Explosive synchronization(ES)is a kind of first-order jump phenomenon that exists in physical and biological systems.In recent years,researchers have focused on ES between single-layer and multi-layer networks.Most re...Explosive synchronization(ES)is a kind of first-order jump phenomenon that exists in physical and biological systems.In recent years,researchers have focused on ES between single-layer and multi-layer networks.Most research on complex networks with delay has focused on single-layer or double-layer networks,multi-layer networks are seldom explored.In this paper,we propose a Kuramoto model of frequency weights in multi-layer complex networks with delay and star connections between layers.Through theoretical analysis and numerical verification,the factors affecting the backward critical coupling strength are analyzed.The results show that the interaction between layers and the average node degree has a direct effect on the backward critical coupling strength of each layer network.The location of the delay,the size of the delay,the number of network layers,the number of nodes,and the network topology are revealed to have no direct impact on the backward critical coupling strength of the network.Delay is introduced to explore the influence of delay and other related parameters on ES.展开更多
Explosive synchronization(ES)is a first-order transition phenomenon that is ubiquitous in various physical and biological systems.In recent years,researchers have focused on explosive synchronization in a single-layer...Explosive synchronization(ES)is a first-order transition phenomenon that is ubiquitous in various physical and biological systems.In recent years,researchers have focused on explosive synchronization in a single-layer network,but few in multi-layer networks.This paper proposes a frequency-weighted Kuramoto model in multi-layer complex networks with star connection between layers and analyzes the factors affecting the backward critical coupling strength by both theoretical analysis and numerical validation.Our results show that the backward critical coupling strength of each layer network is influenced by the inter-layer interaction strength and the average degree.The number of network layers,the number of nodes,and the network topology can not directly affect the synchronization of the network.Enhancing the inter-layer interaction strength can prevent the emergence of explosive synchronization and increasing the average degree can promote the generation of explosive synchronization.展开更多
The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging at...The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems.展开更多
Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed ...Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed satellites,ground users now can be covered by multiple visible satellites,but also face complex handover issues with such massive high-mobility satellites in multi-layer.The end-to-end routing is also affected by the handover behavior.In this paper,we propose an intelligent handover strategy dedicated to multi-layer LEO mega-constellation networks.Firstly,an analytic model is utilized to rapidly estimate the end-to-end propagation latency as a key handover factor to construct a multi-objective optimization model.Subsequently,an intelligent handover strategy is proposed by employing the Dueling Double Deep Q Network(D3QN)-based deep reinforcement learning algorithm for single-layer constellations.Moreover,an optimal crosslayer handover scheme is proposed by predicting the latency-jitter and minimizing the cross-layer overhead.Simulation results demonstrate the superior performance of the proposed method in the multi-layer LEO mega-constellation,showcasing reductions of up to 8.2%and 59.5%in end-to-end latency and jitter respectively,when compared to the existing handover strategies.展开更多
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ...In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.展开更多
Accurately identifying key nodes is essential for evaluating network robustness and controlling information propagation in complex network analysis. However, current research methods face limitations in applicability ...Accurately identifying key nodes is essential for evaluating network robustness and controlling information propagation in complex network analysis. However, current research methods face limitations in applicability and accuracy. To address these challenges, this study introduces the K-GCN model, which integrates neighborhood k-shell distribution analysis with Graph Convolutional Network(GCN) technology to enhance key node identification in complex networks. The K-GCN model first leverages neighborhood k-shell distributions to calculate entropy values for each node, effectively quantifying node importance within the network. These entropy values are then used as key features within the GCN, which subsequently formulates intelligent strategies to maximize network connectivity disruption by removing a minimal set of nodes, thereby impacting the overall network architecture. Through iterative interactions with the environment, the GCN continuously refines its strategies, achieving precise identification of key nodes in the network. Unlike traditional methods, the K-GCN model not only captures local node features but also integrates the network structure and complex interrelations between neighboring nodes, significantly improving the accuracy and efficiency of key node identification.Experimental validation in multiple real-world network scenarios demonstrates that the K-GCN model outperforms existing methods.展开更多
This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid s...This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid synchronization of heterogeneous duplex complex networks.Therefore,we study the finite time hybrid synchronization of heterogeneous duplex networks,which employs the time-varying intermittent control to drive the duplex heterogeneous complex networks to achieve hybrid synchronization in finite time.To be specific,the switch frequency of the controllers can be changed with time by devise Lyapunov function and boundary function,the internal synchronization and external synchronization are achieved simultaneously in finite time.Finally,numerical examples are presented to illustrate the validness of theoretical results.展开更多
