At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-laye...At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components.展开更多
The huge impact kinetic energy cannot be quickly dissipated by the energy-absorbing structure and transferred to the other vehicle through the car body structure,which will cause structural damage and threaten the liv...The huge impact kinetic energy cannot be quickly dissipated by the energy-absorbing structure and transferred to the other vehicle through the car body structure,which will cause structural damage and threaten the lives of the occupants.Therefore,it is necessary to understand the laws of energy conversion,dissipation and transfer during train collisions.This study proposes a multi-layer progressive analysis method of energy flow during train collisions,considering the characteristics of the train.In this method,the train collision system is divided into conversion,dissipation,and transfer layers from the perspective of the train,collision interface,and car body structure to analyze the energy conversion,dissipation and transfer characteristics.Taking the collision process of a rail train as an example,a train collision energy transfer path analysis model was established based on power flow theory.The results show that when the maximum mean acceleration of the vehicle meets the standard requirements,the jerk may exceed the allowable limit of the human body,and there is a risk of injury to the occupants of a secondary collision.The decay rate of the collision energy along the direction of train operation reaches 79%.As the collision progresses,the collision energy gradually converges in the structure with holes,and the structure deforms when the gathered energy is greater than the maximum energy the structure can withstand.The proposed method helps to understand the train collision energy flow law and provides theoretical support for the train crashworthiness design in the future.展开更多
The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging at...The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems.展开更多
In practical engineering construction,multi-layered barriers containing geomembranes are extensively applied to retard the migration of pollutants.However,the associated analytical theory on pollutants diffusion still...In practical engineering construction,multi-layered barriers containing geomembranes are extensively applied to retard the migration of pollutants.However,the associated analytical theory on pollutants diffusion still needs to be further improved.In this work,general analytical solutions are derived for one-dimensional diffusion of degradable organic contaminant(DOC)in the multi-layered media containing geomembranes under a time-varying concentration boundary condition,where the variable substitution and separated variable approaches are employed.These analytical solutions with clear expressions can be used not only to study the diffusion behaviors of DOC in bottom and vertical composite barrier systems,but also to verify other complex numerical models.The proposed general analytical solutions are then fully validated via three comparative analyses,including comparisons with the experimental measurements,an existing analytical solution,and a finite-difference solution.Ultimately,the influences of different factors on the composite cutoff wall’s(CCW,which consists of two soil-bentonite layers and a geomembrane)service performance are investigated through a composite vertical barrier system as the application example.The findings obtained from this investigation can provide scientific guidance for the barrier performance evaluation and the engineering design of CCWs.This application example also exhibits the necessity and effectiveness of the developed analytical solutions.展开更多
Understanding the anchorage performance of en-echelon joints under cyclic shear loading is crucial for optimizing support strategies in jointed rock masses.This study examines the anchorage effects on enechelon joints...Understanding the anchorage performance of en-echelon joints under cyclic shear loading is crucial for optimizing support strategies in jointed rock masses.This study examines the anchorage effects on enechelon joints with various orientations using laboratory cyclic shear tests.By comparing unbolted and bolted en-echelon joints,we analyze shear zone damage,shear properties,dilatancy,energy absorption,and acoustic emission characteristics to evaluate anchoring effects across shear cycles and joint orientations.Results reveal that bolted en-echelon joints experience more severe shear zone damage after cycles,with bolt deformation correlating to shear zone width.Bolted en-echelon joints exhibit faster shear strength deterioration and higher cumulative strength loss compared to unbolted ones,with losses ranging from 20.04%to 72.76%.The compressibility of en-echelon joints reduces the anchoring effect during shear cycles,leading to lower shear strength of bolted en-echelon joints in later stages of shear cycles compared to unbolted ones.Bolts reinforce en-echelon joints more effectively at non-positive angles,with the best performance observed at 0°and-60°.Anchorage accelerates the transition from rolling friction to sliding friction in the shear zone,enhancing energy absorption,which is crucial for rock projects under dynamic shear loading.Additionally,rock bolts expedite the transition of the cumulative AE hits and cumulative AE energy curves from rapid to steady growth,indicating that strong bolt-rock interactions accelerate crack initiation,propagation,and energy release.展开更多
This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi...This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi analytical solutions of temperature increment and displacement of multi-layered composite structures are obtained by using the Laplace transform method,upon which the effects of thermal resistance coefficient,partition coefficient,thermal conductivity ratio and heat capacity ratio on the responses are studied.The results show that the generalized imperfect thermal contact model can realistically describe the imperfect thermal contact problem.Accordingly,it may degenerate into other thermal contact models by adjusting the thermal resistance coefficient and partition coefficient.展开更多
Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed ...Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed satellites,ground users now can be covered by multiple visible satellites,but also face complex handover issues with such massive high-mobility satellites in multi-layer.The end-to-end routing is also affected by the handover behavior.In this paper,we propose an intelligent handover strategy dedicated to multi-layer LEO mega-constellation networks.Firstly,an analytic model is utilized to rapidly estimate the end-to-end propagation latency as a key handover factor to construct a multi-objective optimization model.Subsequently,an intelligent handover strategy is proposed by employing the Dueling Double Deep Q Network(D3QN)-based deep reinforcement learning algorithm for single-layer constellations.Moreover,an optimal crosslayer handover scheme is proposed by predicting the latency-jitter and minimizing the cross-layer overhead.Simulation results demonstrate the superior performance of the proposed method in the multi-layer LEO mega-constellation,showcasing reductions of up to 8.2%and 59.5%in end-to-end latency and jitter respectively,when compared to the existing handover strategies.展开更多
Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the...Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the effects of textile structure,layering,and ply orientation on the stab resistance of multi-layer textiles.Three 3D warp interlock(3DWI)structures({f1},{f2},{f3})and a 2D woven fabric({f4}),all made of high-performance p-aramid yarns,were engineered and manufactured.Multi-layer specimens were prepared and subjected to drop-weight stabbing tests following HOSBD standards.Stabbing performance metrics,including Depth of Trauma(DoT),Depth of Penetration(DoP),and trauma deformation(Ymax,Xmax),were investigated and analyzed.Statistical analyses(Two-and One-Way ANOVA)indicated that fabric type and layer number significantly impacted DoP(P<0.05),while ply orientation significantly affected DoP(P<0.05)but not DoT(P>0.05).Further detailed analysis revealed that 2D woven fabrics exhibited greater trauma deformation than 3D WIF structures.Increasing the number of layers reduced both DoP and DoT across all fabric structures,with f3 demonstrating the best performance in multi-layer configurations.Aligned ply orientations also enhanced stab resistance,underscoring the importance of alignment in dissipating impact energy.展开更多
An anchorage reliability analysis approach for simply supported reinforced concrete beams under corrosion attack in the anchorage zone is developed.The first-order second-moment method is employed to analyze the effec...An anchorage reliability analysis approach for simply supported reinforced concrete beams under corrosion attack in the anchorage zone is developed.The first-order second-moment method is employed to analyze the effects of various factors on the anchorage reliability.These factors include both the length and width of cover cracking due to reinforcement corrosion,the cover thickness,the anchorage length,and the stirrup ratio.The results show that the effect of corrosion-induced crack length on the reliability index for anchorage,β0,is negligible when the crack on the concrete surface is just appearing,but with the crack widening,the β0 value is reduced significantly;the considerable changes in β0 result from a variation in cover depth and anchorage length;the effect of changes in the diameter or space of stirrups on the anchorage resistance is very limited,and the variation in β0 is also very low.展开更多
The aim of this retrospective study was to quantitatively evaluate the treatment effects of in- trusion of overerupted maxillary molars using miniscrew implant anchorage and to investigate the apical root resorption a...The aim of this retrospective study was to quantitatively evaluate the treatment effects of in- trusion of overerupted maxillary molars using miniscrew implant anchorage and to investigate the apical root resorption after molar intrusion. The subjects included 30 patients whose average ages were 35.5±9.0 years. All patients had received intrusion treatments for overerupted maxillary molars with miniscrew anchorage. There were 38 maxillary first molars and 26 maxillary second molars to be in- truded. Two miniscrews were inserted in the buccal and palatal alveolar bone mesial to the overerupted molar. Force of 100-150 g was applied by the elastic chains between screw head and attachment on each side. Lateral cephalograms and panoramic radiographs taken before and after intrusion were used to evaluate dental changes and root resorption of molars. Only 6 of the 128 miniscrews failed. The first and second molars were significantly intruded by averages of 3.4 mm and 3.1 mm respectively (P〈0.001). The average intrusion time was more than 6 months. The crown of the molars mesially tilted by averages of 3.1 degrees and 3.3 degrees (P〈0.001) for first and second molars. The amounts of root resorption were 0.2-0.4 mm on average. The intrusion treatment of overerupted molars with miniscrew anchorages could be used as an efficient and reliable method to recover lost restoration space for pros- thesis. Radiographically speaking, root resorption of molars was not clinically significant after applica- tion of intrusive forces of 200 to 300 g.展开更多
This paper investigated the stress evolution,displacement field,local deformation and its overall distribution,and failure characteristics of the anchorage structure of surrounding rock with different rockbolt spacing...This paper investigated the stress evolution,displacement field,local deformation and its overall distribution,and failure characteristics of the anchorage structure of surrounding rock with different rockbolt spacing through the model experiments.The influences of the pre-tightening force and spacing of rockbolt on the support strength of the anchorage structure of surrounding rock were analyzed by the simulation using FLAC3D numerical software.The support scheme of the excavated roadway was then designed,and the effectiveness of this support scheme was further verified by the displacement measurement of the roadway.The results showed that the maximum displacement between the roof and floor of the west wing track roadway in Kouzidong coal mine,China is about 42 mm,and the maximum displacement between its both sides is about 72 mm,indicating that the support scheme proposed in this study can ensure the stability and safety of the excavated roadway.展开更多
