Structural modification of three dimensional(3D)materials for the application of dielectric loss-based microwave absorbing materials(MAMs)usually relies on intricate synthesis process and can pose challenges in terms ...Structural modification of three dimensional(3D)materials for the application of dielectric loss-based microwave absorbing materials(MAMs)usually relies on intricate synthesis process and can pose challenges in terms of scalability and mass production for practical application.In this work,we reported a successful attempt in modifying the 3D structure of mesoporous lanthanum oxide(La_(2)O_(3))for effective broadband MAMs candidate via simple co-precipitation process.The inclusion of cetyltrimethylammonium bromide(CTAB)and hydrothermal aging treatment result in a significant transformation of La_(2)O_(3)particles from their original polygonal form to a 3D coral-like and nano needle-like structure.The utilization of CTAB and hydrothermal aging results in the increase of surface area and a two-fold increase in pore volume of the resulting La_(2)O_(3).Due to its unique 3D structure,the 3D coral-like and nano needle-like La_(2)O_(3)materials possess a broadband electromagnetic(EM)wave absorption characteristic with the effective absorption bandwidth(EAB)covering the C-band frequency range.Specifically,in the La_(2)O_(3)C-H sample(with CTAB-with hydrothermal),it exhibits strong EM wave absorption with a reflection loss(RL)value of-33.07 dB which equals to 99.95%EM wave absorption at a thickness of only 1.50 mm.The detailed analysis of EM wave absorption properties reveals that the improvement of La_(2)O_(3)materials to attenuate EM wave energy arises from the dielectric loss phenomenon,the enhanced interfacial polarization,multiple reflections mechanism,and conduction loss mechanism induced by the 3D structural formation of the La_(2)O_(3)structure.This work proposes a novel and efficient approach in synthesizing and modifying 3D materials for effective broadband EM wave absorption.展开更多
In this work,a novel microwave absorbing material(MAM)made of a pseudo-binary of Sr_(2)TiMoO_(6)-Al_(2)O_(3)(STM)is proposed first.The MAMs labeled as STM X(X=60,70,80 and 100,respectively),in which X is the initial w...In this work,a novel microwave absorbing material(MAM)made of a pseudo-binary of Sr_(2)TiMoO_(6)-Al_(2)O_(3)(STM)is proposed first.The MAMs labeled as STM X(X=60,70,80 and 100,respectively),in which X is the initial weight percent of Sr_(2)TiMoO_(6),were synthesized using the solid-state reaction method.Compared with STM100,some equilibrium phases,including SrTiO_(3),Mo,Sr_(8)(Al1_(2)O_(24))(MoO_(4))_(2)and a few undefined ones,are presented in the composites as evidenced by X-ray diffraction results and scanning electron microscopy due to the chemical reaction between Sr_(2)TiMoO_(6)and Al_(2)O_(3)component.Besides conductance loss,heterogeneous interfaces between various equilibrium phases introduce interfacial polarization,which causes an enhancement of dissipation for the incident electromagnetic wave.Among the synthesized samples,STM80 presents the best microwave absorbing properties.It has a minimum reflection loss(RLmin)of-26 dB and an effective absorbing bandwidth up to 2.7 GHz when the thickness is only 1 mm.This indicates that STM80 is a new type of microwave absorbing material with strong absorption and ultrathin thickness.展开更多
Oil and organic solvent contamination, derived from oil spills and organic solvent leakage, has been recognized as one of the major environmental issues imposing a serious threat to both human and ecosystem health. Am...Oil and organic solvent contamination, derived from oil spills and organic solvent leakage, has been recognized as one of the major environmental issues imposing a serious threat to both human and ecosystem health. Among the various presented technologies applied for oil/water separation, oil absorption process has been explored widely and offers satisfactory results especially with surface modified oil-absorbing material and/or hybrid absorbents. In this review, we summarize the recent research activities involved in the designing strategies of oil-absorbing absorbents and their application in oil absorption. Then, an extensive list of various oil-absorbing materials from literature, including polymer materials, porous inorganic materials and biomass materials, has been compiled and the oil adsorption capacities toward various types of oils and organic solvents as available in the literature are presented along with highlighting and discussing the various factors involved in the designing of oil-absorbing absorbents tested so far for oil/water separation. Finally, some future trends and perspectives in oil-absorbing material are outlined.展开更多
In this paper,a tunable metamaterial absorber based on a Dirac semimetal is proposed.It consists of three different structures,from top to bottom,namely a double semicircular Dirac semimetal resonator,a silicon dioxid...In this paper,a tunable metamaterial absorber based on a Dirac semimetal is proposed.It consists of three different structures,from top to bottom,namely a double semicircular Dirac semimetal resonator,a silicon dioxide substrate and a continuous vanadium dioxide(VO_(2))reflector layer.When the Fermi energy level of the Dirac semimetal is 10 meV,the absorber absorbs more than 90%in the 39.06-84.76 THz range.Firstly,taking advantage of the tunability of the conductivity of the Dirac semimetal,dynamic tuning of the absorption frequency can be achieved by changing the Fermi energy level of the Dirac semimetal without the need to optimise the geometry and remanufacture the structure.Secondly,the structure has been improved by the addition of the phase change material VO_(2),resulting in a much higher absorption performance of the absorber.Since VO_(2)is a temperature-sensitive metal oxide with an insulating phase below the phase transition temperature(about 68℃)and a metallic phase above the phase transition temperature,this paper also analyses the effect of VO_(2)on the absorptive performance at different temperatures,with the aim of further improving absorber performance.展开更多