This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of ...This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.展开更多
Using complex network methods,we construct undirected and directed heatwave networks to systematically analyze heatwave events over China from 1961 to 2023,exploring their spatiotemporal evolution patterns in differen...Using complex network methods,we construct undirected and directed heatwave networks to systematically analyze heatwave events over China from 1961 to 2023,exploring their spatiotemporal evolution patterns in different regions.The findings reveal a significant increase in heatwaves since the 2000s,with the average occurrence rising from approximately 3 to 5 times,and their duration increasing from 15 to around 30 days,nearly doubling.An increasing trend of“early onset and late withdrawal”of heatwaves has become more pronounced each year.In particular,eastern regions experience heatwaves that typically start earlier and tend to persist into September,exhibiting greater interannual variability compared to western areas.The middle and lower reaches of the Yangtze River and Xinjiang are identified as high-frequency heatwave areas.Complex network analysis reveals the dynamics of heatwave propagation,with degree centrality and synchronization distance indicating that the middle and lower reaches of the Yangtze River,Northeast China,and Xinjiang are key nodes in heatwave spread.Additionally,network divergence analysis shows that Xinjiang acts as a“source”area for heatwaves,exporting heat to surrounding regions,while the central region functions as a major“sink,”receiving more heatwave events.Further analysis from 1994 to 2023 indicates that heatwave events exhibit stronger network centrality and more complex synchronization patterns.These results suggest that complex networks provide a refined framework for depicting the spatiotemporal dynamics of heatwave propagation,offering new avenues for studying their occurrence and development patterns.展开更多
Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model ...Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model implementation face significant efficiency bottlenecks when dealing with large-scale networks and multi-round simulations.To settle this problem,this study introduces a GPU-based parallel independent cascade(GPIC)algorithm,featuring an optimized representation of the network data structure and parallel task scheduling strategies.Specifically,for this GPIC algorithm,we propose a network data structure tailored for GPU processing,thereby enhancing the computational efficiency and the scalability of the IC model.In addition,we design a parallel framework that utilizes the full potential of GPU's parallel processing capabilities,thereby augmenting the computational efficiency.The results from our simulation experiments demonstrate that GPIC not only preserves accuracy but also significantly boosts efficiency,achieving a speedup factor of 129 when compared to the baseline IC method.Our experiments also reveal that when using GPIC for the independent cascade simulation,100-200 simulation rounds are sufficient for higher-cost studies,while high precision studies benefit from 500 rounds to ensure reliable results,providing empirical guidance for applying this new algorithm to practical research.展开更多
Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions ...Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions affect EMF remain largely unknown.Here,we investigated variation in three measures of diversity(alpha diversity,community composition and network complexity)among rare,intermediate,and abundant taxa across a latitudinal gradient spanning five forest plots in Yunnan Province,China and examined their contributions on EMF.We aimed to characterize the diversity distributions of bacterial groups across latitudes and to assess the differences in the mechanisms underlying their contributions to EMF.We found that multifaceted diversity(i.e.,diversity assessed by the three different metrics)of rare,intermediate,and abundant bacteria generally decreased with increasing latitude.More importantly,we found that rare bacterial taxa tended to be more diverse,but they contributed less to EMF than intermediate or abundant bacteria.Among the three dimensions of diversity we assessed,only community composition significantly affected EMF across all locations,while alpha diversity had a negative effect,and network complexity showed no significant impact.Our study further emphasizes the importance of intermediate and abundant bacterial taxa as well as community composition to EMF and provides a theoretical basis for investigating the mechanisms by which belowground microorganisms drive EMF along a latitudinal gradient.展开更多
Numerous studies have examined the impact ofwater quality degradation on bacterial community structure,yet insights into its effects on the bacterial ecological networks remain scarce.In this study,we investigated the...Numerous studies have examined the impact ofwater quality degradation on bacterial community structure,yet insights into its effects on the bacterial ecological networks remain scarce.In this study,we investigated the diversity,composition,assembly patterns,ecological networks,and environmental determinants of bacterial communities across 20 ponds to understand the impact of water quality degradation.Our findings revealed that water quality degradation significantly reduces the α-diversity of bacterial communities in water samples,while sediment samples remain unaffected.Additionally,water quality deterioration increases the complexity of bacterial networks in water samples but reduces it in sediment samples.These shifts in bacterial communities were primarily governed by deterministic processes,with heterogeneous selection being particularly influential.Through redundancy analysis(RDA),multiple regression on matrices(MRM),and Mantel tests,we identified dissolved oxygen(DO),ammonium nitrogen(NH_(4)^(+)-N),and C/N ratio as key factors affecting the composition and network complexity of bacterial communities in both water and sediment.Overall,this study contributes a novel perspective on the effect ofwater quality deterioration on microbial ecosystems and provides valuable insights for improving ecological evaluations and biomonitoring practices related to water quality management.展开更多
