期刊文献+
共找到8,137篇文章
< 1 2 250 >
每页显示 20 50 100
Intelligent Parameter Decision-Making and Multi-objective Prediction for Multi-layer and Multi-pass LDED Process
1
作者 Li Yaguan Nie Zhenguo +2 位作者 Li Huilin Wang Tao Huang Qingxue 《稀有金属材料与工程》 北大核心 2026年第1期47-58,共12页
The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are the surface roughness and the error between the actual printing height and the theoretical m... The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are the surface roughness and the error between the actual printing height and the theoretical model height.The Taguchi method was employed to establish the correlations between process parameter combinations and multi-objective characterization of metal deposition morphology(height error and roughness).Results show that using the signal-to-noise ratio and grey relational analysis,the optimal parameter combination for multi-layer and multi-pass deposition is determined as follows:laser power of 800 W,powder feeding rate of 0.3 r/min,step distance of 1.6 mm,and scanning speed of 20 mm/s.Subsequently,a Genetic Bayesian-back propagation(GB-BP)network is constructed to predict multi-objective responses.Compared with the traditional back propagation network,the GB-back propagation network improves the prediction accuracy of height error and surface roughness by 43.14%and 71.43%,respectively.This network can accurately predict the multi-objective characterization of morphological quality of multi-layer and multi-pass metal deposited parts. 展开更多
关键词 multi-layer and multi-pass laser cladding Taguchi method grey relational analysis GB-BP network
原文传递
Informer-LSTM融合算法在蓝莓基质温湿度预测中的研究与应用
2
作者 胡玲艳 陈鹏宇 +6 位作者 郭占俊 徐国辉 秦山 付康 盖荣丽 汪祖民 张雨萌 《郑州大学学报(理学版)》 北大核心 2026年第1期78-86,共9页
为了精准预测温室蓝莓基质的温湿度变化趋势,提出一种融合Informer-LSTM算法的温湿度预测方法。以温室蓝莓现场环境数据为研究对象,使用LSTM算法捕捉时间序列数据中的依赖关系并与自注意力机制相结合,使模型在聚焦自注意力特征的同时兼... 为了精准预测温室蓝莓基质的温湿度变化趋势,提出一种融合Informer-LSTM算法的温湿度预测方法。以温室蓝莓现场环境数据为研究对象,使用LSTM算法捕捉时间序列数据中的依赖关系并与自注意力机制相结合,使模型在聚焦自注意力特征的同时兼顾LSTM特征,以增强其长期记忆力。在生成初步预测序列后,再应用LSTM算法修正模型的短期注意力,提高模型的反应速度。实验结果显示,Informer-LSTM预测模型在预测准确率、鲁棒性和响应速度等方面都有显著的优势。当温度湿度等时序输入数据发生明显变化时,模型能快速捕获短期内输入数据的动态模式变化。该模型在智慧温室管理中,对辅助人工决策及实现智能化控制具有较高实际价值。 展开更多
关键词 智慧农业 温室蓝莓 Informer模型 lstm模型 温湿度预测
在线阅读 下载PDF
基于LSTM-Transformer模型的突水条件下矿井涌水量预测
3
作者 李振华 姜雨菲 +1 位作者 杜锋 王文强 《河南理工大学学报(自然科学版)》 北大核心 2026年第1期77-85,共9页
目的矿井涌水量精准预测对预防矿井水害和保障矿井安全生产具有重要意义,为精准预测矿井涌水量,构建适用于华北型煤田受底板L_(1-4)灰岩含水层和奥陶系灰岩含水层水害威胁的矿井涌水量预测模型。方法以河南某典型矿井的水文监测数据为基... 目的矿井涌水量精准预测对预防矿井水害和保障矿井安全生产具有重要意义,为精准预测矿井涌水量,构建适用于华北型煤田受底板L_(1-4)灰岩含水层和奥陶系灰岩含水层水害威胁的矿井涌水量预测模型。方法以河南某典型矿井的水文监测数据为基础,提出LSTMTransformer模型。利用LSTM捕捉矿井涌水量的动态时序特征,通过Transformer的多头注意力机制分析含水层水位变化和矿井涌水量之间的复杂时序关联,构建水位动态变化驱动下的矿井涌水量精准预测框架。结果结果表明,LSTM-Transformer模型预测精度显著优于LSTM,CNN,Transformer和CNN-LSTM模型的,其均方根误差为20.91 m^(3)/h,平均绝对误差为16.08 m^(3)/h,平均绝对百分比误差为1.12%,且和单因素涌水量预测模型相比,水位-涌水量双因素预测模型预测结果更加稳定。结论LSTM-Transformer模型成功克服传统方法在捕捉复杂水文地质系统中水位-涌水量动态关联上的局限,为矿井涌水量动态预测提供可解释性强、鲁棒性好的解决方案,也为类似地质条件下矿井涌水量预测提供了新方法。 展开更多
关键词 涌水量预测 水位动态响应 lstm-Transformer耦合模型 时间序列预测 注意力机制 矿井安全生产
在线阅读 下载PDF
Multi-layer multi-pass friction rolling additive manufacturing of Al alloy:Toward complex large-scale high-performance components 被引量:1
4
作者 Haibin Liu Run Hou +2 位作者 Chenghao Wu Ruishan Xie Shujun Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期425-438,共14页
At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-laye... At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components. 展开更多
关键词 aluminum alloy additive manufacturing SOLID-STATE friction stir welding multi-layer multi-pass