A two-dimensional metal model is established to investigate the stealth mechanisms of radar absorbing material (RAM) and plasma when they cover the model together. Using the finite-difference time-domain (FDTD) me...A two-dimensional metal model is established to investigate the stealth mechanisms of radar absorbing material (RAM) and plasma when they cover the model together. Using the finite-difference time-domain (FDTD) method, the interaction of electromagnetic (EM) waves with the model can be studied. In this paper, three covering cases are considered: a. RAM or plasma covering the metal solely; b. RAM and plasma covering the metal, while plasma is placed outside; e. RAM and plasma covering the metal, while RAM is placed outside. The calculated results show that the covering order has a great influence on the absorption of EM waves. Compared to case a, case b has an advantage in the absorption of relatively high-frequency EM waves (HFWs), whereas case c has an advantage in the absorption of relatively low-frequency EM waves (LFWs). Through the optimization of the parameters of both plasma and RAM, it is hopeful to obtain a broad absorption band by RAM and plasma covering. Near-field attenuation rate and far-field radar cross section (RCS) are employed to compare the different cases.展开更多
Employing carbonyl iron powder and Ethylene-Propylene-Diene Monomer (EPDM) as the absorbent and matrix, rubber radar absorbing materials (RAM) were prepared. Effects of the carbonyl iron volume fraction and the th...Employing carbonyl iron powder and Ethylene-Propylene-Diene Monomer (EPDM) as the absorbent and matrix, rubber radar absorbing materials (RAM) were prepared. Effects of the carbonyl iron volume fraction and the thickness of the RAM on the microwave absorption properties in the frequency range of 2.6-18GHz were studied, and a mathematical analysis was made using the electromagnetic theory. The experimental results indicate that the minimum reflectivity of the radar absorbing materials continuously decreases with the increase of the carbonyl iron volume fraction, and the absorption peak also moves towards the low frequency for the same thickness of the RAM. The minimum reflectivity of the 3.0 mm RAM is -21.7dB at 3.5 GHz when the volume fraction of carbonyl iron is 45%. The reflectivity of the RAM is not in direct proportional to the thickness of the RAM, when the RAM has the same volume fraction of the carbonyl iron. The reflectivity of the RAM presents a regular trend at a given carbonyl iron volume fraction in the frequency range of 2.6-18 GHz. With the increase of the thickness, the maximum absorption peak moves towards low frequency band, the minimum reflectivity firstly decreases and then increases, and the absorption bandwidth for reflectivity〈-10 dB firstly increases and then decreases. The microwave absorption properties of the RAM are determined by the thickness and the composition of the radar absorbing materials. Theoretical analysis indicates that the reflectivity of the RAM is determined by the matching degree of the air's characteristic impedance and the input impedance.展开更多
Kapok fiber corresponds to the seed hairs of the kapok tree(Ceiba pentandra), and is a typical cellulosic fiber with the features of thin cell wall, large lumen, low density and hydrophobic–oleophilic properties. A...Kapok fiber corresponds to the seed hairs of the kapok tree(Ceiba pentandra), and is a typical cellulosic fiber with the features of thin cell wall, large lumen, low density and hydrophobic–oleophilic properties. As a type of renewable natural plant fiber, kapok fiber is abundant,biocompatible and biodegradable, and its full exploration and potential application have received increasing attention in both academic and industrial fields. Based on the structure and properties of kapok fiber, this review provides a summary of recent research on kapok fiber including chemical and physical treatments, kapok fiber-based composite materials, and the application of kapok fiber as an absorbent material for oils, metal ions, dyes, and sound,with special attention to its use as an oil-absorbing material, one predominant application of kapok fiber in the coming future.展开更多
Nanostructured radar absorbing materials (RAMs) have received steadily growing interest because of their fascinating properties and various applications compared with the bulk or microsized counterparts. The increased...Nanostructured radar absorbing materials (RAMs) have received steadily growing interest because of their fascinating properties and various applications compared with the bulk or microsized counterparts. The increased surface area, number of dangling bond atoms and unsaturated co-ordination on surface lead to interface polarization, multiple scatter and absorbing more microwave. In this paper, four types of nanostructured RAMs were concisely introduced as follows: nanocrystal RAMs, core-shell nanocomposite RAMs, nanocomposite of MWCNT and inorganic materials RAMs, nanocomposite of nanostructured carbon and polymer RAMs. Their microwave properties were described in detail by taking various materials as展开更多
The multilayer impedance composite sound absorption structure of the new muffler is proposed by combining the microporous plate structure with the resonant sound absorption structure of the porous material.Firstly,the...The multilayer impedance composite sound absorption structure of the new muffler is proposed by combining the microporous plate structure with the resonant sound absorption structure of the porous material.Firstly,the acoustic impedance and acoustic absorption coefficient of the new muffler structure are calculated by acoustic electric analogy method,and then the noise attenuation is calculated.When the new muffler structure parameters change,the relationship among the noise frequency,the sound absorption coefficient and the noise attenuation is calculated by using MATLAB.Finally,the calculated results are compared with the experimental data to verify the correctness of the theoretical calculation.The variation of resonance peak,resonance frequency and attenuation band width of each structural parameter is analyzed by the relation curve.The conclusion shows that it is feasible to use multilayer sound absorbing materials as the body structure of the new muffler.And the influence relationship between the change of various parameters of the sound absorption structure with the sound absorption coefficient and noise attenuation is obtained.展开更多