This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling m...This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.展开更多
This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading d...This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading dynamic differential coupling model is proposed. Then, by using mean-field theory and the next-generation matrix method, the equilibriums and basic reproduction number are derived. Theoretical results indicate that the basic reproduction number significantly relies on model parameters and topology of the underlying networks. In addition, the globally asymptotic stability of equilibrium and the permanence of the disease are proved in detail by the Routh–Hurwitz criterion, Lyapunov method and La Salle's invariance principle. Furthermore, we find that the quarantine mechanism, that is the quarantine rate(γ1, γ2), has a significant effect on epidemic spreading through sensitivity analysis of basic reproduction number and model parameters. Meanwhile, the optimal control model of quarantined rate and analysis method are proposed, which can optimize the government control strategies and reduce the number of infected individual. Finally, numerical simulations are given to verify the correctness of theoretical results and a practice application is proposed to predict and control the spreading of COVID-19.展开更多
Interconnection of all things challenges the traditional communication methods,and Semantic Communication and Computing(SCC)will become new solutions.It is a challenging task to accurately detect,extract,and represent...Interconnection of all things challenges the traditional communication methods,and Semantic Communication and Computing(SCC)will become new solutions.It is a challenging task to accurately detect,extract,and represent semantic information in the research of SCC-based networks.In previous research,researchers usually use convolution to extract the feature information of a graph and perform the corresponding task of node classification.However,the content of semantic information is quite complex.Although graph convolutional neural networks provide an effective solution for node classification tasks,due to their limitations in representing multiple relational patterns and not recognizing and analyzing higher-order local structures,the extracted feature information is subject to varying degrees of loss.Therefore,this paper extends from a single-layer topology network to a multi-layer heterogeneous topology network.The Bidirectional Encoder Representations from Transformers(BERT)training word vector is introduced to extract the semantic features in the network,and the existing graph neural network is improved by combining the higher-order local feature module of the network model representation network.A multi-layer network embedding algorithm on SCC-based networks with motifs is proposed to complete the task of end-to-end node classification.We verify the effectiveness of the algorithm on a real multi-layer heterogeneous network.展开更多
This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighte...This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighted.The influence of inter-layer couplings on the target controllability of multi-layer networks is discussed.It is found that even if there exists a layer which is not target controllable,the entire multi-layer network can still be target controllable due to the inter-layer couplings.For the multi-layer networks with general structure,a necessary and sufficient condition for target controllability is given by establishing the relationship between uncontrollable subspace and output matrix.By the derived condition,it can be found that the system may be target controllable even if it is not state controllable.On this basis,two corollaries are derived,which clarify the relationship between target controllability,state controllability and output controllability.For the multi-layer networks where the inter-layer couplings are directed chains and directed stars,sufficient conditions for target controllability of networked systems are given,respectively.These conditions are easier to verify than the classic criterion.展开更多
The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oi...The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oilfields generally have the characteristics of thin and many layers, so multi-layer joint production is usually adopted. It remains a challenge to ensure the accuracy of splitting and dynamic connectivity in each layer of the injection-production wells with limited field data. The three-dimensional well pattern of multi-layer reservoir and the relationship between injection-production wells can be equivalent to a directional heterogeneous graph. In this paper, an improved graph neural network is proposed to construct an interacting process mimics the real interwell flow regularity. In detail, this method is used to split injection and production rates by combining permeability, porosity and effective thickness, and to invert the dynamic connectivity in each layer of the injection-production wells by attention mechanism.Based on the material balance and physical information, the overall connectivity from the injection wells,through the water injection layers to the production layers and the output of final production wells is established. Meanwhile, the change of well pattern caused by perforation, plugging and switching of wells at different times is achieved by updated graph structure in spatial and temporal ways. The effectiveness of the method is verified by a combination of reservoir numerical simulation examples and field example. The method corresponds to the actual situation of the reservoir, has wide adaptability and low cost, has good practical value, and provides a reference for adjusting the injection-production relationship of the reservoir and the development of the remaining oil.展开更多
