期刊文献+
共找到83,032篇文章
< 1 2 250 >
每页显示 20 50 100
TEMPERATURE EFFECT ON OXIDATION PROTECTION LIFE OF MULTI-LAYER COATING FOR C/C COMPOSITES
1
作者 Cheng Laifei Zhang Litong Xu Yongdong(State Key Laboratory of Solidification Processing, NorthwesternPolytechnical University Xi’an, 710072) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1997年第2期131-134,共4页
A multi-layer coating for carbon-carbon composites with a Si-W outer layer,a SiC barrier layer and a SiC transition layer is prepared by the combination of siliconiza-tion, CVD and liquid reaction method. The effect o... A multi-layer coating for carbon-carbon composites with a Si-W outer layer,a SiC barrier layer and a SiC transition layer is prepared by the combination of siliconiza-tion, CVD and liquid reaction method. The effect of temperature on the oxidation protec-tion life from 1600 to 17OOC is investigated. The thickness of the oxide film on thecoating surface is measured through SEM and EMPA. A concept of critical oxide filmthickness and a critical oxidation protection time is put forward, and, based on it, the re-lation of the critical time with temperature is analyzed. The re8ults show that the relationof the critical oxidation protection time with temperature found by the experiments is fullyidentical with that calcu1ated based on the critical thickness- The physical significance andthe effect factors of the critical oxide film thickness are discussed. 展开更多
关键词 carbon-carbon composites OXIDATION protective coatings oxide film
在线阅读 下载PDF
Self-adaptive lubricating behavior of VAlN/Ag multi-layer coating at simulated operating conditions
2
作者 Yupeng Zhang Zhenyu Wang +6 位作者 Yan Zhang Xiaojing Bai Shenghao Zhou Hao Li Yong Cheng Aiying Wang Peiling Ke 《Journal of Materials Science & Technology》 2025年第26期147-158,共12页
Solid lubricating coatings play a crucial role in preventing friction and wear failure of the hot-end sliding components in aviation engines.In this study,VAlN/Ag multi-layer coatings with excellent interfacial matchi... Solid lubricating coatings play a crucial role in preventing friction and wear failure of the hot-end sliding components in aviation engines.In this study,VAlN/Ag multi-layer coatings with excellent interfacial matching were fabricated using a hybrid magnetron sputtering technique.The type and energy of discharge plasmas were analyzed to comprehend their effects on depositing coatings.The coatings exhibit self-adaptive lubrication properties during the designed consecutive friction with stepwise heating from 25℃to 650℃.The microstructure evolution during early friction facilitates sufficient tribo-chemical reaction at 650℃,leading to the formation of a distinctive"ball-on-rail"structure that significantly reduces friction coefficient.Based on the first-principles calculations,it was found that the bond energy of Ag-O is lower than that of V-O in both AgVO_(3)and Ag_(3)VO_(4),which promotes slipping along the(110)crystal plane and contributes to exceptional tribological properties.The fatigue wear failure mechanism of hard coatings under the thermal-force coupling effects has been elucidated,alongside an exploration of consecutive tribology mechanism at atomic scales over a wide temperature range. 展开更多
关键词 Self-adaptive coating Lubrication Friction Wear Tribology mechanism
原文传递
High-temperature oxidation resistance of TiB_(2)coatings on molybdenum produced by molten salt electrophoretic deposition
3
作者 Qian Kou Chuntao Ge +6 位作者 Yanlu Zhou Wenjuan Qi Junjie Xu Weiliang Jin Jun Zhang Hongmin Zhu Saijun Xiao 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期282-291,共10页
TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing Ti... TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance. 展开更多
关键词 molten salt electrophoretic deposition MOLYBDENUM TiB_(2)coating high-temperature oxidation resistance
在线阅读 下载PDF
Preparation of a SiC/Cristobalite-AlPO_4 Multi-layer Protective Coating on Carbon/Carbon Composites and Resultant Oxidation Kinetics and Mechanism 被引量:8
4
作者 Jianfeng Huang Wendong Yang Liyun Cao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2010年第11期1021-1026,共6页
