazolium ILs from their dilute aqueous solutions through FO process.The resulting FO membrane shows a compact polyamide layer with a thickness of 30-200 nm,guranteeing a high selectivity to ILs and water.Meanwhile,the nanofibrous substrate with large and interconnect pores as well as low tortuosity,providing mechanical and permeable support for the composite membranes.IL structure influences the osmotic pressure difference as well as the interactions with polyamide layer of the membrane and thus determines the whole concentration process.First,the alkyl chain growth augments the osmosis pressure difference between the ILs solution and draw solution,resulting in an enhancement in driving force of water osmosis and IL enrichment.Moreover,alkyl length aggravates external concentration polarization caused by the enhanced adsorption of ILs onto the skin layer via electrostatic and alkyl-πinteractions.Meanwhile,such adsorbed ILs further enhance the IL retention but decrease the reverse salt diffusion.Therefore,imidazolium ILs with varied alkyl lengths are ultimately enriched with a 100-fold increase in concentration from their dilute aqueous solutions with high IL/NaCl rejection and low IL loss.Remarkably,the final concentration of IL with longest alkyl length reaches the highest(6.4 mol·L^(-1)).This work provides the insights in respect to material preparation and process amelioration for IL recovery with high scalability at mild conditions. 展开更多
关键词 Thin-film composite membrane Forward osmosis Ionic liquids Interfacial polymerization Electrospun nanofiber
原文传递
Emerging sulfide-polymer composite solid electrolyte membranes
3
作者 Xingjie Li Chengjun Yi +4 位作者 Weifei Hu Huishan Zhang Jiale Xia Yuanyuan Li Jinping Liu 《Chinese Chemical Letters》 2025年第6期278-288,共11页
Sulfide solid electrolytes with an ultrahigh ionic conductivity are considered to be extremely promising alternatives to liquid electrolytes for next-generation lithium batteries.However,it is difficult to obtain a th... Sulfide solid electrolytes with an ultrahigh ionic conductivity are considered to be extremely promising alternatives to liquid electrolytes for next-generation lithium batteries.However,it is difficult to obtain a thin solid electrolyte layer with good mechanical properties due to the weak binding ability between their powder particles,which seriously limits the actual energy density of sulfide all-solid-state lithium batteries(ASSLBs).Fortunately,the preparation of sulfide-polymer composite solid electrolyte(SPCSE)membranes by introducing polymer effectively reduces the thickness of solid electrolytes and guarantees high mechanical properties.In this review,recent progress of SPCSE membranes for ASSLBs is summarized.The classification of components in SPCSE membranes is first introduced briefly.Then,the preparation methods of SPCSE membranes are categorized according to process characteristics,in which the challenges of different methods and their corresponding solutions are carefully reviewed.The energy densities of the full battery composed of SPCSE membranes are further given whenever available to help understanding the device-level performance.Finally,we discuss the potential challenges and research opportunities for SPCSE membranes to guide the future development of high-performance sulfide ASSLBs. 展开更多
关键词 All-solid-state lithium batteries Sulfide solid electrolyte composite electrolyte membrane processing High energy density
原文传递
Recent advances in multi-layer composite polymeric membranes for CO_2 separation: A review 被引量:11
4
作者 Zhongde Dai Luca Ansaloni Liyuan Deng 《Green Energy & Environment》 SCIE 2016年第2期102-128,共27页