Many real communication networks, such as oceanic monitoring network and land environment observation network,can be described as space stereo multi-layer structure, and the traffic in these networks is concurrent. Un...Many real communication networks, such as oceanic monitoring network and land environment observation network,can be described as space stereo multi-layer structure, and the traffic in these networks is concurrent. Understanding how traffic dynamics depend on these real communication networks and finding an effective routing strategy that can fit the circumstance of traffic concurrency and enhance the network performance are necessary. In this light, we propose a traffic model for space stereo multi-layer complex network and introduce two kinds of global forward-predicting dynamic routing strategies, global forward-predicting hybrid minimum queue(HMQ) routing strategy and global forward-predicting hybrid minimum degree and queue(HMDQ) routing strategy, for traffic concurrency space stereo multi-layer scale-free networks. By applying forward-predicting strategy, the proposed routing strategies achieve better performances in traffic concurrency space stereo multi-layer scale-free networks. Compared with the efficient routing strategy and global dynamic routing strategy, HMDQ and HMQ routing strategies can optimize the traffic distribution, alleviate the number of congested packets effectively and reach much higher network capacity.展开更多
Since China’s reform and opening-up,the growing disparity between urban and rural areas and regions has led to massive migration.With China’s Rural Revitalization Strategy and the industrial transfer from the easter...Since China’s reform and opening-up,the growing disparity between urban and rural areas and regions has led to massive migration.With China’s Rural Revitalization Strategy and the industrial transfer from the eastern coastal areas to the inland,the migration direction and pattern of the floating population have undergone certain changes.Using the 2017 China Migrants Dynamic Survey(CMDS),excluding Hong Kong,Macao,and Taiwan regions of China,organized by China’s National Health Commission,the relationship matrix of the floating population is constructed according to the inflow place of the interviewees and their outflow place(the location of the registered residence)in the questionnaire survey.We then apply the complex network model to analyze the migration direction and network pattern of China’s floating population from the city scale.The migration network shows an obvious hierarchical agglomeration.The first-,second-,third-and fourth-tier distribution cities are municipalities directly under the central government,provincial capital cities,major cities in the central and western regions and ordinary cities in all provinces,respectively.The migration trend is from the central and western regions to the eastern coastal areas.The migration network has‘small world’characteristics,forming nine communities.It shows that most node cities in the same community are closely linked and geographically close,indicating that the migration network of floating population is still affected by geographical proximity.Narrowing the urban-rural and regional differences will promote the rational distribution this population.It is necessary to strengthen the reform of the registered residence system,so that the floating population can enjoy urban public services comparable to other populations,and allow migrants to live and work in peace.展开更多
According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was d...According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was developed using principles from complex network theory.The vulnerability and risk level of each edge in this model were calculated,and high-risk edges and disaster chains were identified.The analysis reveals that the edge“floods→building collapses”has the highest vulnerability.Implementing measures to mitigate this edge is crucial for delaying the spread of secondary disasters.The highest risk is associated with the edge“building collapses→casualties,”and increased risks are also identified for chains such as“earthquake→building collapses→casualties,”“earthquake→landslides and debris flows→dammed lakes,”and“dammed lakes→floods→building collapses.”Following an earthquake,the prompt implementation of measures is crucial to effectively disrupt these chains and minimize the damage from secondary disasters.展开更多
文摘Explosive synchronization(ES)is a kind of first-order jump phenomenon that exists in physical and biological systems.In recent years,researchers have focused on ES between single-layer and multi-layer networks.Most research on complex networks with delay has focused on single-layer or double-layer networks,multi-layer networks are seldom explored.In this paper,we propose a Kuramoto model of frequency weights in multi-layer complex networks with delay and star connections between layers.Through theoretical analysis and numerical verification,the factors affecting the backward critical coupling strength are analyzed.The results show that the interaction between layers and the average node degree has a direct effect on the backward critical coupling strength of each layer network.The location of the delay,the size of the delay,the number of network layers,the number of nodes,and the network topology are revealed to have no direct impact on the backward critical coupling strength of the network.Delay is introduced to explore the influence of delay and other related parameters on ES.