In order to improve the oxidation resistance of carbon/carbon (C/C) composites,a SiC/C-AlPO4 multi-layer coating was fabricated on the C/C composites by a simple and low-cost method.The internal SiC bonding layer wa... In order to improve the oxidation resistance of carbon/carbon (C/C) composites,a SiC/C-AlPO4 multi-layer coating was fabricated on the C/C composites by a simple and low-cost method.The internal SiC bonding layer was prepared by a two-step pack cementation process and the external C-AlPO4 coating was deposited by hydrothermal electrophoretic deposition process.Phase compositions and microstructures of the as-prepared multi-layer coating were characterized by X-ray diffraction (XRD),scaning electron microspocy (SEM) and energy dispersive spectrometer (EDS).Anti-oxidation properties,oxidation behavior and the failure behavior of the coated composites were investigated.The results indicate that the multi-layer coating exhibits obviously two-layer structure.The inner layer is composed of β-SiC,α-SiC phase with a scale of silicon phase.The outer layer is composed of cristobalite aluminum phosphate (C-AlPO4) crystallites.The SEM observation shows the good bonding between the inner and outer layers.The multi-layer coating displays an excellent oxidation resistance in air in the temperature range from 1573 to 1773 K,and the corresponding oxidation activation energy of the coated C/C composites is calculated to be 117.2 kJ/mol.The oxidation process is predominantly controlled by the diffusion of O2 through the C-AlPO 4 coating.The failure of the multi-layer coating results from the generation of the microholes that may be left by the escape of the oxidation gases. 展开更多
关键词 Carbon/carbon composites Aluminum phosphate Hydrothermal electrophoretic deposition coatingS OXIDATION
原文传递
Microstructure of a Mo-Si-C-N multi-layered anti-oxidation coating on carbon/carbon composites by fused slurry 被引量:1
5
作者 LAI Zhonghong MENG Songhe +1 位作者 ZHU Jingchuan JEON Jaeho 《Rare Metals》 SCIE EI CAS CSCD 2009年第5期460-464,共5页
A Mo-Si-C-N multi-layered anti-oxidation coating was in-situ fabricated by introducing nitrogen atmosphere during the fused sintering of Mo-Si slurry pre-layer on carbon/carbon composites. The phase composition and mi... A Mo-Si-C-N multi-layered anti-oxidation coating was in-situ fabricated by introducing nitrogen atmosphere during the fused sintering of Mo-Si slurry pre-layer on carbon/carbon composites. The phase composition and microstructure of the Mo-Si-C-N coating were characterized by X-ray diffractometry, optical microscopy, scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The Mo-Si-C-N coating exhibited a three-layered structure. Besides the MoSi2/Si main-layer and the SiC bonding-layer, a surface layer of about 10 μm in thickness was synthesized on the coating surface. The surface layer mainly consisted of SiC nanowires and contained some Si3N4 and Si phases. SiC nanowires of 10 to 200 nm in diameter presented a terrace and distortion structure. Transmission electron microscopy indicated that the SiC nanowires grew along the preferred 〈111〉 direction. During oxidation test, SiC nanowires transmuted into SiO2 glass, which can play an important role in improving the oxidation resistance of C/C composites. 展开更多
关键词 C/C composites coating MICROSTRUCTURES ANTI-OXIDATION
在线阅读 下载PDF
Broadband and high efficiency metal multi-layer dielectric grating based on non-quarter-wave coatings as a reflective mirror 被引量:1
6
作者 张文飞 孔伟金 +2 位作者 云茂金 刘均海 孙欣 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期353-358,共6页
This article deals with designing a broadband and high efficiency metal multi-layer dielectric grating (MMDG) used to compress and stretch an ultrashort laser pulse. The diffraction characteristics of the IVIMDG are... This article deals with designing a broadband and high efficiency metal multi-layer dielectric grating (MMDG) used to compress and stretch an ultrashort laser pulse. The diffraction characteristics of the IVIMDG are analysed by using the rigorous coupled-wave method. The multi-layer dielectric used as the reflective mirror is made up of non- quarter-wave coatings. Taking the diffraction efficiency of the -1 order as the value of merit function, the parameters such as groove depth, residual thickness, duty cycle, and reflective mirror are optimized to obtain broadband and high diffraction efficiency. The optimized MMDG shows an ultra-broadband working spectrum with the average efficiency exceeding 97% over 160 nm wavelength centred at 1053 nm and TE polarization. The optimized MMDG should be useful for chirped pulse amplification. 展开更多