在线阅读 下载PDF
基于Informer-SAO-LSTM的刀具磨损预测
5
作者 李昂 马俊燕 唐源斌 《组合机床与自动化加工技术》 北大核心 2026年第1期151-155,161,共6页
在产品加工过程中,准确预测刀具的磨损值既能避免过早更换造成的成本浪费,又可防止过度磨损影响加工精度,从而最大化发挥刀具寿命的价值。为了解决这个问题,提出了一种基于Informer、SAO与LSTM结合的深度学习网络模型,用于刀具磨损预测... 在产品加工过程中,准确预测刀具的磨损值既能避免过早更换造成的成本浪费,又可防止过度磨损影响加工精度,从而最大化发挥刀具寿命的价值。为了解决这个问题,提出了一种基于Informer、SAO与LSTM结合的深度学习网络模型,用于刀具磨损预测。Informer具有高效的编码器结构和稀疏自注意力机制,而LSTM网络具有较强的时间序列建模能力,通过SAO算法对超参数的调整,可以更准确高效地捕捉刀具磨损过程中长期的依赖关系,从而提取更有效的特征,提升了模型在处理长序列数据时的效率和准确性。使用PHM2010数据集进行对比实验,实验结果表明所提出的Informer-SAO-LSTM模型在MAE、RMSE等多项指标上均表现出色,最后设计了实验进行验证,进一步说明了所提出的方法比对比模型的预测准确率更高,泛化能力更好。 展开更多
关键词 lstm INFORMER SAO 刀具磨损 深度学习 时间序列预测
在线阅读 下载PDF
基于LSTM神经网络预测转炉炉壁温度周期性波动
6
作者 陈习堂 孙鼎然 +3 位作者 张鑫 高荣 王恩志 徐建新 《有色金属(冶炼部分)》 北大核心 2026年第1期9-19,共11页
针对铜冶炼转炉在生产过程中因熔体喷溅、摇炉操作等动态工况导致炉壁温度出现周期性剧烈波动,传统静态温度监测方法难以准确预测的问题,本文提出一种融合LSTM神经网络与图像匹配技术的智能监测方法。通过部署于炉腹、风眼区、端盖东、... 针对铜冶炼转炉在生产过程中因熔体喷溅、摇炉操作等动态工况导致炉壁温度出现周期性剧烈波动,传统静态温度监测方法难以准确预测的问题,本文提出一种融合LSTM神经网络与图像匹配技术的智能监测方法。通过部署于炉腹、风眼区、端盖东、端盖西四部位的红外热像仪采集时序温度数据,创新性地采用模板区域提取与灰度差异分析算法对摇炉遮挡等异常图像进行预处理,有效提升数据质量。在此基础上,构建LSTM预测模型,利用其门控机制捕捉温度序列的长期依赖关系,实现对未来温度趋势的精准预测。工业验证结果表明,该模型在炉腹和端盖西的预测平均绝对误差(MAE)为1.35~1.44℃,风眼区等复杂工况下MAE控制在3.66~4.20℃,显著优于传统方法。该方法能够可靠识别炉衬蚀损引起的温度上升趋势,为转炉预测性维护提供数据支撑,对保障安全生产、延长炉寿及推动冶炼智能化具有重要工程价值。 展开更多
关键词 PS转炉 lstm神经网络 温度预测 预测性维护 图像匹配
在线阅读 下载PDF
Text Sentiment Analysis Based on Multi-Layer Bi-Directional LSTM with a Trapezoidal Structure 被引量:1
7
作者 Zhengfang He Cristina E.Dumdumaya Ivy Kim D.Machica 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期639-654,共16页
Sentiment analysis,commonly called opinion mining or emotion artificial intelligence(AI),employs biometrics,computational linguistics,nat-ural language processing,and text analysis to systematically identify,extract,m... Sentiment analysis,commonly called opinion mining or emotion artificial intelligence(AI),employs biometrics,computational linguistics,nat-ural language processing,and text analysis to systematically identify,extract,measure,and investigate affective states and subjective data.Sentiment analy-sis algorithms include emotion lexicon,traditional machine learning,and deep learning.In the text sentiment analysis algorithm based on a neural network,multi-layer Bi-directional long short-term memory(LSTM)is widely used,but the parameter amount of this model is too huge.Hence,this paper proposes a Bi-directional LSTM with a trapezoidal structure model.The design of the trapezoidal structure is derived from classic neural networks,such as LeNet-5 and AlexNet.These classic models have trapezoidal-like structures,and these structures have achieved success in the field of deep learning.There are two benefits to using the Bi-directional LSTM with a trapezoidal structure.One is that compared with the single-layer configuration,using the of the multi-layer structure can better extract the high-dimensional features of the text.Another is that using the trapezoidal structure can reduce the model’s parameters.This paper introduces the Bi-directional LSTM with a trapezoidal structure model in detail and uses Stanford sentiment treebank 2(STS-2)for experiments.It can be seen from the experimental results that the trapezoidal structure model and the normal structure model have similar performances.However,the trapezoidal structure model parameters are 35.75%less than the normal structure model. 展开更多
关键词 Text sentiment Bi-directional lstm Trapezoidal structure
在线阅读 下载PDF
基于Bi-LSTM特征融合和FT-FSL的非侵入式负荷辨识
8
作者 张竹露 李华强 +1 位作者 刘洋 许立雄 《广西师范大学学报(自然科学版)》 北大核心 2026年第1期33-44,共12页