Magnesium-substituted Mn0.8Zn0.2Fe2O4 ferrite is synthesized by the sol–gel combustion method using citrate acid as the complex agent. The electromagnetic absorbing behaviors of ferrite/polymer coatings fabricated by...Magnesium-substituted Mn0.8Zn0.2Fe2O4 ferrite is synthesized by the sol–gel combustion method using citrate acid as the complex agent. The electromagnetic absorbing behaviors of ferrite/polymer coatings fabricated by dispersing Mn–Zn ferrite into epoxy resin (EP) are studied. The microstructure and morphology are characterized by X-ray diffraction and scanning electron microscope. Complex permittivity, complex permeability, and reflection loss of ferrite/EP composite coating are investigated in a low frequency range. It is found that the prepared ferrite particles are traditional cubic spinel ferrite particles with an average size of 200 nm. The results reveal that the electromagnetic microwave absorbing properties are significantly influenced by the weight ratio of ferrite to polymer. The composites with a weight ratio of ferrite/polymer being 3:20 have a maximum reflection loss of –16 dB and wide absorbing band. Thus, the Mn–Zn ferrite is the potential candidate in electromagnetic absorbing application in the low frequency range (10 MHz–1 GHz).展开更多
B4C reinforced Al composites are widely used as neutron absorbing materials(NAMs)due to excellent neutron absorbing efficiency,however,such NAMs exhibit poor high-temperature properties.To meet the requirement for str...B4C reinforced Al composites are widely used as neutron absorbing materials(NAMs)due to excellent neutron absorbing efficiency,however,such NAMs exhibit poor high-temperature properties.To meet the requirement for structure-function integration,NAMs with enhanced high-temperature mechanical properties are desired.In this work,a novel(B4 C+Al_(2)O_(3))/Al NAM with netlike distribution of Al_(2)O_(3)was fabricated by powder metallurgy method and subjected to high-temperature tensile creep test.It was shown that the creep resistance was enhanced by several orders of magnitude via the addition of only2.1 vol.%netlike-distributed Al_(2)O_(3).(B_(4)C+Al_(2)O_(3))/Al exhibited high apparent stress exponents ranging from 16 to 25 and high apparent activation energy of 364 kJ/mol.The creep behaviour could be rationalized using the substructure-invariant model and its rupture behaviour could be described by the Dobes-Milicka equation.展开更多
In the present study, the indentation testing with a flat cylindrical indenter on typical multi-layer material systems was simulated successfully by finite element method. The emphasis was put on the methods of extrac...In the present study, the indentation testing with a flat cylindrical indenter on typical multi-layer material systems was simulated successfully by finite element method. The emphasis was put on the methods of extracting the yield stresses and strain-hardening modulus of upper and middle-layers of three-layer material systems from the indentation testing. The slope of the indentation depth to the applied indentation stress curve was found to have a turning point, which can be used to determine the yield stress of the upper-layer. Then, a different method was also presented to determine the yield stress of the middle-layer. This method was based on a set of assumed applied indentation stresses which were to be intersected by the experimental results in order to meet the requirement of having the experimental indentation depth. At last, a reverse numerical algorithm was explored to determine the yield stresses of upper and middle-layers simultaneously by using the indentation testing with two different size indenters. This method assumed two ranges of yield stresses to simulate the indentation behavior. The experimental depth behavior was used to intersect the simulated indentation behavior. And the intersection corresponded to the values of yield stresses of upper and middle-layers. This method was also used further to determine the strain-hardening modulus of upper and middle-layers simultaneously.展开更多
One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural ne...One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural networks(RNNs)have been extensively applied to capture history-dependent constitutive responses of granular materials,but these multiple-step-based neural networks are neither sufficiently efficient nor aligned with the standard finite element method(FEM).Single-step-based neural networks like the multi-layer perceptron(MLP)are an alternative to bypass the above issues but have to introduce some internal variables to encode complex loading histories.In this work,one novel Frobenius norm-based internal variable,together with the Fourier layer and residual architectureenhanced MLP model,is crafted to replicate the history-dependent constitutive features of representative volume element(RVE)for granular materials.The obtained ML models are then seamlessly embedded into the FEM to solve the BVP of a biaxial compression case and a rigid strip footing case.The obtained solutions are comparable to results from the FEM-DEM multiscale modelling but achieve significantly improved efficiency.The results demonstrate the applicability of the proposed internal variable in enabling MLP to capture highly nonlinear constitutive responses of granular materials.展开更多
Outgoing waves arising from high-velocity impacts between soil and structure can be reflected by the conventional truncated boundaries.Absorbing boundary conditions(ABCs),to attenuate the energy of the outward waves,a...Outgoing waves arising from high-velocity impacts between soil and structure can be reflected by the conventional truncated boundaries.Absorbing boundary conditions(ABCs),to attenuate the energy of the outward waves,are necessary to ensure the proper representation of the kinematic field and the accurate quantification of impact forces.In this paper,damping layer and dashpot ABCs are implemented in the material point method(MPM)with slight adjustments.Benchmark scenarios of different dynamic problems are modelled with the ABCs configured.Feasibility of the ABCs is assessed through the velocity fluctuations at specific observation points and the impact force fluctuations on the structures.The impact forces predicted by the MPM with ABCs are verified by comparison with those estimated using a computational fluid dynamics approach.展开更多