A serial of"comb-like and trough-like"folds developed in eastern Sichuan,controlled by the multi-layer detachment folding,is different from the classical Jura-type structure in their development.The key factor resul...A serial of"comb-like and trough-like"folds developed in eastern Sichuan,controlled by the multi-layer detachment folding,is different from the classical Jura-type structure in their development.The key factor resulting in the development of these structures is the occurrence of detachment layers in different parts of Neoprotozoic to Mesozoic stratigraphy of study area,which, from the bottom to the top,are the lower part of Banxi Group,Lower Cambrian(Niutitang Formation),Lower Silurian(Longmaxi Formation and Luoreping Formation),Upper Permian (Wujiaping Formation) and Lower Triassic(Daye Formation).On the basis of field survey combined with sand-box modeling,this study argued that the detachment layer of the lower part of Banxi Group controlled the development of the"comb-like"folds,and the lower part of Cambrian detachment layer controlled the development of"trough-like"folds.Because of several detachment layers occurring in the study area,the development of duplex structures different scales is an important deformation mechanism,and the duplexes are the important structures distinguished from the typical detachment folding structures.Due to these duplexes,the surface structures and structural highs may not be the structural highs in the depth.Meanwhile,the detachment layers are good channels for oil/ gas migration benefiting the understanding of accumulation and migration of oil and gas.展开更多
In order to improve mechanical properties of soft poly(vinyl chloride)(PVC) films,we used commercial multi-layer graphene(MLG) with large size and high structural integrity as reinforcing fillers,and prepared MLG/PVC ...In order to improve mechanical properties of soft poly(vinyl chloride)(PVC) films,we used commercial multi-layer graphene(MLG) with large size and high structural integrity as reinforcing fillers,and prepared MLG/PVC composite films by using conventional melt-mixing methods.Microstructures,static and dynamic mechanical properties of the MLG/PVC composite films were investigated.The results showed that a small amount of MLG loading could greatly increase the mechanical properties of the MLG/PVC composites.The tensile modulus of the 0.96 wt%MLG/PVC composites was up to 40 MPa,increasing by31.3%in comparison to the neat PVC.Such a significant mechanical reinforcement was mainly attributed to uniform dispersion of the large-size MLG,good compatibility and strong interactions among MLG and plasticizers and PVC.展开更多
Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface e...Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface energy and even leading to structure failure. This work presents a methodological study on the measurement of residual stress in a multi-layer semiconductor heterostructure. Scanning electron microscopy(SEM), micro-Raman spectroscopy(MRS), and transmission electron microscopy(TEM) were applied to measure the geometric parameters of the multilayer structure. The relationship between the Raman spectrum and the stress/strain on the [100] and [110] crystal orientations was determined to enable surface and crosssection residual stress analyses, respectively. Based on the Raman mapping results, the distribution of residual stress along the depth of the multi-layer heterostructure was successfully obtained.展开更多
The stability of the anchorage slope on the Baiyang Yangtze River Highway Bridge in Yichang,China,was investigated under different rainfall conditions using model test,numerical simulation,and factor analysis.The resu...The stability of the anchorage slope on the Baiyang Yangtze River Highway Bridge in Yichang,China,was investigated under different rainfall conditions using model test,numerical simulation,and factor analysis.The results of the study are as follows:(1)with the increase of rainfall intensity,the change of earth pressure can be divided into three stages.However,when the rainfall intensity was larger than a certain value,the change of earth pressure of cut slope became two stages;with the increase of rainfall intensity,pore water pressure increased with the increase of rainfall time,while at a certain stage after the rainfall,the pore water pressure in the cut slope did not decrease immediately,but increased for a period of time.(2)When the rainfall stopped,the stability coefficient of the anchorage slope continued to decrease,then slowly increased,and finally tended to be gentle.Meanwhile,when the rainstorm reached a certain intensity,the main factor that restricted the rainfall infiltration rate became the geotechnical permeability coefficient of the cut slope,which was no longer the rainfall intensity.(3)Factor analysis shows that the rainfall intensity and rainfall duration were the most important factors for anchorage slope stability,while earth pressure,pore water pressure and slope displacement were much less significant.展开更多
Three different kinds of PELE(the penetrator with lateral efficiency) were launched by ballistic artillery to impact the multi-layer spaced metal target plates.The lmpact velocities of the projectiles were measured by...Three different kinds of PELE(the penetrator with lateral efficiency) were launched by ballistic artillery to impact the multi-layer spaced metal target plates.The lmpact velocities of the projectiles were measured by the velocity measuring system.The damage degree and process of each laye r of target plate impacted by the three kinds of projectiles were analyzed.The experimental results show that all the three kinds of projectiles have the effect of expanding holes on the multi-layer spaced metal target plates.For the normal structure PELE(without layered) with tungsten alloy jacket and the radial layered PELE with tungsten alloy jacket,the diameters of holes on the seco nd layer of plates are 3.36 times and 3.76 times of the diameter of the projectile,re spectively.For radial layered PELE with W/Zr-based amorphous composite jacket,due to the large number of tungsten wires dispersed after the impact,the diameter of the holes on the four-layer spaced plates can reach 2.4 times,3.04 times,5.36 times and 2.68 times of the diameter of the projectile.Besides,the normal structure PELE with tungsten alloy jacket and the radial layered PELE whit tungsten alloy jacket formed a large number of fragments impact marks on the third target plate.Although the number of fragments penetrating the third target plate is not as large as that of the normal structure PELE,the area of dispersion of fragments impact craters on the third target plate is larger by the radial layered PELE.The radial layered PELE with W/Zr-based amorphous composite jacket released a lot of heat energy due to the impact of the matrix material,and formed a large area of ablation marks on the last three target plates.展开更多
Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with ...Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with theoretical method, the finite difference method has been verified to be feasible by a case study. It is found that under seismic loading, the dynamic response of anchorage system is synchronously fluctuated with the seismic vibration. The change of displacement amplitude of material points is slight, and comparatively speaking, the displacement amplitude of the outside point is a little larger than that of the inside point, which shows amplification effect of surface. While the axial force amplitude transforms considerably from the inside to the outside. It increases first and reaches the peak value in the intersection between the anchoring section and free section, then decreases slowly in the free section. When considering damping effect of anchorage system, the finite difference method can reflect the time attenuation characteristic better, and the calculating result would be safer and more reasonable than the dynamic steady-state theoretical method. What is more, the finite difference method can be applied to the dynamic response analysis of harmonic and seismic random vibration for all kinds of anchor, and hence has a broad application prospect.展开更多
In this paper, ballistic impact tests on wrapped multi-layer Kevlar 49 woven fabric systems were carried out with a flat blade projectile to investigate the impact response during a fan blade out event. The influences...In this paper, ballistic impact tests on wrapped multi-layer Kevlar 49 woven fabric systems were carried out with a flat blade projectile to investigate the impact response during a fan blade out event. The influences of the number of Kevlar layers and pre-tension were discussed particularly. Test results were used to analyze failure modes and energy absorption characteristics of multi-ply Kevlar fabrics. Results show that there are two kinds of impact damage for fabrics: global deformation mainly involving stretching of yarns in the impact region and fabric wrinkle from both sides to the impact zone, and local damage characterized by yarn fracture, yarn pull-out, and yarn unraveling. The energy absorption capability of Kevlar 49 woven fabrics improves with the number of fabric layers. The energy absorbed by multi-layer fabrics increases slightly at the beginning and then decreases substantially with pre-tension. The work in this paper can provide guidance for designing light-weight multi-layer fabrics containment systems.展开更多
Multi-layer pressure vessels are widely used in every field of high pressure technology.For the purpose of enhancing a vessels' load bearing capacity,a beneficial process like shrink-fit is usually employed.However,f...Multi-layer pressure vessels are widely used in every field of high pressure technology.For the purpose of enhancing a vessels' load bearing capacity,a beneficial process like shrink-fit is usually employed.However,few documents on optimum design for multi-layer shrink-fit vessels made of different strength materials can be found,available data are mainly on two-layer vessels.In this paper,an optimum design approach is developed for shrink-fit multi-layer vessels under ultrahigh pressure by using different materials.Maximum shear stress theory is applied as design criteria.The inner and outer radii of a multi-layer vessel,as well as the material of each layer,are assumed to be known.The optimization mathematical model is,thereby,built.Lagrange multipliers method is required to obtain the optimal design formula of wall ratio(ratio of outer to inner radii) of each layer,from which the optimum formulas of shrinkage pressure and radial interference are derived with the superposition principle employed.These formulas are applicable for the optimization design of all multi-layer vessels made of different materials,or same materials.The formulas of the limit working pressure and the contact pressure show that the optimum wall ratio of each layer and limit working pressure are only related to all selected material strength and unrelated to the position of the layer placement in the vessel.However,shrinkage pressure is related to the position of the layer placement in the vessel.Optimization design of an open ended shrink-fit three-layer vessel using different materials and comparisons proved that the optimized multi-layer vessels have outstanding characteristics of small radial interference and are easier for assembly.When the stress of each layer is distributed more evenly and appropriately,the load bearing capability and safety of vessels are enhanced.Therefore,this design is material-saving and cost-effective,and has prospect of engineering application.展开更多
基金supported by the National Key Research and Development Program of China(No.2022YFB3404700)the National Natural Science Foundation of China(Nos.52105313 and 52275299)+2 种基金the Research and Development Program of Beijing Municipal Education Commission,China(No.KM202210005036)the Natural Science Foundation of Chongqing,China(No.CSTB2023NSCQ-MSX0701)the National Defense Basic Research Projects of China(No.JCKY2022405C002).
文摘At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components.
基金Supported by the National Natural Science Foundation of China(Grant No.52172409)Postdoctoral Innovation Talents Support Program(Grant No.BX20240298)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.2682024GF023)Heilongjiang Province Postdoctoral Foundation Project(Grant No.LBH-Z23041).