The development of multilayer composite membranes for CO_2 separation has gained increasing attention due to the desire for energy efficient technologies. Multilayer composite membranes have many advantages, including... The development of multilayer composite membranes for CO_2 separation has gained increasing attention due to the desire for energy efficient technologies. Multilayer composite membranes have many advantages, including the possibility to optimize membrane materials independently by layers according to their different functions and to reduce the overall transport resistance by using ultrathin selective layers, and less limitations on the material mechanical properties and processability. A comprehensive review is required to capture details of the progresses that have already been achieved in developing multilayer composite membranes with improved CO_2 separation performance in the past 15-20 years.In this review, various composite membrane preparation methods were compared, advances in composite membranes for CO_2/CH_4 separation,CO_2/N_2 and CO_2/H_2 separation were summarized with detailed data, and challenges facing for the CO_2 separation using composite membranes,such as aging, plasticization and long-term stability, were discussed. Finally the perspectives and future research directions for composite membranes were presented. 展开更多
关键词 composite membrane CO2 separation membrane fabrication membrane aging Long-term stability
在线阅读 下载PDF
High-performance,stable CoNi LDH@Ni foam composite membrane with innovative peroxymonosulfate activation for 2,4-dichlorophenol destruction 被引量:1
5
作者 Yu Liu Weibao Liu +2 位作者 Xinrui Gan Jiangwei Shang Xiuwen Cheng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第7期235-248,共14页
In this study,the cobalt-nickel layered double hydroxides(CoNi LDH)were synthesized with a variety of Co/Ni mass ratio,as CoxNiyLDHs.In comparison,Co1Ni3LDH presented the best peroxymonosulfate(PMS)activation efficien... In this study,the cobalt-nickel layered double hydroxides(CoNi LDH)were synthesized with a variety of Co/Ni mass ratio,as CoxNiyLDHs.In comparison,Co1Ni3LDH presented the best peroxymonosulfate(PMS)activation efficiency for 2,4-dichlorophenol removal.Meanwhile,CoNi LDH@Nickel foam(CoNi LDH@NF)composite membrane was constructed for enhancing the stability of catalytic performance.Herein,CoNi LDH@NF-PMS system exerted high degradation efficiency of 99.22%within 90 min for 2,4-DCP when[PMS]_(0)=0.4 g/L,Co^(1)Ni^(3)LDH@NF=2 cm×2 cm(0.2 g/L),reaction temperature=298 K.For the surface morphology and structure of the catalyst,it was demonstrated that the CoNi LDH@NF composite membrane possessed abundant cavity structure,good specific surface area and sufficient active sites.Importantly,·OH,SO_(4)·^(-)and^(1)O_(2)played the primary role in the CoNi LDH@NF-PMS system for 2,4-DCP decomposition,which revealed the PMS activation mechanism in CoNi LDH@NF-PMS system.Hence,this study eliminated the stability and adaptability of CoNi LDH@NF composite membrane,proposing a new theoretical basis of PMS heterogeneous catalysts selection. 展开更多
关键词 CoNi LDH@NF composite membrane PEROXYMONOSULFATE 2 4-DICHLOROPHENOL Reactive radicals
原文传递
Indispensable gutter layers in thin-film composite membranes for carbon capture 被引量:1
6
作者 Gengyi Zhang Haiqing Lin 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1220-1238,共19页
Industrial thin-film composite(TFC)membranes achieve superior gas separation properties from high-performance selective layer materials,while the success of membrane technology relies on high-performance gutter layers... Industrial thin-film composite(TFC)membranes achieve superior gas separation properties from high-performance selective layer materials,while the success of membrane technology relies on high-performance gutter layers to achieve production scalability and low-cost manufacturing.However,the current literature predominantly focuses on the design of polymer architectures to obtain high permeability and selectivity,while the art of fabricating gutter layers is usually safeguarded by industrial manufacturers and appears lackluster to academic researchers.This is the first report aiming to provide a comprehensive and critical review of state-of-the-art gutter layer materials and their design and modification to enable TFC membranes with superior separation performance.We first elucidate the importance of the gutter layer on membrane performance through modeling and experimental results.Then various gutter layer materials used to obtain high-performance composite membranes are critically reviewed,and the strategies to improve their compatibility with the selective layer are highlighted,such as oxygen plasma treatment,polydopamine deposition,and surface grafting.Finally,we present the opportunities of the gutter layer design for practical applications. 展开更多