Using the multi-physical field simulation software COMSOL,the acoustic characteristics of the multilayer sound absorbing material straight-through perforated pipe muffler are studied by the finite element method.The r...Using the multi-physical field simulation software COMSOL,the acoustic characteristics of the multilayer sound absorbing material straight-through perforated pipe muffler are studied by the finite element method.The results show that the finite element calculation of the multilayer sound absorbing material straight-through the perforated pipe muffler agrees well with the experimental measurement results.The reliability of the finite element method for studying the acoustic performance of the straight-through perforated pipe muffler with multilayer sound absorbing materials is shown.Furthermore,the influence of some structural parameters of porous sound absorbing material and micro-perforated plate on the acoustic performance of the multilayer sound absorbing material straight-through perforated pipe muffler is analyzed.The muffler based on multilayer sound absorbing material is different from the traditional muffler.After applying the multilayer sound absorbing material to the straight-through perforated pipe muffler,the transmission loss value greatly increases,which provides new ideas and directions for future research on the muffler.展开更多
Cotton fabrics treated with phase change materials( PCMs)were used in multi-layered fabrics of the fire fighter protective clothing to study its effect on thermal protection. The thermal protective performance( TPP) o...Cotton fabrics treated with phase change materials( PCMs)were used in multi-layered fabrics of the fire fighter protective clothing to study its effect on thermal protection. The thermal protective performance( TPP) of the multi-layered fabrics was measured by a TPP tester under flash fire. Results showed that the utilization of the PCM fabrics improved the thermal protective performance of the multi-layered fabrics. The fabric with a PCM add on of 41. 9% increased the thermal protection by 50. 6% and reduced the time to reach a second degree burn by 8. 4 s compared with the reference fabrics( without PCMs). The employment of the PCM fabrics also reduced the blackened areas on the inner layers. The PCM fabrics with higher PCM melting temperature could bring higher thermal protective performance.展开更多
The electromagnetic parameters of microwave absorbing materials are important criteria when appraising the properties of absorbents. For reconstruction of parameters which belongs to the inverse scattering problem, th...The electromagnetic parameters of microwave absorbing materials are important criteria when appraising the properties of absorbents. For reconstruction of parameters which belongs to the inverse scattering problem, the test data in requirement of traditional impedance method are "just enough" and not "redundant" to comprehensively evaluate the electromagnetic properties of materials. A novel optimization approach involving multiple impedance measurements is introduced in this paper to implement automatic measurement for electromagnetic parameters on microwave slot-line. Some results for standard samples and microwave absorbing materials are given.展开更多
The aim of the study was to prepare a porous sound-absorbing material using steel slag and fly ash as the main raw material, with coal powder and sodium silicate used as a pore former and binder respectively. The infl...The aim of the study was to prepare a porous sound-absorbing material using steel slag and fly ash as the main raw material, with coal powder and sodium silicate used as a pore former and binder respectively. The influence of the experimental conditions such as the ratio of fly ash, sintering temperature, sintering time, and porosity regulation on the performance of the porous sound-absorbing material was investigated. The results showed that the specimens prepared by this method had high sound absorption performance and good mechanical properties, and the noise reduction coefficient and compressive strength could reach 0.50 and 6.5 MPa, respectively. The compressive strength increased when the dosage of fly ash and sintering temperature were raised. The noise reduction coefficient decreased with increasing ratio of fly ash and reducing pore former, and first increased and then decreased with the increase of sintering temperature and time. The optimum preparation conditions for the porous sound-absorbing material were a proportion of fly ash of 50%(wt.%), percentage of coal powder of 30%(wt.%), sintering temperature of 1130°C,and sintering time of 6.0 hr, which were determined by analyzing the properties of the sound-absorbing material.展开更多
The extended Brinkman Darcy model for momentum equations and an energy equation is used to calculate the unsteady natural convection Couette flow of a viscous incompressible heat generating/absorbing fluid in a vertic...The extended Brinkman Darcy model for momentum equations and an energy equation is used to calculate the unsteady natural convection Couette flow of a viscous incompressible heat generating/absorbing fluid in a vertical channel (formed by two infinite vertical and parallel plates) filled with the fluid-saturated porous medium. The flow is triggered by the asymmetric heating and the accelerated motion of one of the bounding plates. The governing equations are simplified by the reasonable dimensionless parameters and solved analytically by the Laplace transform techniques to obtain the closed form solutions of the velocity and temperature profiles. Then, the skin friction and the rate of heat transfer are consequently derived. It is noticed that, at different sections within the vertical channel, the fluid flow and the temperature profiles increase with time, which are both higher near the moving plate. In particular, increasing the gap between the plates increases the velocity and the temperature of the fluid, however, reduces the skin friction and the rate of heat transfer.展开更多