文摘Explosive synchronization(ES)is a first-order transition phenomenon that is ubiquitous in various physical and biological systems.In recent years,researchers have focused on explosive synchronization in a single-layer network,but few in multi-layer networks.This paper proposes a frequency-weighted Kuramoto model in multi-layer complex networks with star connection between layers and analyzes the factors affecting the backward critical coupling strength by both theoretical analysis and numerical validation.Our results show that the backward critical coupling strength of each layer network is influenced by the inter-layer interaction strength and the average degree.The number of network layers,the number of nodes,and the network topology can not directly affect the synchronization of the network.Enhancing the inter-layer interaction strength can prevent the emergence of explosive synchronization and increasing the average degree can promote the generation of explosive synchronization.
基金Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2025R319)Riyadh,Saudi Arabia and Prince Sultan University for covering the article processing charges(APC)associated with this publication.Special acknowledgement to Automated Systems&Soft Computing Lab(ASSCL),Prince Sultan University,Riyadh,Saudi Arabia.
文摘The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems.
基金supported by the National Natural Science Foundation of China(No.62401597)Natural Science Foundation of Hunan Province,China(No.2024JJ6469)the Research Project of National University of Defense Technology,China(No.ZK22-02).
文摘Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed satellites,ground users now can be covered by multiple visible satellites,but also face complex handover issues with such massive high-mobility satellites in multi-layer.The end-to-end routing is also affected by the handover behavior.In this paper,we propose an intelligent handover strategy dedicated to multi-layer LEO mega-constellation networks.Firstly,an analytic model is utilized to rapidly estimate the end-to-end propagation latency as a key handover factor to construct a multi-objective optimization model.Subsequently,an intelligent handover strategy is proposed by employing the Dueling Double Deep Q Network(D3QN)-based deep reinforcement learning algorithm for single-layer constellations.Moreover,an optimal crosslayer handover scheme is proposed by predicting the latency-jitter and minimizing the cross-layer overhead.Simulation results demonstrate the superior performance of the proposed method in the multi-layer LEO mega-constellation,showcasing reductions of up to 8.2%and 59.5%in end-to-end latency and jitter respectively,when compared to the existing handover strategies.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62373197 and 61873326)。
文摘In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.
基金Supported by the National Natural Science Foundation of China(Grant No.12031002)。
文摘Accurately identifying key nodes is essential for evaluating network robustness and controlling information propagation in complex network analysis. However, current research methods face limitations in applicability and accuracy. To address these challenges, this study introduces the K-GCN model, which integrates neighborhood k-shell distribution analysis with Graph Convolutional Network(GCN) technology to enhance key node identification in complex networks. The K-GCN model first leverages neighborhood k-shell distributions to calculate entropy values for each node, effectively quantifying node importance within the network. These entropy values are then used as key features within the GCN, which subsequently formulates intelligent strategies to maximize network connectivity disruption by removing a minimal set of nodes, thereby impacting the overall network architecture. Through iterative interactions with the environment, the GCN continuously refines its strategies, achieving precise identification of key nodes in the network. Unlike traditional methods, the K-GCN model not only captures local node features but also integrates the network structure and complex interrelations between neighboring nodes, significantly improving the accuracy and efficiency of key node identification.Experimental validation in multiple real-world network scenarios demonstrates that the K-GCN model outperforms existing methods.
基金Project supported by Jilin Provincial Science and Technology Development Plan(Grant No.20220101137JC).
文摘This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid synchronization of heterogeneous duplex complex networks.Therefore,we study the finite time hybrid synchronization of heterogeneous duplex networks,which employs the time-varying intermittent control to drive the duplex heterogeneous complex networks to achieve hybrid synchronization in finite time.To be specific,the switch frequency of the controllers can be changed with time by devise Lyapunov function and boundary function,the internal synchronization and external synchronization are achieved simultaneously in finite time.Finally,numerical examples are presented to illustrate the validness of theoretical results.