通过非侵入式负荷监测(non-intrusive load monitoring,NILM)对负荷能耗进行实时监测和数据分析,能够实现能源合理配置和精细化管理。为了提高负荷标注数据不足情况下NILM的负荷识别效果,本文提出一种基于Bi-LSTM特征融合和微调小样本学... 通过非侵入式负荷监测(non-intrusive load monitoring,NILM)对负荷能耗进行实时监测和数据分析,能够实现能源合理配置和精细化管理。为了提高负荷标注数据不足情况下NILM的负荷识别效果,本文提出一种基于Bi-LSTM特征融合和微调小样本学习(fine-tuned few-shot learning,FT-FSL)的新方法应用于NILM。首先,通过Bi-LSTM将加权像素电压-电流(voltage-current,V-I)图像特征和多维时频序列特征进行融合;然后,通过FT-FSL使负荷分类模型能够基于少量标注数据进行训练;最后,在PLAID数据集上与4种主流FSL方法(包括匹配网络、原型网络、关系网络和MAML)进行对比实验。结果表明,本文方法的准确率达到92.46%,与对比模型相比,分别提高12.21个百分点、4.18个百分点、5.90个百分点和9.04个百分点,验证了本文方法能够有效识别标注数据不足的负荷类型。 展开更多
关键词 非侵入式负荷监测 负荷辨识 小样本学习 Bi-lstm 微调
在线阅读 下载PDF
A Multi-Layer Progressive Analysis Method for Collision Energy Flow in Rail Trains
9
作者 Jingke Zhang Tao Zhu +4 位作者 Xiaorui Wang Bing Yang Shoune Xiao Guangwu Yang Yuru Li 《Chinese Journal of Mechanical Engineering》 2025年第5期425-439,共15页
The huge impact kinetic energy cannot be quickly dissipated by the energy-absorbing structure and transferred to the other vehicle through the car body structure,which will cause structural damage and threaten the liv... The huge impact kinetic energy cannot be quickly dissipated by the energy-absorbing structure and transferred to the other vehicle through the car body structure,which will cause structural damage and threaten the lives of the occupants.Therefore,it is necessary to understand the laws of energy conversion,dissipation and transfer during train collisions.This study proposes a multi-layer progressive analysis method of energy flow during train collisions,considering the characteristics of the train.In this method,the train collision system is divided into conversion,dissipation,and transfer layers from the perspective of the train,collision interface,and car body structure to analyze the energy conversion,dissipation and transfer characteristics.Taking the collision process of a rail train as an example,a train collision energy transfer path analysis model was established based on power flow theory.The results show that when the maximum mean acceleration of the vehicle meets the standard requirements,the jerk may exceed the allowable limit of the human body,and there is a risk of injury to the occupants of a secondary collision.The decay rate of the collision energy along the direction of train operation reaches 79%.As the collision progresses,the collision energy gradually converges in the structure with holes,and the structure deforms when the gathered energy is greater than the maximum energy the structure can withstand.The proposed method helps to understand the train collision energy flow law and provides theoretical support for the train crashworthiness design in the future. 展开更多
关键词 Train Cllision multi-layer Progression Energy Flow Energy Conversion Energy Dissipation Energy Transfer
在线阅读 下载PDF
Intrusion Detection Model on Network Data with Deep Adaptive Multi-Layer Attention Network(DAMLAN)
10
作者 Fatma S.Alrayes Syed Umar Amin +2 位作者 Nada Ali Hakami Mohammed K.Alzaylaee Tariq Kashmeery 《Computer Modeling in Engineering & Sciences》 2025年第7期581-614,共34页