文摘The huge impact kinetic energy cannot be quickly dissipated by the energy-absorbing structure and transferred to the other vehicle through the car body structure,which will cause structural damage and threaten the lives of the occupants.Therefore,it is necessary to understand the laws of energy conversion,dissipation and transfer during train collisions.This study proposes a multi-layer progressive analysis method of energy flow during train collisions,considering the characteristics of the train.In this method,the train collision system is divided into conversion,dissipation,and transfer layers from the perspective of the train,collision interface,and car body structure to analyze the energy conversion,dissipation and transfer characteristics.Taking the collision process of a rail train as an example,a train collision energy transfer path analysis model was established based on power flow theory.The results show that when the maximum mean acceleration of the vehicle meets the standard requirements,the jerk may exceed the allowable limit of the human body,and there is a risk of injury to the occupants of a secondary collision.The decay rate of the collision energy along the direction of train operation reaches 79%.As the collision progresses,the collision energy gradually converges in the structure with holes,and the structure deforms when the gathered energy is greater than the maximum energy the structure can withstand.The proposed method helps to understand the train collision energy flow law and provides theoretical support for the train crashworthiness design in the future.
基金Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2025R319)Riyadh,Saudi Arabia and Prince Sultan University for covering the article processing charges(APC)associated with this publication.Special acknowledgement to Automated Systems&Soft Computing Lab(ASSCL),Prince Sultan University,Riyadh,Saudi Arabia.
文摘The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems.
基金Project(2023YFC3707800)supported by the National Key Research and Development Program of China。
文摘In practical engineering construction,multi-layered barriers containing geomembranes are extensively applied to retard the migration of pollutants.However,the associated analytical theory on pollutants diffusion still needs to be further improved.In this work,general analytical solutions are derived for one-dimensional diffusion of degradable organic contaminant(DOC)in the multi-layered media containing geomembranes under a time-varying concentration boundary condition,where the variable substitution and separated variable approaches are employed.These analytical solutions with clear expressions can be used not only to study the diffusion behaviors of DOC in bottom and vertical composite barrier systems,but also to verify other complex numerical models.The proposed general analytical solutions are then fully validated via three comparative analyses,including comparisons with the experimental measurements,an existing analytical solution,and a finite-difference solution.Ultimately,the influences of different factors on the composite cutoff wall’s(CCW,which consists of two soil-bentonite layers and a geomembrane)service performance are investigated through a composite vertical barrier system as the application example.The findings obtained from this investigation can provide scientific guidance for the barrier performance evaluation and the engineering design of CCWs.This application example also exhibits the necessity and effectiveness of the developed analytical solutions.
基金financially supported by the National Natural Science Foundation of China (No.42172292)Taishan Scholars Project Special Funding,and Shandong Energy Group (No.SNKJ2022A01-R26)funded by the China Scholarship Council (CSC No.202006220274)。
文摘Understanding the anchorage performance of en-echelon joints under cyclic shear loading is crucial for optimizing support strategies in jointed rock masses.This study examines the anchorage effects on enechelon joints with various orientations using laboratory cyclic shear tests.By comparing unbolted and bolted en-echelon joints,we analyze shear zone damage,shear properties,dilatancy,energy absorption,and acoustic emission characteristics to evaluate anchoring effects across shear cycles and joint orientations.Results reveal that bolted en-echelon joints experience more severe shear zone damage after cycles,with bolt deformation correlating to shear zone width.Bolted en-echelon joints exhibit faster shear strength deterioration and higher cumulative strength loss compared to unbolted ones,with losses ranging from 20.04%to 72.76%.The compressibility of en-echelon joints reduces the anchoring effect during shear cycles,leading to lower shear strength of bolted en-echelon joints in later stages of shear cycles compared to unbolted ones.Bolts reinforce en-echelon joints more effectively at non-positive angles,with the best performance observed at 0°and-60°.Anchorage accelerates the transition from rolling friction to sliding friction in the shear zone,enhancing energy absorption,which is crucial for rock projects under dynamic shear loading.Additionally,rock bolts expedite the transition of the cumulative AE hits and cumulative AE energy curves from rapid to steady growth,indicating that strong bolt-rock interactions accelerate crack initiation,propagation,and energy release.
基金Projects(42477162,52108347,52178371,52168046,52178321,52308383)supported by the National Natural Science Foundation of ChinaProjects(2023C03143,2022C01099,2024C01219,2022C03151)supported by the Zhejiang Key Research and Development Plan,China+6 种基金Project(LQ22E080010)supported by the Exploring Youth Project of Zhejiang Natural Science Foundation,ChinaProject(LR21E080005)supported by the Outstanding Youth Project of Natural Science Foundation of Zhejiang Province,ChinaProject(2022M712964)supported by the Postdoctoral Science Foundation of ChinaProject(2023AFB008)supported by the Natural Science Foundation of Hubei Province for Youth,ChinaProject(202203)supported by Engineering Research Centre of Rock-Soil Drilling&Excavation and Protection,Ministry of Education,ChinaProject(202305-2)supported by the Science and Technology Project of Zhejiang Provincial Communication Department,ChinaProject(2021K256)supported by the Construction Research Founds of Department of Housing and Urban-Rural Development of Zhejiang Province,China。
文摘This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi analytical solutions of temperature increment and displacement of multi-layered composite structures are obtained by using the Laplace transform method,upon which the effects of thermal resistance coefficient,partition coefficient,thermal conductivity ratio and heat capacity ratio on the responses are studied.The results show that the generalized imperfect thermal contact model can realistically describe the imperfect thermal contact problem.Accordingly,it may degenerate into other thermal contact models by adjusting the thermal resistance coefficient and partition coefficient.