关键词 Thin-film composite membranes Gutter layer Gas separation Carbon capture
在线阅读 下载PDF
Outstanding proton conductivity over wide temperature and humidity ranges and enhanced mechanical, thermal stabilities for surface-modified MIL-101-Cr-NH_(2)/Nafion composite membranes 被引量:1
7
作者 Xu Li Dongwei Zhang +7 位作者 Si Chen Yingzhao Geng Yong Liu Libing Qian Xi Chen Jingjing Li Pengfei Fang Chunqing He 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第11期1734-1746,共13页
High-performance proton exchange membranes are of great importance for fuel cells.Here,we have synthesized polycarboxylate plasticizer modified MIL-101-Cr-NH_(2)(PCP-MCN),a kind of hybrid metal-organic framework,which ... High-performance proton exchange membranes are of great importance for fuel cells.Here,we have synthesized polycarboxylate plasticizer modified MIL-101-Cr-NH_(2)(PCP-MCN),a kind of hybrid metal-organic framework,which exhibits a superior proton conductivity.PCP-MCN nanoparticles are used as additives to fabricate PCP-MCN/Nafion composite membranes.Microstructures and characteristics of PCP-MCN and these membranes have been extensively investigated.Significant enhancement in proton conduction for PCP-MCN around 55℃ is interestingly found due to the thermal motion of the PCP molecular chains.Robust mechanical properties and higher thermal decomposition temperature of the composite membranes are directly ascribed to strong intermolecular interactions between PCP-MCN and Nafion side chains,i.e.,the formation of substantial acid–base pairs(-SO_(3)^(-)…^(+)H–NH-),which further improves compatibility between additive and Nafion matrix.At the same humidity and temperature condition,the water uptake of composite membranes significantly increases due to the incorporation of porous additives with abundant functional groups and thus less crystallinity degree in comparison to pristine Nafion.Proton conductivity(σ)over wide ranges of humidities(30-100%RH at 25℃)and temperatures(30-98℃ at 100%RH)for prepared membranes is measured.The s in PCPMCN/Nafion composite membranes is remarkably enhanced,i.e.0.245 S/cm for PCP-MCN-3wt.%/Nafion is twice that of Nafion membrane at 98℃ and 100%RH,because of the establishment of well-interconnected proton transport ionic water channels and perhaps faster protonation–deprotonation processes.The composite membranes possess weak humidity-dependence of proton transport and higher water uptake due to excellent water retention ability of PCP-MCN.In particular,when 3 wt.%PCP-MCN was added to Nafion,the power density of a single-cell fabricated with this composite membrane reaches impressively 0.480,1.098 W/cm^(2) under 40%RH,100%RH at 60℃,respectively,guaranteeing it to be a promising proton exchange membrane. 展开更多
关键词 Nafion composite membrane Surface-modified MIL-101-Cr-NH_(2) Proton conductivity Single-cell performance
在线阅读 下载PDF
Preparation and Performance of Organically Modified Montmorillonite Composite Separation Membrane
8
作者 LIU Peng BI Yuanyuan +7 位作者 CHEN Shaowei WAN Ye YU Yunwu FANG Yanfeng GU Yaxin LI Feihong TANG Ning LI Xiangyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1100-1107,共8页
A new composite separation membrane was developed by using organically modified montmorillonite(OMMT)as an additive.The effects of OMMT on the modification and properties of PVDF composite membranes were investigated.... A new composite separation membrane was developed by using organically modified montmorillonite(OMMT)as an additive.The effects of OMMT on the modification and properties of PVDF composite membranes were investigated.It is found that different kinds and amounts of OMMT into the casting solution can obviously change the pure water flux,separation performance and hydrophilicity of composite membrane in varying degrees.When the TA/PDA-MMT was 0.5 wt%,the pure water flux of the membrane reached the maximum,which was 584.7 L/(m^(2)·h),about 6 times that of the original membrane.The OMMT/PVDF composite membrane had good hydrophilicity and stability in the treatment of oily wastewater.The development of novel OMMT/PVDF composite membrane will provide a new idea for solving the problem of oily wastewater treatment. 展开更多