基金Supported by the National Natural Science Foundation of China(62476082)。
文摘This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2022YFE0136000 and 2024YFC3013100)the Joint Meteorological Fund(Grant No.U2342211)+1 种基金the Joint Research Project for Meteorological Capacity Improvement(Grant No.22NLTSZ004)the National Meteorological Information Center(Grant No.NMICJY202301)。
文摘Using complex network methods,we construct undirected and directed heatwave networks to systematically analyze heatwave events over China from 1961 to 2023,exploring their spatiotemporal evolution patterns in different regions.The findings reveal a significant increase in heatwaves since the 2000s,with the average occurrence rising from approximately 3 to 5 times,and their duration increasing from 15 to around 30 days,nearly doubling.An increasing trend of“early onset and late withdrawal”of heatwaves has become more pronounced each year.In particular,eastern regions experience heatwaves that typically start earlier and tend to persist into September,exhibiting greater interannual variability compared to western areas.The middle and lower reaches of the Yangtze River and Xinjiang are identified as high-frequency heatwave areas.Complex network analysis reveals the dynamics of heatwave propagation,with degree centrality and synchronization distance indicating that the middle and lower reaches of the Yangtze River,Northeast China,and Xinjiang are key nodes in heatwave spread.Additionally,network divergence analysis shows that Xinjiang acts as a“source”area for heatwaves,exporting heat to surrounding regions,while the central region functions as a major“sink,”receiving more heatwave events.Further analysis from 1994 to 2023 indicates that heatwave events exhibit stronger network centrality and more complex synchronization patterns.These results suggest that complex networks provide a refined framework for depicting the spatiotemporal dynamics of heatwave propagation,offering new avenues for studying their occurrence and development patterns.
基金support from the National Natural Science Foundation of China(Grant No.T2293771)the STI 2030-Major Projects(Grant No.2022ZD0211400)the Sichuan Province Outstanding Young Scientists Foundation(Grant No.2023NSFSC1919)。
文摘Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model implementation face significant efficiency bottlenecks when dealing with large-scale networks and multi-round simulations.To settle this problem,this study introduces a GPU-based parallel independent cascade(GPIC)algorithm,featuring an optimized representation of the network data structure and parallel task scheduling strategies.Specifically,for this GPIC algorithm,we propose a network data structure tailored for GPU processing,thereby enhancing the computational efficiency and the scalability of the IC model.In addition,we design a parallel framework that utilizes the full potential of GPU's parallel processing capabilities,thereby augmenting the computational efficiency.The results from our simulation experiments demonstrate that GPIC not only preserves accuracy but also significantly boosts efficiency,achieving a speedup factor of 129 when compared to the baseline IC method.Our experiments also reveal that when using GPIC for the independent cascade simulation,100-200 simulation rounds are sufficient for higher-cost studies,while high precision studies benefit from 500 rounds to ensure reliable results,providing empirical guidance for applying this new algorithm to practical research.
基金supported by the Fundamental Research Funds of Chinese Academy of Forestry(Nos.CAFYBB2022SY037,CAFYBB2021ZA002 and CAFYBB2022QC002)the Basic Research Foundation of Yunnan Province(Grant No.202201AT070264).
文摘Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions affect EMF remain largely unknown.Here,we investigated variation in three measures of diversity(alpha diversity,community composition and network complexity)among rare,intermediate,and abundant taxa across a latitudinal gradient spanning five forest plots in Yunnan Province,China and examined their contributions on EMF.We aimed to characterize the diversity distributions of bacterial groups across latitudes and to assess the differences in the mechanisms underlying their contributions to EMF.We found that multifaceted diversity(i.e.,diversity assessed by the three different metrics)of rare,intermediate,and abundant bacteria generally decreased with increasing latitude.More importantly,we found that rare bacterial taxa tended to be more diverse,but they contributed less to EMF than intermediate or abundant bacteria.Among the three dimensions of diversity we assessed,only community composition significantly affected EMF across all locations,while alpha diversity had a negative effect,and network complexity showed no significant impact.Our study further emphasizes the importance of intermediate and abundant bacterial taxa as well as community composition to EMF and provides a theoretical basis for investigating the mechanisms by which belowground microorganisms drive EMF along a latitudinal gradient.
基金supported by Zhejiang Provincial Natural Science Foundation of China(No.LTGS24D010004)the National Natural Science Foundation of China grant(No.42307064)+2 种基金the National Students’platform for innovation and entrepreneurship training program(No.202410346054)Hangzhou“Young science and technology talent cultivation”project(No.4305F45623004)the Fundamental Research Funds for Climbing Project from Hangzhou Normal University(No.KYQD-2023-217).