关键词 grating BROADBAND non-quarter-wave coatings
原文传递
Electrodeposition of multi-layer Pd-Ni coatings on 316L stainless steel and their corrosion resistance in hot sulfuric acid solution 被引量:2
7
作者 Hui-zhong ZHANG Yang LI +2 位作者 Yu ZUO Xu-hui ZHAO Yu-ming TANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第7期1543-1550,共8页
Pd-Ni coating shows good corrosion resistance in strong corrosion environments.However,in complex aggressiveenvironments,the performance of the coatings is limited and further improvement is necessary.The effects of t... Pd-Ni coating shows good corrosion resistance in strong corrosion environments.However,in complex aggressiveenvironments,the performance of the coatings is limited and further improvement is necessary.The effects of the applied platingcurrent density on the composition,structure and properties of Pd-Ni coatings were studied.By changing the current density in thesame bath,multi-layer Pd-Ni coatings were prepared on316L stainless steel.Scanning electronic microscopy,weight loss tests,adhesion strength,porosity and electrochemical methods were used to study the corrosion resistance of the films prepared bydifferent coating methods.Compared with the single layer Pd-Ni coating,the multi-layer coatings showed higher microhardness,lower internal stress,lower porosity and higher adhesive strength.The multi-layer Pd-Ni coating showed obviously better corrosionresistance in hot sulfuric acid solution containing Cl-. 展开更多
关键词 Pd-Ni film stainless steel multi-layer film ELECTROPLATING current density corrosion resistance
在线阅读 下载PDF
Optimization of Multi-layer AR Coatings for GaInP/GaAs Tandem Solar Cells 被引量:1
8
作者 ZHUCheng ZHANGYong-gang LIAi-zhen 《Semiconductor Photonics and Technology》 CAS 2004年第1期44-47,共4页
The AR coatings for GaInP/GaAs tandem solar cell are simulated.Results show that,under the condition of the lack of suitable encapsulation, a very low energy loss could be reached on MgF2/ZnS system; in the case of gl... The AR coatings for GaInP/GaAs tandem solar cell are simulated.Results show that,under the condition of the lack of suitable encapsulation, a very low energy loss could be reached on MgF2/ZnS system; in the case of glass encapsulation,the Al2O3/ZrO2 and Al2O3/TiO2 systems are appropriate choice; for AlInP window layer,the thickness of 30 nm is suitable. 展开更多
关键词 Tandem solar cells Antireflective coating GaInP/GaAs
在线阅读 下载PDF
Preparation and Characterization of TiO_2/TiN/TiO_2 Multi-layer Solar Control Coatings Deposited by D.C. Reactive Magnetron Sputtering at Different Substrate Temperature
9
作者 赵青南 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2001年第2期9-12,共4页
Transparent TiO2/TiN/TiO2 multi-layer solar control coatings were prepared on normal soda-lime-silica float glass substrate by using d.c. reactive magnetron sputtering at substrate temperature ranging from room temper... Transparent TiO2/TiN/TiO2 multi-layer solar control coatings were prepared on normal soda-lime-silica float glass substrate by using d.c. reactive magnetron sputtering at substrate temperature ranging from room temperature to 620℃ . The dependence of optical properties of the coatings and the coating composition, on the substrate temperature was studied. The results of the optical properties show that as the substrate temperature increases, a visible transmittance as high as 65% can be obtained. When the substrate temperature is higher than 370℃ , the infrared reflectance decreases. The results of X-ray photoelectron spectroscopy (XPS) show that when the substrate temperature is higher than 520℃ in oxygen atmosphere, the formation of thin surface over-layers (TiNxOy,) on top of the TiN films can be observed. When the substrate temperature is at 62℃ , the oxynitride become TiO2, which results in the optical degradation of TiN layer in infrared reflectance. 展开更多