关键词 membrane MONTMORILLONITE composite WASTEWATER
原文传递
Preparation of a self-supported zeolite glass composite membrane for CO_(2)/CH_(4) separation 被引量:1
9
作者 Dudu Li Mao Ye +3 位作者 Chao Ma Ning Li Zhenjie Gu Zhihua Qiao 《Smart Molecules》 2024年第3期128-138,共11页
The low porosity of metal-organic framework glass makes it difficult to prepare membranes with high permeability.To solve this problem,we fabricated a series of self-supported zeolite glass composite membranes with di... The low porosity of metal-organic framework glass makes it difficult to prepare membranes with high permeability.To solve this problem,we fabricated a series of self-supported zeolite glass composite membranes with different 4A zeolite loadings using the abundant pore structure of the zeolite.The 4A zeolite embedded in the zeolite glass composite membrane preserved the ligand bonds and chemical structure.The self-supported zeolite glass composite membranes exhibited good interfacial compatibility.More importantly,the incorporation of the 4A zeolite significantly improved the CO_(2)adsorption capacity of the pure a_(g)ZIF-62 membranes.In addition,gas separation performance measurements showed that the(a_(g)ZIF-62)_(0.7)(4A)_(0.3)membrane had a permeability of 13,329 Barrer for pure CO_(2)and an ideal selectivity of 31.7 for CO_(2)/CH_(4),which exceeded Robeson's upper bound.The(a_(g)ZIF-62)_(0.7)(4A)_(0.3)membrane exhibited good operational stability in the variable pressure test and 48 h long-term continuous test.This study provides a method for preparing zeolite glass composite membranes. 展开更多
关键词 CO_(2) adsorption gas separation stability zeolite glass composite membrane
在线阅读 下载PDF
Molecular Dynamics Simulation Studies on the Micromorphology and Proton Transport of Nafion/Ti_(3)C_(2)T_(x) Composite Membrane
10
作者 Zhi-Yue Han Su-Peng Pei +1 位作者 Chun-Yang Yu Yong-Feng Zhou 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第3期373-387,I0009,共16页
The perfluorosulfonic acid(PFSA) membrane doped with two-dimensional conductive filler Ti_(3)C_(2)T_(x) is a fuel cell proton exchange membrane with high application potential. Experimental studies showed that the pro... The perfluorosulfonic acid(PFSA) membrane doped with two-dimensional conductive filler Ti_(3)C_(2)T_(x) is a fuel cell proton exchange membrane with high application potential. Experimental studies showed that the proton conductivity of Nafion/Ti_(3)C_(2)T_(x) composite membrane is improved significantly compared with that in pure Nafion. However, the microscopic mechanism of doping on the enhancement of membrane performance is remain unclear now. In this work, molecular dynamics simulation was used to investigate the microscopic morphology and proton transport behaviors of Nafion/Ti_(3)C_(2)T_(x) composite membrane at the molecular level. The results shown that there were significant differences about the diffusion kinetics of water molecules and hydroxium ions in Nafion/Ti_(3)C_(2)T_(x) at low and high hydration levels in the nanoscale region.With the increase of water content, Ti_(3)C_(2)T_(x) in membrane was gradually surrounded by ambient water molecules to form a hydration layer, and forming a relatively continuous proton transport channel between Nafion polymer and Ti_(3)C_(2)T_(x) monomer. The continuous proton transport channel could increase the number of binding sites of proton and thus achieving high proton conductivity and high mobility of water molecules at higher hydration level. The current work can provide a theoretical guidance for designing new type of Nafion composite membranes. 展开更多
关键词 Nafion/Ti_(3)C_(2)T_(x)composite membrane Proton transport Molecular dynamics simulation
原文传递
Enhanced water management using Nafion matrix mixed membranes to improve PEM fuel cell performance by the incorporation of covalent functionalized electrochemical exfoliated graphene oxide