Results of measurements of permeability, permittivity and radar absorption properties of composites on basis of carbonyl iron particles R-10 brand are presented in this paper. The calculations and experimental studies...Results of measurements of permeability, permittivity and radar absorption properties of composites on basis of carbonyl iron particles R-10 brand are presented in this paper. The calculations and experimental studies have shown that in the super high frequency (SHF) and extremely high frequency (EHF) ranges on the basis of two-layer structures with different content of carbonyl iron particles can create a radar absorbing coatings with a reflectivity of less than -10 dB over a wide bandwidth from 3.1 to 17.1 GHz and from 27 to 37 GHz. Absorbing properties of composites are saved in terahertz frequency range from 250 to 525 GHz.展开更多
基金Project supported by National Research and Innovation Agency through Rumah Program Organisasi Riset Nanoteknologi dan Material Maj u(ORNM)2024Indonesia Ministry of Finance through the competitive research program of RISPRO Kompetisi(PRJ-68/LPDP/2023)。
文摘Structural modification of three dimensional(3D)materials for the application of dielectric loss-based microwave absorbing materials(MAMs)usually relies on intricate synthesis process and can pose challenges in terms of scalability and mass production for practical application.In this work,we reported a successful attempt in modifying the 3D structure of mesoporous lanthanum oxide(La_(2)O_(3))for effective broadband MAMs candidate via simple co-precipitation process.The inclusion of cetyltrimethylammonium bromide(CTAB)and hydrothermal aging treatment result in a significant transformation of La_(2)O_(3)particles from their original polygonal form to a 3D coral-like and nano needle-like structure.The utilization of CTAB and hydrothermal aging results in the increase of surface area and a two-fold increase in pore volume of the resulting La_(2)O_(3).Due to its unique 3D structure,the 3D coral-like and nano needle-like La_(2)O_(3)materials possess a broadband electromagnetic(EM)wave absorption characteristic with the effective absorption bandwidth(EAB)covering the C-band frequency range.Specifically,in the La_(2)O_(3)C-H sample(with CTAB-with hydrothermal),it exhibits strong EM wave absorption with a reflection loss(RL)value of-33.07 dB which equals to 99.95%EM wave absorption at a thickness of only 1.50 mm.The detailed analysis of EM wave absorption properties reveals that the improvement of La_(2)O_(3)materials to attenuate EM wave energy arises from the dielectric loss phenomenon,the enhanced interfacial polarization,multiple reflections mechanism,and conduction loss mechanism induced by the 3D structural formation of the La_(2)O_(3)structure.This work proposes a novel and efficient approach in synthesizing and modifying 3D materials for effective broadband EM wave absorption.
基金supported by the National Natural Science Foundation of China(No.52402078)Yunnan Major Scientific and Technological Projects(No.202302AG050010)+1 种基金Yunnan Fundamental Research Projects(No.202201BE070001-008)the National Key Research and Development Program of China(No.2022YFB3708600)。
文摘In this work,a novel microwave absorbing material(MAM)made of a pseudo-binary of Sr_(2)TiMoO_(6)-Al_(2)O_(3)(STM)is proposed first.The MAMs labeled as STM X(X=60,70,80 and 100,respectively),in which X is the initial weight percent of Sr_(2)TiMoO_(6),were synthesized using the solid-state reaction method.Compared with STM100,some equilibrium phases,including SrTiO_(3),Mo,Sr_(8)(Al1_(2)O_(24))(MoO_(4))_(2)and a few undefined ones,are presented in the composites as evidenced by X-ray diffraction results and scanning electron microscopy due to the chemical reaction between Sr_(2)TiMoO_(6)and Al_(2)O_(3)component.Besides conductance loss,heterogeneous interfaces between various equilibrium phases introduce interfacial polarization,which causes an enhancement of dissipation for the incident electromagnetic wave.Among the synthesized samples,STM80 presents the best microwave absorbing properties.It has a minimum reflection loss(RLmin)of-26 dB and an effective absorbing bandwidth up to 2.7 GHz when the thickness is only 1 mm.This indicates that STM80 is a new type of microwave absorbing material with strong absorption and ultrathin thickness.
基金Supported by the National Natural Science Foundation of China(21706100 and U1507115)Natural Science Foundation of Jiangsu Province(BK20160500,BK20161362and BK20160491)+4 种基金the China Postdoctoral Science Foundation(2016M600373,2018T110452 and 2017M621649)China Postdoctoral Science Foundation of Jiangsu Province(1601016A,1701067C and 1701073C)Scientific Research Foundation for Advanced Talents,Jiangsu University(15JDG142)High-Level Personnel Training Project of Jiangsu Province(BRA2016142)Key Research and Development Program of Jiangxi Province(20171BBH80008)
文摘Oil and organic solvent contamination, derived from oil spills and organic solvent leakage, has been recognized as one of the major environmental issues imposing a serious threat to both human and ecosystem health. Among the various presented technologies applied for oil/water separation, oil absorption process has been explored widely and offers satisfactory results especially with surface modified oil-absorbing material and/or hybrid absorbents. In this review, we summarize the recent research activities involved in the designing strategies of oil-absorbing absorbents and their application in oil absorption. Then, an extensive list of various oil-absorbing materials from literature, including polymer materials, porous inorganic materials and biomass materials, has been compiled and the oil adsorption capacities toward various types of oils and organic solvents as available in the literature are presented along with highlighting and discussing the various factors involved in the designing of oil-absorbing absorbents tested so far for oil/water separation. Finally, some future trends and perspectives in oil-absorbing material are outlined.