关键词 solar control coatings SPUTTERING substrate temperature optical properties XPS TiNx0y
在线阅读 下载PDF
Multi-layer multi-pass friction rolling additive manufacturing of Al alloy:Toward complex large-scale high-performance components 被引量:1
10
作者 Haibin Liu Run Hou +2 位作者 Chenghao Wu Ruishan Xie Shujun Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期425-438,共14页
At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-laye... At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components. 展开更多
关键词 aluminum alloy additive manufacturing SOLID-STATE friction stir welding multi-layer multi-pass
在线阅读 下载PDF
Assessing the corrosion protection property of coatings loaded with corrosion inhibitors using the real-time atmospheric corrosion monitoring technique 被引量:1
11
作者 Xiaoxue Wang Lulu Jin +8 位作者 Jinke Wang Rongqiao Wang Xiuchun Liu Kai Gao Jingli Sun Yong Yuan Lingwei Ma Hongchang Qian Dawei Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期119-126,共8页
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ... The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating. 展开更多
关键词 atmospheric corrosion monitoring technology corrosion inhibitor coating carbon steel corrosion protection
在线阅读 下载PDF
High-Temperature Oxidation Property and Corrosion and Wear Resistance of Laser Cladding Co-based Coatings on Pure Zr Surface 被引量:1
12
作者 Xia Chaoqun Yang Bo +3 位作者 Liu Shuguang Zhang Bo Zhong Hua Li Qiang 《稀有金属材料与工程》 北大核心 2025年第6期1397-1409,共13页
Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,a... Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,as well as the wear resistance of the coatings.Besides,the effect of changing the laser melting process on the coatings was also investigated.The oxidation mass gain at 800–1200℃and the high-temperature oxidation behavior during high-temperature treatment for 1 h of two coated Zr alloy samples were studied.Results show that the Co coating and the Co-T800 coating have better resistance against high-temperature oxidation.After oxidizing at 1000℃for 1 h,the thickness of the oxide layer of the uncoated sample was 241.0μm,whereas that of the sample with Co-based coating is only 11.8–35.5μm.The friction wear test shows that the depth of the abrasion mark of the coated sample is only 1/2 of that of the substrate,indicating that the hardness and wear resistance of the Zr substrate are greatly improved.The disadvantage of Co-based coatings is the inferior corrosion resistance in 3.5wt%NaCl solution. 展开更多
关键词 Zr metal laser cladding Co-based coating high-temperature oxidation resistance wear resistance
原文传递
Highly conductive and corrosion-resistant NbN coatings on Ti bipolar plate for proton exchange membrane water electrolysis 被引量:3
13
作者 Wenqian Sun Yuanjiang Lv +3 位作者 Jianping Gao Qing Feng Bo Jia Fei Ma 《Journal of Materials Science & Technology》 2025年第7期86-96,共11页
Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipol... Proton exchange membrane water electrolysis(PEMWE)is one of the most promising strategies to pro-duce green hydrogen energy,and it is crucial to exploit highly conductive and good corrosion-resistant coatings on bipolar plates(BPs),one of the core components in PEMWE cells.In this work,NbN coatings are deposited on Ti BPs by magnetron sputtering to improve the corrosion resistance and conductivity,for which the critical process parameters,such as the working pressure,partial nitrogen pressure and de-position temperature are well optimized.It is found that the compact microstructure,highly conductive δ-NbN and uniform nanoparticles play a dominant role in the synergistic improvement of the corrosion resistance and electrical conductivity of NbN coatings.The optimized NbN coatings exhibit excellent cor-rosion resistance with the low corrosion current density of 1.1×10^(-8) A cm^(-2),a high potential value of-0.005 V vs.SCE and a low ICR value of 15.8 mΩcm2@1.5 MPa.Accordingly,NbN coatings can be a promising candidate for the development of the low-cost and high-anti-corrosion Ti BPs of PEMWE. 展开更多