11
作者 Andres Parra-Puerto Javier Rubio-Garcia +4 位作者 Jose Luque Alled Elliot Craddock Anthony Kucernak Stuart M.Holmes Maria Perez-Page 《Journal of Energy Chemistry》 2025年第10期55-64,共10页
Hydrophilicity is critical in Nafion membranes during fuel cell operation as insufficient membrane hydration leads to brittle behavior and a drop in proton conductivity.The incorporation of APTS(3-(aminopro pyl)trieth... Hydrophilicity is critical in Nafion membranes during fuel cell operation as insufficient membrane hydration leads to brittle behavior and a drop in proton conductivity.The incorporation of APTS(3-(aminopro pyl)triethoxysilane)into exfoliated graphene oxide(EGO)by covalent functionalization to be used as filler into Nafion membranes allows higher hydrophilicity for these membranes.This is associated with promoting hydroxyl,carbonyl,siloxane,silane,and amine groups within the EGO-APTS matrix.The incorporation of these materials as Fuel Cell MEAs leads to a significant reduction of the ohmic resistance measured at high frequency resistance(HFR)in electrochemical impedance spectroscopy(EIS)experiments and achieves maximum power densities of 1.33 W cm^(-2)at 60℃ at 100%RH(APTS-EGO,0.2 wt%)and1.33 W cm^(-2)at 60℃ at 70%RH(APTS-EGO,0.3 wt%),which represents an improvement of 190%compared to the commercial Nafion 212 when utilizing low humidification conditions(70%).Moreover,the as-synthesized membrane utilizes lower Nafion ionomer mass,which,in conjunction with the excellent cell performance,has the potential to decrease the cost of the membrane from 87 to 80£/W as well as a reduction of fluorinated compounds within the membrane. 展开更多
关键词 Low temperature fuel cells composite Nafion membranes 2D-materials Water management HUMIDIFICATION Ion-exchange membranes Hydrophilic membranes
在线阅读 下载PDF
Recent Progress of Electrospun Nanofiber-Based Composite Materials for Monitoring Physical,Physiological,and Body Fluid Signals
12
作者 Fang Guo Zheng Ren +6 位作者 Shanchi Wang Yu Xie Jialin Pan Jianying Huang Tianxue Zhu Si Cheng Yuekun Lai 《Nano-Micro Letters》 2025年第12期132-177,共46页
Flexible electronic skin(E-skin)sensors offer innovative solutions for detecting human body signals,enabling human-machine interactions and advancing the development of intelligent robotics.Electrospun nanofibers are ... Flexible electronic skin(E-skin)sensors offer innovative solutions for detecting human body signals,enabling human-machine interactions and advancing the development of intelligent robotics.Electrospun nanofibers are particularly wellsuited for E-skin applications due to their exceptional mechanical properties,tunable breathability,and lightweight nature.Nanofiber-based composite materials consist of three-dimensional structures that integrate one-dimensional polymer nanofibers with other functional materials,enabling efficient signal conversion and positioning them as an ideal platform for next-generation intelligent electronics.Here,this review begins with an overview of electrospinning technology,including far-field electrospinning,near-field electrospinning,and melt electrospinning.It also discusses the diverse morphologies of electrospun nanofibers,such as core-shell,porous,hollow,bead,Janus,and ribbon structure,as well as strategies for incorporating functional materials to enhance nanofiber performance.Following this,the article provides a detailed introduction to electrospun nanofiber-based composite materials(i.e.,nanofiber/hydrogel,nanofiber/aerogel,nanofiber/metal),emphasizing their recent advancements in monitoring physical,physiological,body fluid,and multi-signal in human signal detection.Meanwhile,the review explores the development of multimodal sensors capable of responding to diverse stimuli,focusing on innovative strategies for decoupling multiple signals and their state-of-the-art advancements.Finally,current challenges are analyzed,while future prospects for electrospun nanofiber-based composite sensors are outlined.This review aims to advance the design and application of next-generation flexible electronics,fostering breakthroughs in multifunctional sensing and health monitoring technologies. 展开更多