文摘In this paper,a tunable metamaterial absorber based on a Dirac semimetal is proposed.It consists of three different structures,from top to bottom,namely a double semicircular Dirac semimetal resonator,a silicon dioxide substrate and a continuous vanadium dioxide(VO_(2))reflector layer.When the Fermi energy level of the Dirac semimetal is 10 meV,the absorber absorbs more than 90%in the 39.06-84.76 THz range.Firstly,taking advantage of the tunability of the conductivity of the Dirac semimetal,dynamic tuning of the absorption frequency can be achieved by changing the Fermi energy level of the Dirac semimetal without the need to optimise the geometry and remanufacture the structure.Secondly,the structure has been improved by the addition of the phase change material VO_(2),resulting in a much higher absorption performance of the absorber.Since VO_(2)is a temperature-sensitive metal oxide with an insulating phase below the phase transition temperature(about 68℃)and a metallic phase above the phase transition temperature,this paper also analyses the effect of VO_(2)on the absorptive performance at different temperatures,with the aim of further improving absorber performance.
基金National Nature Science Foundation of China(No.90405004)
文摘A two-dimensional metal model is established to investigate the stealth mechanisms of radar absorbing material (RAM) and plasma when they cover the model together. Using the finite-difference time-domain (FDTD) method, the interaction of electromagnetic (EM) waves with the model can be studied. In this paper, three covering cases are considered: a. RAM or plasma covering the metal solely; b. RAM and plasma covering the metal, while plasma is placed outside; e. RAM and plasma covering the metal, while RAM is placed outside. The calculated results show that the covering order has a great influence on the absorption of EM waves. Compared to case a, case b has an advantage in the absorption of relatively high-frequency EM waves (HFWs), whereas case c has an advantage in the absorption of relatively low-frequency EM waves (LFWs). Through the optimization of the parameters of both plasma and RAM, it is hopeful to obtain a broad absorption band by RAM and plasma covering. Near-field attenuation rate and far-field radar cross section (RCS) are employed to compare the different cases.
基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.04KJB430040)
文摘Employing carbonyl iron powder and Ethylene-Propylene-Diene Monomer (EPDM) as the absorbent and matrix, rubber radar absorbing materials (RAM) were prepared. Effects of the carbonyl iron volume fraction and the thickness of the RAM on the microwave absorption properties in the frequency range of 2.6-18GHz were studied, and a mathematical analysis was made using the electromagnetic theory. The experimental results indicate that the minimum reflectivity of the radar absorbing materials continuously decreases with the increase of the carbonyl iron volume fraction, and the absorption peak also moves towards the low frequency for the same thickness of the RAM. The minimum reflectivity of the 3.0 mm RAM is -21.7dB at 3.5 GHz when the volume fraction of carbonyl iron is 45%. The reflectivity of the RAM is not in direct proportional to the thickness of the RAM, when the RAM has the same volume fraction of the carbonyl iron. The reflectivity of the RAM presents a regular trend at a given carbonyl iron volume fraction in the frequency range of 2.6-18 GHz. With the increase of the thickness, the maximum absorption peak moves towards low frequency band, the minimum reflectivity firstly decreases and then increases, and the absorption bandwidth for reflectivity〈-10 dB firstly increases and then decreases. The microwave absorption properties of the RAM are determined by the thickness and the composition of the radar absorbing materials. Theoretical analysis indicates that the reflectivity of the RAM is determined by the matching degree of the air's characteristic impedance and the input impedance.
基金supported by the National Natural Science Foundation of China (Nos. 21107116, 21477135)
文摘Kapok fiber corresponds to the seed hairs of the kapok tree(Ceiba pentandra), and is a typical cellulosic fiber with the features of thin cell wall, large lumen, low density and hydrophobic–oleophilic properties. As a type of renewable natural plant fiber, kapok fiber is abundant,biocompatible and biodegradable, and its full exploration and potential application have received increasing attention in both academic and industrial fields. Based on the structure and properties of kapok fiber, this review provides a summary of recent research on kapok fiber including chemical and physical treatments, kapok fiber-based composite materials, and the application of kapok fiber as an absorbent material for oils, metal ions, dyes, and sound,with special attention to its use as an oil-absorbing material, one predominant application of kapok fiber in the coming future.
文摘Nanostructured radar absorbing materials (RAMs) have received steadily growing interest because of their fascinating properties and various applications compared with the bulk or microsized counterparts. The increased surface area, number of dangling bond atoms and unsaturated co-ordination on surface lead to interface polarization, multiple scatter and absorbing more microwave. In this paper, four types of nanostructured RAMs were concisely introduced as follows: nanocrystal RAMs, core-shell nanocomposite RAMs, nanocomposite of MWCNT and inorganic materials RAMs, nanocomposite of nanostructured carbon and polymer RAMs. Their microwave properties were described in detail by taking various materials as
基金National Natural Science Foundation of China(Nos.51705545 and 15A460041)。
文摘The multilayer impedance composite sound absorption structure of the new muffler is proposed by combining the microporous plate structure with the resonant sound absorption structure of the porous material.Firstly,the acoustic impedance and acoustic absorption coefficient of the new muffler structure are calculated by acoustic electric analogy method,and then the noise attenuation is calculated.When the new muffler structure parameters change,the relationship among the noise frequency,the sound absorption coefficient and the noise attenuation is calculated by using MATLAB.Finally,the calculated results are compared with the experimental data to verify the correctness of the theoretical calculation.The variation of resonance peak,resonance frequency and attenuation band width of each structural parameter is analyzed by the relation curve.The conclusion shows that it is feasible to use multilayer sound absorbing materials as the body structure of the new muffler.And the influence relationship between the change of various parameters of the sound absorption structure with the sound absorption coefficient and noise attenuation is obtained.