文摘Numerous studies have examined the impact ofwater quality degradation on bacterial community structure,yet insights into its effects on the bacterial ecological networks remain scarce.In this study,we investigated the diversity,composition,assembly patterns,ecological networks,and environmental determinants of bacterial communities across 20 ponds to understand the impact of water quality degradation.Our findings revealed that water quality degradation significantly reduces the α-diversity of bacterial communities in water samples,while sediment samples remain unaffected.Additionally,water quality deterioration increases the complexity of bacterial networks in water samples but reduces it in sediment samples.These shifts in bacterial communities were primarily governed by deterministic processes,with heterogeneous selection being particularly influential.Through redundancy analysis(RDA),multiple regression on matrices(MRM),and Mantel tests,we identified dissolved oxygen(DO),ammonium nitrogen(NH_(4)^(+)-N),and C/N ratio as key factors affecting the composition and network complexity of bacterial communities in both water and sediment.Overall,this study contributes a novel perspective on the effect ofwater quality deterioration on microbial ecosystems and provides valuable insights for improving ecological evaluations and biomonitoring practices related to water quality management.
文摘This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.
基金Project supported the Natural Science Foundation of Zhejiang Province, China (Grant No. LQN25F030011)the Fundamental Research Project of Hangzhou Dianzi University (Grant No. KYS065624391)+1 种基金the National Natural Science Foundation of China (Grant No. 61573148)the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2019A050520001)。
文摘This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading dynamic differential coupling model is proposed. Then, by using mean-field theory and the next-generation matrix method, the equilibriums and basic reproduction number are derived. Theoretical results indicate that the basic reproduction number significantly relies on model parameters and topology of the underlying networks. In addition, the globally asymptotic stability of equilibrium and the permanence of the disease are proved in detail by the Routh–Hurwitz criterion, Lyapunov method and La Salle's invariance principle. Furthermore, we find that the quarantine mechanism, that is the quarantine rate(γ1, γ2), has a significant effect on epidemic spreading through sensitivity analysis of basic reproduction number and model parameters. Meanwhile, the optimal control model of quarantined rate and analysis method are proposed, which can optimize the government control strategies and reduce the number of infected individual. Finally, numerical simulations are given to verify the correctness of theoretical results and a practice application is proposed to predict and control the spreading of COVID-19.
基金supported by National Natural Science Foundation of China(62101088,61801076,61971336)Natural Science Foundation of Liaoning Province(2022-MS-157,2023-MS-108)+1 种基金Key Laboratory of Big Data Intelligent Computing Funds for Chongqing University of Posts and Telecommunications(BDIC-2023-A-003)Fundamental Research Funds for the Central Universities(3132022230).
文摘Interconnection of all things challenges the traditional communication methods,and Semantic Communication and Computing(SCC)will become new solutions.It is a challenging task to accurately detect,extract,and represent semantic information in the research of SCC-based networks.In previous research,researchers usually use convolution to extract the feature information of a graph and perform the corresponding task of node classification.However,the content of semantic information is quite complex.Although graph convolutional neural networks provide an effective solution for node classification tasks,due to their limitations in representing multiple relational patterns and not recognizing and analyzing higher-order local structures,the extracted feature information is subject to varying degrees of loss.Therefore,this paper extends from a single-layer topology network to a multi-layer heterogeneous topology network.The Bidirectional Encoder Representations from Transformers(BERT)training word vector is introduced to extract the semantic features in the network,and the existing graph neural network is improved by combining the higher-order local feature module of the network model representation network.A multi-layer network embedding algorithm on SCC-based networks with motifs is proposed to complete the task of end-to-end node classification.We verify the effectiveness of the algorithm on a real multi-layer heterogeneous network.
基金supported by the National Natural Science Foundation of China (U1808205)Hebei Natural Science Foundation (F2000501005)。
文摘This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighted.The influence of inter-layer couplings on the target controllability of multi-layer networks is discussed.It is found that even if there exists a layer which is not target controllable,the entire multi-layer network can still be target controllable due to the inter-layer couplings.For the multi-layer networks with general structure,a necessary and sufficient condition for target controllability is given by establishing the relationship between uncontrollable subspace and output matrix.By the derived condition,it can be found that the system may be target controllable even if it is not state controllable.On this basis,two corollaries are derived,which clarify the relationship between target controllability,state controllability and output controllability.For the multi-layer networks where the inter-layer couplings are directed chains and directed stars,sufficient conditions for target controllability of networked systems are given,respectively.These conditions are easier to verify than the classic criterion.