关键词 Flexible sensor ELECTROSPINNING Nanofibrous membrane composite materials
在线阅读 下载PDF
Pervaporation Separation of Butanol-Water Mixtures Using Polydimethylsiloxane/Ceramic Composite Membrane 被引量:18
13
作者 刘公平 侯丹 +2 位作者 卫旺 相里粉娟 金万勤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第1期40-44,共5页
Pervaporation has attracted considerable interest owing to its potential application in recovering biobutanol from biomass acetone-butanol-ethanol (ABE) fermentation broth. In this study, butanol was recovered from it... Pervaporation has attracted considerable interest owing to its potential application in recovering biobutanol from biomass acetone-butanol-ethanol (ABE) fermentation broth. In this study, butanol was recovered from its aqueous solution using a polydimethylsiloxane (PDMS)/ceramic composite pervaporation membrane. The effects of operating temperature, feed concentration, feed flow rate and operating time on the membrane pervaporation performance were investigated. It was found that with the increase of temperature or butanol concentration in the feed, the total flux through the membrane increased while the separation factor decreased slightly. As the feed flow rate increased, the total flux increased gradually while the separation factor changed little. At 40°C and 1% (by mass) butanol in the feed, the total flux and separation factor of the membrane reached 457.4 g·m?2·h?1 and 26.1, respectively. The membrane with high flux is suitable for recovering butanol from ABE fermentation broth. 展开更多
关键词 PERVAPORATION BUTANOL PDMS CERAMIC composite membrane
在线阅读 下载PDF
Preparation of Composite Charge-mosaic Hollow Fiber Membrane by Interfacial Polymerization 被引量:5
14
作者 HaoQinZHANG JinDunLIU 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第5期609-610,共2页
The preparation of composite charge-mosaic membrane included spinning of hollow fiber as the supporting membrane, preparing a selective layer on the inside surface of the fiber by interfacial polymerization. The char... The preparation of composite charge-mosaic membrane included spinning of hollow fiber as the supporting membrane, preparing a selective layer on the inside surface of the fiber by interfacial polymerization. The charge-mosaic membranes show a high salt permeability while retaining sucrose. The charge-mosaic membrane can be effectively used to separate multivalent salts with organic matter of molecular weight great than 300 g/mol in industry. 展开更多
关键词 Charge-mosaic membrane interfacial polymerization composite membrane.
在线阅读 下载PDF
Enhanced Mechanical Properties of Multi-layer Graphene Filled Poly(vinyl chloride) Composite Films 被引量:13
15
作者 Han Wang Guiyuan Xie +2 位作者 Zhe Ying Yu Tong You Zeng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第4期340-344,共5页
In order to improve mechanical properties of soft poly(vinyl chloride)(PVC) films,we used commercial multi-layer graphene(MLG) with large size and high structural integrity as reinforcing fillers,and prepared MLG/PVC ... In order to improve mechanical properties of soft poly(vinyl chloride)(PVC) films,we used commercial multi-layer graphene(MLG) with large size and high structural integrity as reinforcing fillers,and prepared MLG/PVC composite films by using conventional melt-mixing methods.Microstructures,static and dynamic mechanical properties of the MLG/PVC composite films were investigated.The results showed that a small amount of MLG loading could greatly increase the mechanical properties of the MLG/PVC composites.The tensile modulus of the 0.96 wt%MLG/PVC composites was up to 40 MPa,increasing by31.3%in comparison to the neat PVC.Such a significant mechanical reinforcement was mainly attributed to uniform dispersion of the large-size MLG,good compatibility and strong interactions among MLG and plasticizers and PVC. 展开更多
关键词 multi-layer graphene Poly(vinyl chloride) composit
原文传递
Solvent Recovery from Soybean Oil/Hexane Miscella by PDMS Composite Membrane 被引量:11
16
作者 CAI Weibin SUN Yanzhi PIAO Xianglan LI Jiding ZHU Shenlin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第4期575-580,共6页