基金supported by the National Natural Science Foundation of China(No.62401597)Natural Science Foundation of Hunan Province,China(No.2024JJ6469)the Research Project of National University of Defense Technology,China(No.ZK22-02).
文摘Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed satellites,ground users now can be covered by multiple visible satellites,but also face complex handover issues with such massive high-mobility satellites in multi-layer.The end-to-end routing is also affected by the handover behavior.In this paper,we propose an intelligent handover strategy dedicated to multi-layer LEO mega-constellation networks.Firstly,an analytic model is utilized to rapidly estimate the end-to-end propagation latency as a key handover factor to construct a multi-objective optimization model.Subsequently,an intelligent handover strategy is proposed by employing the Dueling Double Deep Q Network(D3QN)-based deep reinforcement learning algorithm for single-layer constellations.Moreover,an optimal crosslayer handover scheme is proposed by predicting the latency-jitter and minimizing the cross-layer overhead.Simulation results demonstrate the superior performance of the proposed method in the multi-layer LEO mega-constellation,showcasing reductions of up to 8.2%and 59.5%in end-to-end latency and jitter respectively,when compared to the existing handover strategies.
文摘Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the effects of textile structure,layering,and ply orientation on the stab resistance of multi-layer textiles.Three 3D warp interlock(3DWI)structures({f1},{f2},{f3})and a 2D woven fabric({f4}),all made of high-performance p-aramid yarns,were engineered and manufactured.Multi-layer specimens were prepared and subjected to drop-weight stabbing tests following HOSBD standards.Stabbing performance metrics,including Depth of Trauma(DoT),Depth of Penetration(DoP),and trauma deformation(Ymax,Xmax),were investigated and analyzed.Statistical analyses(Two-and One-Way ANOVA)indicated that fabric type and layer number significantly impacted DoP(P<0.05),while ply orientation significantly affected DoP(P<0.05)but not DoT(P>0.05).Further detailed analysis revealed that 2D woven fabrics exhibited greater trauma deformation than 3D WIF structures.Increasing the number of layers reduced both DoP and DoT across all fabric structures,with f3 demonstrating the best performance in multi-layer configurations.Aligned ply orientations also enhanced stab resistance,underscoring the importance of alignment in dissipating impact energy.
基金The Key Science Foundation of Liaoning ProvincialCommunications Department (No.0101).
文摘An anchorage reliability analysis approach for simply supported reinforced concrete beams under corrosion attack in the anchorage zone is developed.The first-order second-moment method is employed to analyze the effects of various factors on the anchorage reliability.These factors include both the length and width of cover cracking due to reinforcement corrosion,the cover thickness,the anchorage length,and the stirrup ratio.The results show that the effect of corrosion-induced crack length on the reliability index for anchorage,β0,is negligible when the crack on the concrete surface is just appearing,but with the crack widening,the β0 value is reduced significantly;the considerable changes in β0 result from a variation in cover depth and anchorage length;the effect of changes in the diameter or space of stirrups on the anchorage resistance is very limited,and the variation in β0 is also very low.
文摘The aim of this retrospective study was to quantitatively evaluate the treatment effects of in- trusion of overerupted maxillary molars using miniscrew implant anchorage and to investigate the apical root resorption after molar intrusion. The subjects included 30 patients whose average ages were 35.5±9.0 years. All patients had received intrusion treatments for overerupted maxillary molars with miniscrew anchorage. There were 38 maxillary first molars and 26 maxillary second molars to be in- truded. Two miniscrews were inserted in the buccal and palatal alveolar bone mesial to the overerupted molar. Force of 100-150 g was applied by the elastic chains between screw head and attachment on each side. Lateral cephalograms and panoramic radiographs taken before and after intrusion were used to evaluate dental changes and root resorption of molars. Only 6 of the 128 miniscrews failed. The first and second molars were significantly intruded by averages of 3.4 mm and 3.1 mm respectively (P〈0.001). The average intrusion time was more than 6 months. The crown of the molars mesially tilted by averages of 3.1 degrees and 3.3 degrees (P〈0.001) for first and second molars. The amounts of root resorption were 0.2-0.4 mm on average. The intrusion treatment of overerupted molars with miniscrew anchorages could be used as an efficient and reliable method to recover lost restoration space for pros- thesis. Radiographically speaking, root resorption of molars was not clinically significant after applica- tion of intrusive forces of 200 to 300 g.
基金supported by the National Natural Science Foundation of China(51734009)National Key Basic Research and Development Program of China(2017YFC0603001).