关键词 NbN coating Corrosion resistance Bipolar plates PEMWE
原文传递
Synergistic effect of nitrocellulose coating on structural and reactivity stabilization of ammonium nitrate oxidizer 被引量:1
14
作者 Amir Abdelaziz Djalal Trache +5 位作者 Ahmed Fouzi Tarchoun Hani Boukeciat Yash Pal Sourbh Thakur Weiqiang Pang Thomas M.Klapötke 《Defence Technology(防务技术)》 2025年第1期35-43,共9页
The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has... The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations. 展开更多
关键词 Ammonium nitrate NITROCELLULOSE STABILIZATION coating Thermolysis kinetics
在线阅读 下载PDF
Achieving precise graphenization of diamond coatings below the interfacial thermal stress threshold 被引量:1
15
作者 Bo Yan Ning He +7 位作者 Ni Chen Matthias Weigold Huiwen Chen Shuchen Sun Yang Wu Shiyang Fu Liang Li Eberhard Abele 《International Journal of Extreme Manufacturing》 2025年第1期504-520,共17页
Diamond coatings possess numerous excellent properties,making them desirable materials for high-performance surface applications.However,without a revolutionary surface modification method,the surface roughness and fr... Diamond coatings possess numerous excellent properties,making them desirable materials for high-performance surface applications.However,without a revolutionary surface modification method,the surface roughness and friction behavior of diamond coatings can impede their ability to meet the demanding requirements of advanced engineering surfaces.This study proposed the thermal stress control at coating interfaces and demonstrated a novel process of precise graphenization on conventional diamond coatings surface through laser induction and mechanical cleavage,without causing damage to the metal substrate.Through experiments and simulations,the influence mechanism of surface graphitization and interfacial thermal stress was elucidated,ultimately enabling rapid conversion of the diamond coating surface to graphene while controlling the coating’s thickness and roughness.Compared to the original diamond coatings,the obtained surfaces exhibited a 63%-72%reduction in friction coefficients,all of which were below 0.1,with a minimum of 0.06,and a 59%-67%decrease in specific wear rates.Moreover,adhesive wear in the friction counterpart was significantly inhibited,resulting in a reduction in wear by 49%-83%.This demonstrated a significant improvement in lubrication and inhibition of mechanochemical wear properties.This study provides an effective and cost-efficient avenue to overcome the application bottleneck of engineered diamond surfaces,with the potential to significantly enhance the performance and expand the application range of diamond-coated components. 展开更多
关键词 diamond coating GRAPHENE laser thermal stress lubrication and anti-wear
在线阅读 下载PDF
Microstructure and wear property of laser cladded WC particles reinforced CoCrFeNiMo composite coatings on Cr 12 MoV steel 被引量:1
16
作者 LIU Xing-yi YANG Xiao +6 位作者 CHEN Zu-bin GUO Chun-huan LI Hai-xin YANG Zhen-lin DONG Tao JIANG Feng-chun QIAO Zhu-hui 《Journal of Central South University》 2025年第1期49-70,共22页
WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content o... WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness. 展开更多
关键词 laser cladding CoCrFeNiMo coating WC particles MICROSTRUCTURE wear resistance
在线阅读 下载PDF
Multi-strategy combined bionic coating for long-term robust protection against marine biofouling 被引量:1
17
作者 Nan Zheng Bo Jia +4 位作者 Jie Liu Xiaojun Wang Duo Zhang Hairan Zhang Guoqing Wang 《Journal of Materials Science & Technology》 2025年第7期265-277,共13页