基金the support of the National Nature Science Foundation of China(No.52074336)Emerging Big Data Projects of Sinopec Corporation(No.20210918084304712)。
文摘The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oilfields generally have the characteristics of thin and many layers, so multi-layer joint production is usually adopted. It remains a challenge to ensure the accuracy of splitting and dynamic connectivity in each layer of the injection-production wells with limited field data. The three-dimensional well pattern of multi-layer reservoir and the relationship between injection-production wells can be equivalent to a directional heterogeneous graph. In this paper, an improved graph neural network is proposed to construct an interacting process mimics the real interwell flow regularity. In detail, this method is used to split injection and production rates by combining permeability, porosity and effective thickness, and to invert the dynamic connectivity in each layer of the injection-production wells by attention mechanism.Based on the material balance and physical information, the overall connectivity from the injection wells,through the water injection layers to the production layers and the output of final production wells is established. Meanwhile, the change of well pattern caused by perforation, plugging and switching of wells at different times is achieved by updated graph structure in spatial and temporal ways. The effectiveness of the method is verified by a combination of reservoir numerical simulation examples and field example. The method corresponds to the actual situation of the reservoir, has wide adaptability and low cost, has good practical value, and provides a reference for adjusting the injection-production relationship of the reservoir and the development of the remaining oil.
基金Project supported by the Youth Science Funds of Shandong Academy of Sciences,China(Grant No.2014QN032)
文摘Many real communication networks, such as oceanic monitoring network and land environment observation network,can be described as space stereo multi-layer structure, and the traffic in these networks is concurrent. Understanding how traffic dynamics depend on these real communication networks and finding an effective routing strategy that can fit the circumstance of traffic concurrency and enhance the network performance are necessary. In this light, we propose a traffic model for space stereo multi-layer complex network and introduce two kinds of global forward-predicting dynamic routing strategies, global forward-predicting hybrid minimum queue(HMQ) routing strategy and global forward-predicting hybrid minimum degree and queue(HMDQ) routing strategy, for traffic concurrency space stereo multi-layer scale-free networks. By applying forward-predicting strategy, the proposed routing strategies achieve better performances in traffic concurrency space stereo multi-layer scale-free networks. Compared with the efficient routing strategy and global dynamic routing strategy, HMDQ and HMQ routing strategies can optimize the traffic distribution, alleviate the number of congested packets effectively and reach much higher network capacity.
基金Under the auspices of the Fund of Social Sciences Research,Ministry of Education of China(No.17YJA840011)。
文摘Since China’s reform and opening-up,the growing disparity between urban and rural areas and regions has led to massive migration.With China’s Rural Revitalization Strategy and the industrial transfer from the eastern coastal areas to the inland,the migration direction and pattern of the floating population have undergone certain changes.Using the 2017 China Migrants Dynamic Survey(CMDS),excluding Hong Kong,Macao,and Taiwan regions of China,organized by China’s National Health Commission,the relationship matrix of the floating population is constructed according to the inflow place of the interviewees and their outflow place(the location of the registered residence)in the questionnaire survey.We then apply the complex network model to analyze the migration direction and network pattern of China’s floating population from the city scale.The migration network shows an obvious hierarchical agglomeration.The first-,second-,third-and fourth-tier distribution cities are municipalities directly under the central government,provincial capital cities,major cities in the central and western regions and ordinary cities in all provinces,respectively.The migration trend is from the central and western regions to the eastern coastal areas.The migration network has‘small world’characteristics,forming nine communities.It shows that most node cities in the same community are closely linked and geographically close,indicating that the migration network of floating population is still affected by geographical proximity.Narrowing the urban-rural and regional differences will promote the rational distribution this population.It is necessary to strengthen the reform of the registered residence system,so that the floating population can enjoy urban public services comparable to other populations,and allow migrants to live and work in peace.
基金National Key Research and Development Program of China(No.2022YFC3803000).
文摘According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was developed using principles from complex network theory.The vulnerability and risk level of each edge in this model were calculated,and high-risk edges and disaster chains were identified.The analysis reveals that the edge“floods→building collapses”has the highest vulnerability.Implementing measures to mitigate this edge is crucial for delaying the spread of secondary disasters.The highest risk is associated with the edge“building collapses→casualties,”and increased risks are also identified for chains such as“earthquake→building collapses→casualties,”“earthquake→landslides and debris flows→dammed lakes,”and“dammed lakes→floods→building collapses.”Following an earthquake,the prompt implementation of measures is crucial to effectively disrupt these chains and minimize the damage from secondary disasters.