文摘This paper investigated the stress evolution,displacement field,local deformation and its overall distribution,and failure characteristics of the anchorage structure of surrounding rock with different rockbolt spacing through the model experiments.The influences of the pre-tightening force and spacing of rockbolt on the support strength of the anchorage structure of surrounding rock were analyzed by the simulation using FLAC3D numerical software.The support scheme of the excavated roadway was then designed,and the effectiveness of this support scheme was further verified by the displacement measurement of the roadway.The results showed that the maximum displacement between the roof and floor of the west wing track roadway in Kouzidong coal mine,China is about 42 mm,and the maximum displacement between its both sides is about 72 mm,indicating that the support scheme proposed in this study can ensure the stability and safety of the excavated roadway.
基金funded by the Science and Technology Research and Development Program of China Petroleum and Chemical Corporation(No.P06088)Nonprofit Special Research Program(No.200811015)the Land Resource Survey Project of the Ministry of Land and Natural Resources,China(No.1212010782003).
文摘A serial of"comb-like and trough-like"folds developed in eastern Sichuan,controlled by the multi-layer detachment folding,is different from the classical Jura-type structure in their development.The key factor resulting in the development of these structures is the occurrence of detachment layers in different parts of Neoprotozoic to Mesozoic stratigraphy of study area,which, from the bottom to the top,are the lower part of Banxi Group,Lower Cambrian(Niutitang Formation),Lower Silurian(Longmaxi Formation and Luoreping Formation),Upper Permian (Wujiaping Formation) and Lower Triassic(Daye Formation).On the basis of field survey combined with sand-box modeling,this study argued that the detachment layer of the lower part of Banxi Group controlled the development of the"comb-like"folds,and the lower part of Cambrian detachment layer controlled the development of"trough-like"folds.Because of several detachment layers occurring in the study area,the development of duplex structures different scales is an important deformation mechanism,and the duplexes are the important structures distinguished from the typical detachment folding structures.Due to these duplexes,the surface structures and structural highs may not be the structural highs in the depth.Meanwhile,the detachment layers are good channels for oil/ gas migration benefiting the understanding of accumulation and migration of oil and gas.
基金financial supports from the Ministry of Science and Technology of China(No.2012AA030303)the Hundred Talents Program of Chinese Academy of Sciences(No.CAS2012)the Fund for Creative Research Groups(No.51221264)
文摘In order to improve mechanical properties of soft poly(vinyl chloride)(PVC) films,we used commercial multi-layer graphene(MLG) with large size and high structural integrity as reinforcing fillers,and prepared MLG/PVC composite films by using conventional melt-mixing methods.Microstructures,static and dynamic mechanical properties of the MLG/PVC composite films were investigated.The results showed that a small amount of MLG loading could greatly increase the mechanical properties of the MLG/PVC composites.The tensile modulus of the 0.96 wt%MLG/PVC composites was up to 40 MPa,increasing by31.3%in comparison to the neat PVC.Such a significant mechanical reinforcement was mainly attributed to uniform dispersion of the large-size MLG,good compatibility and strong interactions among MLG and plasticizers and PVC.
基金supported by the National Basic Research Program of China (Grant 2012CB937500)the National Natural Science Foundation of China (Grants 11422219, 11227202, 11372217, 11272232)+1 种基金the Program for New Century Excellent Talents in University (Grant NCET-13)China Scholarship Council (201308120092)
文摘Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface energy and even leading to structure failure. This work presents a methodological study on the measurement of residual stress in a multi-layer semiconductor heterostructure. Scanning electron microscopy(SEM), micro-Raman spectroscopy(MRS), and transmission electron microscopy(TEM) were applied to measure the geometric parameters of the multilayer structure. The relationship between the Raman spectrum and the stress/strain on the [100] and [110] crystal orientations was determined to enable surface and crosssection residual stress analyses, respectively. Based on the Raman mapping results, the distribution of residual stress along the depth of the multi-layer heterostructure was successfully obtained.
基金the National Natural Science Foundation of China(Nos.41807265,41972286)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUGQY1931)。
文摘The stability of the anchorage slope on the Baiyang Yangtze River Highway Bridge in Yichang,China,was investigated under different rainfall conditions using model test,numerical simulation,and factor analysis.The results of the study are as follows:(1)with the increase of rainfall intensity,the change of earth pressure can be divided into three stages.However,when the rainfall intensity was larger than a certain value,the change of earth pressure of cut slope became two stages;with the increase of rainfall intensity,pore water pressure increased with the increase of rainfall time,while at a certain stage after the rainfall,the pore water pressure in the cut slope did not decrease immediately,but increased for a period of time.(2)When the rainfall stopped,the stability coefficient of the anchorage slope continued to decrease,then slowly increased,and finally tended to be gentle.Meanwhile,when the rainstorm reached a certain intensity,the main factor that restricted the rainfall infiltration rate became the geotechnical permeability coefficient of the cut slope,which was no longer the rainfall intensity.(3)Factor analysis shows that the rainfall intensity and rainfall duration were the most important factors for anchorage slope stability,while earth pressure,pore water pressure and slope displacement were much less significant.