基金Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20121101110014)
文摘Magnesium-substituted Mn0.8Zn0.2Fe2O4 ferrite is synthesized by the sol–gel combustion method using citrate acid as the complex agent. The electromagnetic absorbing behaviors of ferrite/polymer coatings fabricated by dispersing Mn–Zn ferrite into epoxy resin (EP) are studied. The microstructure and morphology are characterized by X-ray diffraction and scanning electron microscope. Complex permittivity, complex permeability, and reflection loss of ferrite/EP composite coating are investigated in a low frequency range. It is found that the prepared ferrite particles are traditional cubic spinel ferrite particles with an average size of 200 nm. The results reveal that the electromagnetic microwave absorbing properties are significantly influenced by the weight ratio of ferrite to polymer. The composites with a weight ratio of ferrite/polymer being 3:20 have a maximum reflection loss of –16 dB and wide absorbing band. Thus, the Mn–Zn ferrite is the potential candidate in electromagnetic absorbing application in the low frequency range (10 MHz–1 GHz).
基金financially supported by the National Natural Science Foundation of China(No.51771194)the CNNC Science Fund for Talented Young Scholars,the LingChuang Research Project of China National Nuclear Corporation,the LiaoNing Revitalization Talents Program(No.XLYC1902058)the IMR Innovation Fund(Nos.2021-ZD02 and 2021-PY12)。
文摘B4C reinforced Al composites are widely used as neutron absorbing materials(NAMs)due to excellent neutron absorbing efficiency,however,such NAMs exhibit poor high-temperature properties.To meet the requirement for structure-function integration,NAMs with enhanced high-temperature mechanical properties are desired.In this work,a novel(B4 C+Al_(2)O_(3))/Al NAM with netlike distribution of Al_(2)O_(3)was fabricated by powder metallurgy method and subjected to high-temperature tensile creep test.It was shown that the creep resistance was enhanced by several orders of magnitude via the addition of only2.1 vol.%netlike-distributed Al_(2)O_(3).(B_(4)C+Al_(2)O_(3))/Al exhibited high apparent stress exponents ranging from 16 to 25 and high apparent activation energy of 364 kJ/mol.The creep behaviour could be rationalized using the substructure-invariant model and its rupture behaviour could be described by the Dobes-Milicka equation.
基金the National Natural Science Foundation of China (No. 10472094) the Research Fund for the Doctoral Program of Higher Education (N6CJ0001) Doctorate Fund of Northwestern Polytechnical University.
文摘In the present study, the indentation testing with a flat cylindrical indenter on typical multi-layer material systems was simulated successfully by finite element method. The emphasis was put on the methods of extracting the yield stresses and strain-hardening modulus of upper and middle-layers of three-layer material systems from the indentation testing. The slope of the indentation depth to the applied indentation stress curve was found to have a turning point, which can be used to determine the yield stress of the upper-layer. Then, a different method was also presented to determine the yield stress of the middle-layer. This method was based on a set of assumed applied indentation stresses which were to be intersected by the experimental results in order to meet the requirement of having the experimental indentation depth. At last, a reverse numerical algorithm was explored to determine the yield stresses of upper and middle-layers simultaneously by using the indentation testing with two different size indenters. This method assumed two ranges of yield stresses to simulate the indentation behavior. The experimental depth behavior was used to intersect the simulated indentation behavior. And the intersection corresponded to the values of yield stresses of upper and middle-layers. This method was also used further to determine the strain-hardening modulus of upper and middle-layers simultaneously.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.12072217).
文摘One objective of developing machine learning(ML)-based material models is to integrate them with well-established numerical methods to solve boundary value problems(BVPs).In the family of ML models,recurrent neural networks(RNNs)have been extensively applied to capture history-dependent constitutive responses of granular materials,but these multiple-step-based neural networks are neither sufficiently efficient nor aligned with the standard finite element method(FEM).Single-step-based neural networks like the multi-layer perceptron(MLP)are an alternative to bypass the above issues but have to introduce some internal variables to encode complex loading histories.In this work,one novel Frobenius norm-based internal variable,together with the Fourier layer and residual architectureenhanced MLP model,is crafted to replicate the history-dependent constitutive features of representative volume element(RVE)for granular materials.The obtained ML models are then seamlessly embedded into the FEM to solve the BVP of a biaxial compression case and a rigid strip footing case.The obtained solutions are comparable to results from the FEM-DEM multiscale modelling but achieve significantly improved efficiency.The results demonstrate the applicability of the proposed internal variable in enabling MLP to capture highly nonlinear constitutive responses of granular materials.