Polyurethane-fluorinated polysiloxane(PU-^(F)PDMS)with high-strength,high-bonding and low surface en-ergy is synthesized as the matrix,and the PU-^(F)PDMS/MCs/Ag marine anti-fouling coating on the sur-face of imitatio... Polyurethane-fluorinated polysiloxane(PU-^(F)PDMS)with high-strength,high-bonding and low surface en-ergy is synthesized as the matrix,and the PU-^(F)PDMS/MCs/Ag marine anti-fouling coating on the sur-face of imitation crab shells is constructed by assembling butenolide@1,1-stilbene-modified hydrolyzed polyglycidyl methacrylate/graphene oxide microcapsules(Bu@PGMAm/GO MCs)with compact multi-shell structure and Ag nanoparticles(AgNPs)step by step on the PU-^(F)PDMS matrix.The PU-^(F)PDMS/MCs/Ag bionic anti-fouling coatings achieve long-term and stable anti-fouling effect under the combination of robust low-surface-energy PU-^(F)PDMS matrix,steady-state sustained release of butenolide encapsulated by the compact multi-shell,bionic surface formed by the microcapsules and AgNPs,and the release of Ag^(+).The shear strength,tensile strength,and elongation at break of the PU-^(F)PDMS/MCs/Ag are 3.53 MPa,6.7 MPa,and 192.83%,respectively.Its static contact angle and sliding angle are 161.8°and 3.6°,respectively.The antibacterial rate of PU-^(F)PDMS/MCs/Ag against Escherichia coli,Staphylococcus aureus,and Candida albicans can reach 100%.Compared with glass blank,PU,PU-^(F)PDMS,PU-^(F)PDMS/Ag,and PU-^(F)PDMS/MCs,both the adhesion number and coverage percentage of chlorella adhere to PU-^(F)PDMS/MCs/Ag are the minimum values,which are 600 cell mm^(-2) and 1.53%,respectively.After 6 months of marine field test,the primer blank,PU,PU-^(F)PDMS all show different degrees of attachment by shellfish,spirorbis,al-gae and other biofouling,while the PU-^(F)PDMS/MCs/Ag coating is still not covered with biofouling,while the PU-^(F)PDMS/MCs/Ag coatings still exhibit little attachment of marine fouling.The PU-^(F)PDMS/MCs/Ag bionic anti-fouling coatings are expected to be widely used in the fields of anti-fouling,anti-icing,anti-fogging,drag reduction,self-cleaning,and antibacterial. 展开更多
关键词 Marine anti-biofouling BIONIC coating Long-term and stable anti-fouling
原文传递
Superhydrophobic and corrosion-resistant siloxane-modified MgAl-LDHs coatings on magnesium alloy prepared under mild conditions
18
作者 Wenxi Zhang Zhangzelong Zhuo +2 位作者 Dan Xu Liang Wu Zhihui Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期450-463,共14页
We have developed a superhydrophobic and corrosion-resistant LDH-W/PFDTMS composite coating on the surface of Mg alloy.This composite comprised a tungstate-intercalated(LDH-W)underlayer that was grown at low temperatu... We have developed a superhydrophobic and corrosion-resistant LDH-W/PFDTMS composite coating on the surface of Mg alloy.This composite comprised a tungstate-intercalated(LDH-W)underlayer that was grown at low temperature(relative to hydrothermal reaction conditions)under atmospheric pressure and an outer polysiloxane layer created from a solution containing perfluorodecyltrimethoxysilane(PFDTMS)using a simple immersion method.The successful intercalation of tungstate into the LDH phase and the following formation of the polysiloxane layer were confirmed through X-ray diffraction(XRD),Fourier transform infrared(FTIR)spectroscopy,and X-ray photoelectron spectroscopy(XPS).The corrosion resistance of the LDH-W film,both before and after the PFDTMS modification,was evaluated using electrochemical impedance spectroscopy(EIS),Tafel curves,and immersion experiments.The results showed that Mg coated with LDH-W/PFDTMS exhibited significantly enhanced corrosion protection compared to the unmodified LDHW film,with no apparent signs of corrosion after exposure to 3.5wt%NaCl solution for 15 d.Furthermore,the LDH-W/PFDTMS coating demonstrated superior superhydrophobicity and self-cleaning properties against water and several common beverages,as confirmed by static contact angle and water-repellency tests.These results offer valuable insights into preparing superhydrophobic and corrosion-resistant LDH-based composite coatings on Mg alloy surfaces under relatively mild reaction conditions. 展开更多
关键词 Mg alloy CORROSION coating layered double hydroxide
在线阅读 下载PDF
A review of anticorrosive,superhydrophobic and self-healing properties of coating-composites as corrosion barriers on magnesium alloys:Recent advances,challenges and future directions 被引量:1
19
作者 Babalola Aisosa Oni Olusegun Stanley Tomomewo +2 位作者 Solomon Evro Andrew N.Misian Samuel Eshorame Sanni 《Journal of Magnesium and Alloys》 2025年第6期2435-2469,共35页