基金supported by National Natural Science Foundation of China(Grant No.11802141)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX18_0465)。
文摘Three different kinds of PELE(the penetrator with lateral efficiency) were launched by ballistic artillery to impact the multi-layer spaced metal target plates.The lmpact velocities of the projectiles were measured by the velocity measuring system.The damage degree and process of each laye r of target plate impacted by the three kinds of projectiles were analyzed.The experimental results show that all the three kinds of projectiles have the effect of expanding holes on the multi-layer spaced metal target plates.For the normal structure PELE(without layered) with tungsten alloy jacket and the radial layered PELE with tungsten alloy jacket,the diameters of holes on the seco nd layer of plates are 3.36 times and 3.76 times of the diameter of the projectile,re spectively.For radial layered PELE with W/Zr-based amorphous composite jacket,due to the large number of tungsten wires dispersed after the impact,the diameter of the holes on the four-layer spaced plates can reach 2.4 times,3.04 times,5.36 times and 2.68 times of the diameter of the projectile.Besides,the normal structure PELE with tungsten alloy jacket and the radial layered PELE whit tungsten alloy jacket formed a large number of fragments impact marks on the third target plate.Although the number of fragments penetrating the third target plate is not as large as that of the normal structure PELE,the area of dispersion of fragments impact craters on the third target plate is larger by the radial layered PELE.The radial layered PELE with W/Zr-based amorphous composite jacket released a lot of heat energy due to the impact of the matrix material,and formed a large area of ablation marks on the last three target plates.
基金Projects(51308273,41372307,41272326) supported by the National Natural Science Foundation of ChinaProjects(2010(A)06-b) supported by Science and Technology Fund of Yunan Provincial Communication Department,China
文摘Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with theoretical method, the finite difference method has been verified to be feasible by a case study. It is found that under seismic loading, the dynamic response of anchorage system is synchronously fluctuated with the seismic vibration. The change of displacement amplitude of material points is slight, and comparatively speaking, the displacement amplitude of the outside point is a little larger than that of the inside point, which shows amplification effect of surface. While the axial force amplitude transforms considerably from the inside to the outside. It increases first and reaches the peak value in the intersection between the anchoring section and free section, then decreases slowly in the free section. When considering damping effect of anchorage system, the finite difference method can reflect the time attenuation characteristic better, and the calculating result would be safer and more reasonable than the dynamic steady-state theoretical method. What is more, the finite difference method can be applied to the dynamic response analysis of harmonic and seismic random vibration for all kinds of anchor, and hence has a broad application prospect.
基金co-supported by the National Natural Science Foundation of China (No.51575262)the China Postdoctoral Science Foundation (No.2015M571754)the Aeronautical Science Foundation of China (No.2015ZB52008)
文摘In this paper, ballistic impact tests on wrapped multi-layer Kevlar 49 woven fabric systems were carried out with a flat blade projectile to investigate the impact response during a fan blade out event. The influences of the number of Kevlar layers and pre-tension were discussed particularly. Test results were used to analyze failure modes and energy absorption characteristics of multi-ply Kevlar fabrics. Results show that there are two kinds of impact damage for fabrics: global deformation mainly involving stretching of yarns in the impact region and fabric wrinkle from both sides to the impact zone, and local damage characterized by yarn fracture, yarn pull-out, and yarn unraveling. The energy absorption capability of Kevlar 49 woven fabrics improves with the number of fabric layers. The energy absorbed by multi-layer fabrics increases slightly at the beginning and then decreases substantially with pre-tension. The work in this paper can provide guidance for designing light-weight multi-layer fabrics containment systems.
基金supported by Key Scientific Research Project of Baoji University of Arts and Sciences of China (Grant No.ZK0727)Shanxi Provincial Special Foundation Project of Key Discipline Construction of China
文摘Multi-layer pressure vessels are widely used in every field of high pressure technology.For the purpose of enhancing a vessels' load bearing capacity,a beneficial process like shrink-fit is usually employed.However,few documents on optimum design for multi-layer shrink-fit vessels made of different strength materials can be found,available data are mainly on two-layer vessels.In this paper,an optimum design approach is developed for shrink-fit multi-layer vessels under ultrahigh pressure by using different materials.Maximum shear stress theory is applied as design criteria.The inner and outer radii of a multi-layer vessel,as well as the material of each layer,are assumed to be known.The optimization mathematical model is,thereby,built.Lagrange multipliers method is required to obtain the optimal design formula of wall ratio(ratio of outer to inner radii) of each layer,from which the optimum formulas of shrinkage pressure and radial interference are derived with the superposition principle employed.These formulas are applicable for the optimization design of all multi-layer vessels made of different materials,or same materials.The formulas of the limit working pressure and the contact pressure show that the optimum wall ratio of each layer and limit working pressure are only related to all selected material strength and unrelated to the position of the layer placement in the vessel.However,shrinkage pressure is related to the position of the layer placement in the vessel.Optimization design of an open ended shrink-fit three-layer vessel using different materials and comparisons proved that the optimized multi-layer vessels have outstanding characteristics of small radial interference and are easier for assembly.When the stress of each layer is distributed more evenly and appropriately,the load bearing capability and safety of vessels are enhanced.Therefore,this design is material-saving and cost-effective,and has prospect of engineering application.