基金the Key Science and Technology Plan of Power China Huadong Engineering Corporation(No.KY2018-ZD-01)China and the National Natural Science Foundations of China(No.51909248)。
文摘Outgoing waves arising from high-velocity impacts between soil and structure can be reflected by the conventional truncated boundaries.Absorbing boundary conditions(ABCs),to attenuate the energy of the outward waves,are necessary to ensure the proper representation of the kinematic field and the accurate quantification of impact forces.In this paper,damping layer and dashpot ABCs are implemented in the material point method(MPM)with slight adjustments.Benchmark scenarios of different dynamic problems are modelled with the ABCs configured.Feasibility of the ABCs is assessed through the velocity fluctuations at specific observation points and the impact force fluctuations on the structures.The impact forces predicted by the MPM with ABCs are verified by comparison with those estimated using a computational fluid dynamics approach.
基金National Natural Science Foundation of China(Nos.51705545 and 15A460041)。
文摘Using the multi-physical field simulation software COMSOL,the acoustic characteristics of the multilayer sound absorbing material straight-through perforated pipe muffler are studied by the finite element method.The results show that the finite element calculation of the multilayer sound absorbing material straight-through the perforated pipe muffler agrees well with the experimental measurement results.The reliability of the finite element method for studying the acoustic performance of the straight-through perforated pipe muffler with multilayer sound absorbing materials is shown.Furthermore,the influence of some structural parameters of porous sound absorbing material and micro-perforated plate on the acoustic performance of the multilayer sound absorbing material straight-through perforated pipe muffler is analyzed.The muffler based on multilayer sound absorbing material is different from the traditional muffler.After applying the multilayer sound absorbing material to the straight-through perforated pipe muffler,the transmission loss value greatly increases,which provides new ideas and directions for future research on the muffler.
基金Fundamental Research Funds for the Central Universities,China(No.14D110715/17/18)Start up Fund by Shanghai University of Engineering Science(No.2015-69)Young Teacher Training Program by Shanghai,China(No.ZZGCD15051))
文摘Cotton fabrics treated with phase change materials( PCMs)were used in multi-layered fabrics of the fire fighter protective clothing to study its effect on thermal protection. The thermal protective performance( TPP) of the multi-layered fabrics was measured by a TPP tester under flash fire. Results showed that the utilization of the PCM fabrics improved the thermal protective performance of the multi-layered fabrics. The fabric with a PCM add on of 41. 9% increased the thermal protection by 50. 6% and reduced the time to reach a second degree burn by 8. 4 s compared with the reference fabrics( without PCMs). The employment of the PCM fabrics also reduced the blackened areas on the inner layers. The PCM fabrics with higher PCM melting temperature could bring higher thermal protective performance.
文摘The electromagnetic parameters of microwave absorbing materials are important criteria when appraising the properties of absorbents. For reconstruction of parameters which belongs to the inverse scattering problem, the test data in requirement of traditional impedance method are "just enough" and not "redundant" to comprehensively evaluate the electromagnetic properties of materials. A novel optimization approach involving multiple impedance measurements is introduced in this paper to implement automatic measurement for electromagnetic parameters on microwave slot-line. Some results for standard samples and microwave absorbing materials are given.
基金supported by the High-Tech Research and Development Program(863)of China(No.2011AA06A105)
文摘The aim of the study was to prepare a porous sound-absorbing material using steel slag and fly ash as the main raw material, with coal powder and sodium silicate used as a pore former and binder respectively. The influence of the experimental conditions such as the ratio of fly ash, sintering temperature, sintering time, and porosity regulation on the performance of the porous sound-absorbing material was investigated. The results showed that the specimens prepared by this method had high sound absorption performance and good mechanical properties, and the noise reduction coefficient and compressive strength could reach 0.50 and 6.5 MPa, respectively. The compressive strength increased when the dosage of fly ash and sintering temperature were raised. The noise reduction coefficient decreased with increasing ratio of fly ash and reducing pore former, and first increased and then decreased with the increase of sintering temperature and time. The optimum preparation conditions for the porous sound-absorbing material were a proportion of fly ash of 50%(wt.%), percentage of coal powder of 30%(wt.%), sintering temperature of 1130°C,and sintering time of 6.0 hr, which were determined by analyzing the properties of the sound-absorbing material.
文摘The extended Brinkman Darcy model for momentum equations and an energy equation is used to calculate the unsteady natural convection Couette flow of a viscous incompressible heat generating/absorbing fluid in a vertical channel (formed by two infinite vertical and parallel plates) filled with the fluid-saturated porous medium. The flow is triggered by the asymmetric heating and the accelerated motion of one of the bounding plates. The governing equations are simplified by the reasonable dimensionless parameters and solved analytically by the Laplace transform techniques to obtain the closed form solutions of the velocity and temperature profiles. Then, the skin friction and the rate of heat transfer are consequently derived. It is noticed that, at different sections within the vertical channel, the fluid flow and the temperature profiles increase with time, which are both higher near the moving plate. In particular, increasing the gap between the plates increases the velocity and the temperature of the fluid, however, reduces the skin friction and the rate of heat transfer.
文摘Results of measurements of permeability, permittivity and radar absorption properties of composites on basis of carbonyl iron particles R-10 brand are presented in this paper. The calculations and experimental studies have shown that in the super high frequency (SHF) and extremely high frequency (EHF) ranges on the basis of two-layer structures with different content of carbonyl iron particles can create a radar absorbing coatings with a reflectivity of less than -10 dB over a wide bandwidth from 3.1 to 17.1 GHz and from 27 to 37 GHz. Absorbing properties of composites are saved in terahertz frequency range from 250 to 525 GHz.