Traditional solvent recovery in the extraction step of edible oil processing is distillation,which consumes large amounts of energy.If the distillation is replaced by membrane process,the energy consumption can be red... Traditional solvent recovery in the extraction step of edible oil processing is distillation,which consumes large amounts of energy.If the distillation is replaced by membrane process,the energy consumption can be reduced greatly.In this work,two kinds of membrane,PDMS(polydimethylsiloxane) composite membrane and Zeolite filled PDMS membrane were prepared,in which asymmetric microporous PVDF(polyvinylidenefluoride) membrane prepared with phase inversion method was functioned as the microporous supporting layer in the flat-plate composite membrane.The different function compositions of the PDMS/PVDF composite membranes were characterized by reflection Fourier transform infrared(FTIR) spectroscopy.The surface and section of PDMS/PVDF composite membranes were investigated by scanning electron microscope(SEM).The PDMS NF(nanofiltration) membranes were then applied in the recovery of hexane from soybean oil/hexane miscellas(1:3,mass ratio).The effects of pressure(0.5-1.5 MPa),cross-linking temperature and PDMS layer thickness on membrane performances were investigated.The results indicated that both two kinds of NF membranes were promising for solvent recovery,and zeolite filled in PDMS NF membrane could enhance the separation performance. 展开更多
关键词 PDMS composite membrane miscella ZEOLITE solvent recovery
在线阅读 下载PDF
Substrate matters:The influences of substrate layers on the performances of thin-film composite reverse osmosis membranes 被引量:5
17
作者 Jie Li,Mingjie Wei YongWang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第11期1676-1684,共9页
Thin-film composite(TFC) reverse osmosis(RO) membranes are playing the dominating role in desalination.Tremendous efforts have been put in the studies on the polyamide selective layers. However, the effect of the subs... Thin-film composite(TFC) reverse osmosis(RO) membranes are playing the dominating role in desalination.Tremendous efforts have been put in the studies on the polyamide selective layers. However, the effect of the substrate layers is far less concerned. In this review, we summarize the works that consider the impacts of the substrates, including pore sizes, surface hydrophilicity, on the processes of interfacial polymerization and consequently on the morphologies of the active layers and on final RO performances of the composite membranes. All the works indicate that the pore sizes and surface hydrophilicity of the substrate evidently influence the RO performances of the composite membranes. Unfortunately, we find that the observations and understandings on the substrate effect are frequently varied from case to case because of the lack of substrates with uniform pores and surface chemistries. We suggest using track-etched membranes or anodized alumina membranes having relatively uniform pores and functionalizable pore walls as model substrates to elucidate the substrate effect.Moreover, we argue that homoporous membranes derived from block copolymers have the potential to be used as substrates for the large-scale production of high-performances TFC RO membranes. 展开更多
关键词 Reverse osmosis Thin-film composite Interfacial polymerization Homoporous membranes Substrate effect
在线阅读 下载PDF
Fabrication of high-performance PVA/PAN composite pervaporation membranes crosslinked by PMDA for wastewater desalination 被引量:5
18
作者 Rui Zhang Xiaoying Xu +1 位作者 Bing Cao Pei Li 《Petroleum Science》 SCIE CAS CSCD 2018年第1期146-156,共11页