Magnesium and its alloys have gained relevance for their light-weight combined with a high value of strength-to-weight ratio,which makes them useful in fields such as aerospace,automotive as well as biomedical enginee... Magnesium and its alloys have gained relevance for their light-weight combined with a high value of strength-to-weight ratio,which makes them useful in fields such as aerospace,automotive as well as biomedical engineering.Unfortunately,the poor corrosion resistance of Mg-alloys limits their wide acceptance.Advanced composite coatings which are self-healing,superhydrophobic anti corrosive,and wear resistant are new synthetic materials for abating these challenges.The superimposed superhydrophobic surfaces help in minimizing their water contact,thus slowing down the electrochemical reactions on the surface of the alloys,while their self-healing characteristics autonomously aid in the repair of any induced micro-crack,defect or damage towards ensuring the metal's long-term protection.In addition,the integration of wear-resistant materials further improves the durability of coatings under mechanical stress.The most recent research efforts have been directed towards the preparation of multifunctional composites,with an emphasis on nanomaterials,functional polymers,and state-of-the-art fabrication techniques in order to take advantage of their synergistic effects.Some of the methods that have so far exhibited promising potentials in fabricating these materials include the sol-gel method,layer-by-layer assembly,and plasma treatments.However,most of the fabricated products are still faced with significant challenges ranging from long-term stability to homogeneous adhesion of the coatings and their scalability for industrial applications.This review discusses the recent progress and the relationship between corrosion inhibition and self-healing efficiencies of wear resistant polymer nanocomposite coatings.Some challenges related to optimizing coating performance were also discussed.In addition,future directions ranging from the consideration of bioinspired designs,novel hybrid nanocomposite materials,and environmentally sustainable solutions integrated with smart protective coatings were also proposed as new wave technologies that can potentially revolutionize the corrosion protection offered by Mg alloys while opening up prospects for improved performance and sustainability. 展开更多
关键词 Magnesium alloys CORROSION SUPERHYDROPHOBIC Self-healing coatings Water contact angle
在线阅读 下载PDF
High temperature oxidation behavior at 1250℃:A new multilayer modified silicide coating design strategy on niobium alloys 被引量:2
20
作者 Shuqi Wang Zhiyun Ye +7 位作者 Yulin Ge Yongchun Zou Tianlong Zhang Xinrui Zhao Mengjie Wang Ci Song Yaming Wang Yu Zhou 《Journal of Materials Science & Technology》 2025年第7期159-169,共11页
Silicide coatings have proven to be promising for improving the high-temperature oxidation resistance of niobium alloy.However,the long-term protective property of single silicide coating remains a long-time endeavor ... Silicide coatings have proven to be promising for improving the high-temperature oxidation resistance of niobium alloy.However,the long-term protective property of single silicide coating remains a long-time endeavor due to the deficiency of oxygen-consuming phases,as well as the self-healing ability of the protective layer.Herein,a silicide-based composite coating is constructed on niobium alloy by incor-poration of nano-SiC particles for enhancing the high-temperature oxidation resistance.Isothermal oxi-dation results at 1250℃ for 50 h indicate that NbSi_(2)/Nb_(2)O_(5)-SiO_(2)/SiC multilayer coated sample with a low mass gain of 2.49 mg/cm^(2) shows an improved oxidation resistance compared with NbSi_(2) coating(6.49 mg/cm^(2)).The enhanced high-temperature antioxidant performance of NbSi_(2)/Nb_(2)O_(5)-SiO_(2)/SiC multi-layer coating is mainly attributed to the formation of the protective SiO_(2) self-healing film and the high-temperature diffusion behavior of NbSi_(2)/substrate. 展开更多
关键词 Niobium alloys Silicide-based coating High-temperature oxidation resistance nano-SiC Liquid-plasma-assisted particle deposition and sintering
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部