The pyromellitic dianhydride(PMDA) crosslinked poly(vinyl alcohol)(PVA) was coated on top of the PAN ultrafiltration membrane to form a PVA/PAN composite PV membranes for wastewater desalination. The composite m... The pyromellitic dianhydride(PMDA) crosslinked poly(vinyl alcohol)(PVA) was coated on top of the PAN ultrafiltration membrane to form a PVA/PAN composite PV membranes for wastewater desalination. The composite membranes have high application value in industrial wastewater treatment. By varying the membrane fabrication parameters including the weight percent(wt%) of the PMDA, the crosslink temperature and duration, membrane with the best desalination performance was obtained. The composite membrane with a 2-lm-thick PVA selective layer containing 20 wt% of PMDA and being crosslinked at 100 °C for 2 h showed the highest Na Cl rejection of 99.98% with a water flux of 32.26 L/(m^2 h)at 70 °C using the 35,000 ppm Na Cl aqueous solution as feed. FTIR spectroscopy, wide-angle X-ray diffraction, thermogravimetric analysis and scanning electron microscope have been used to characterize the structures and properties of both the crosslinked PVA dense films and PVA/PAN composite membranes. The effects of the concentrations of PMDA,the crosslinking time and temperature to the membrane water contact angle, swelling degree, salt rejection and water flux were systematically studied. 展开更多
关键词 Pervaporation - Desalination Crosslinked PVA composite membranes Wastewater treatment
原文传递
Strength prediction of multi-layered copper-based composites fabricated by accumulative roll bonding 被引量:9
19
作者 P.SEIFOLLAHZADEH Morteza ALIZADEH M.R.ABBASI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第6期1729-1739,共11页
This work aims to evaluate the feasibility of the fabrication of nanostructured Cu/Al/Ag multi-layered composites by accumulative roll bonding(ARB),and to analyze the tensile properties and electrical conductivity of ... This work aims to evaluate the feasibility of the fabrication of nanostructured Cu/Al/Ag multi-layered composites by accumulative roll bonding(ARB),and to analyze the tensile properties and electrical conductivity of the produced composites.A theoretical model using strengthening mechanisms and some structural parameters extracted from X-ray diffraction is also developed to predict the tensile strength of the composites.It was found that by progression of ARB,the experimental and calculated tensile strengths are enhanced,reach a maximum of about 450 and 510 MPa at the fifth cycle of ARB,respectively and then are reduced.The electrical conductivity decreased slightly by increasing the number of ARB cycles at initial ARB cycles,but the decrease was intensified at the final ARB cycles.In conclusion,the merit of ARB to fabricate this type of multi-layered nanocomposites and the accuracy of the developed model to predict tensile strength were realized. 展开更多
关键词 multi-layered composites accumulative roll bonding strength prediction HARDNESS X-ray diffraction
在线阅读 下载PDF
Preparation of composite poly(ether block amide)membrane for CO_2 capture 被引量:4
20
作者 Lianjun Wang Yang Li +2 位作者 Shuguang Li Pengfei Ji Chengzhang Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第6期717-725,共9页
In this study, a poly(ether block amide) (Pebax 1657) composite membrane applied for COa capture was prepared by coating Pebax 1657 solution on polyacrylonitrile (PAN) ultrafiltration membrane. Ethanol/water mix... In this study, a poly(ether block amide) (Pebax 1657) composite membrane applied for COa capture was prepared by coating Pebax 1657 solution on polyacrylonitrile (PAN) ultrafiltration membrane. Ethanol/water mixture was used as the solvent of Pebax and the effects of ethanol/water mass ratios and Pebax concentration on the permeation properties of composite membrane were studied. To enhance the com- posite membrane permeance, the gutter layer, made from reactive amino silicone crosslinking with potydimethylsiloxane (PDMS), was de- signed. The influence of crosslinldng degree of the gutter layer on membrane performance was investigated. As a result, a Pebardamino- PDMS/PAN multilayer membrane with hexane resistance was developed, showing CO2 permeance of 350 GPU and CO2/N2 selectivity over 50. The blend of polyethylene glycol dimethyl ether (PEG-DME) with Pebax as coating material was studied to further improve the membrane performance. After being combined with PEG-DME additive, CO2 permeance of the final Pebax-PEG-DME/amino-PDMS/PAN composite membrane reached 400 GPU above with CO2/Na selectivity over 65. 展开更多
关键词 CO2 capture composite membrane gutter layer COATING
在线阅读 下载PDF
上一页 1 2 146 下一页 到第
使用帮助 返回顶部