The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging at... The growing incidence of cyberattacks necessitates a robust and effective Intrusion Detection Systems(IDS)for enhanced network security.While conventional IDSs can be unsuitable for detecting different and emerging attacks,there is a demand for better techniques to improve detection reliability.This study introduces a new method,the Deep Adaptive Multi-Layer Attention Network(DAMLAN),to boost the result of intrusion detection on network data.Due to its multi-scale attention mechanisms and graph features,DAMLAN aims to address both known and unknown intrusions.The real-world NSL-KDD dataset,a popular choice among IDS researchers,is used to assess the proposed model.There are 67,343 normal samples and 58,630 intrusion attacks in the training set,12,833 normal samples,and 9711 intrusion attacks in the test set.Thus,the proposed DAMLAN method is more effective than the standard models due to the consideration of patterns by the attention layers.The experimental performance of the proposed model demonstrates that it achieves 99.26%training accuracy and 90.68%testing accuracy,with precision reaching 98.54%on the training set and 96.64%on the testing set.The recall and F1 scores again support the model with training set values of 99.90%and 99.21%and testing set values of 86.65%and 91.37%.These results provide a strong basis for the claims made regarding the model’s potential to identify intrusion attacks and affirm its relatively strong overall performance,irrespective of type.Future work would employ more attempts to extend the scalability and applicability of DAMLAN for real-time use in intrusion detection systems. 展开更多
关键词 Intrusion detection deep adaptive networks multi-layer attention DAMLAN network security anomaly detection
在线阅读 下载PDF
General analytical solutions for one-dimensional diffusion of degradable organic contaminant in the multi-layered media containing geomembranes
11
作者 JIANG Wen-hao GE Shang-qi LI Jiang-shan 《Journal of Central South University》 2025年第10期3895-3910,共16页
In practical engineering construction,multi-layered barriers containing geomembranes are extensively applied to retard the migration of pollutants.However,the associated analytical theory on pollutants diffusion still... In practical engineering construction,multi-layered barriers containing geomembranes are extensively applied to retard the migration of pollutants.However,the associated analytical theory on pollutants diffusion still needs to be further improved.In this work,general analytical solutions are derived for one-dimensional diffusion of degradable organic contaminant(DOC)in the multi-layered media containing geomembranes under a time-varying concentration boundary condition,where the variable substitution and separated variable approaches are employed.These analytical solutions with clear expressions can be used not only to study the diffusion behaviors of DOC in bottom and vertical composite barrier systems,but also to verify other complex numerical models.The proposed general analytical solutions are then fully validated via three comparative analyses,including comparisons with the experimental measurements,an existing analytical solution,and a finite-difference solution.Ultimately,the influences of different factors on the composite cutoff wall’s(CCW,which consists of two soil-bentonite layers and a geomembrane)service performance are investigated through a composite vertical barrier system as the application example.The findings obtained from this investigation can provide scientific guidance for the barrier performance evaluation and the engineering design of CCWs.This application example also exhibits the necessity and effectiveness of the developed analytical solutions. 展开更多
关键词 general analytical solutions degradable organic contaminant diffusion behavior multi-layered media containing geomembranes composite barrier system
在线阅读 下载PDF
基于LSTM模型的远程建筑物沉降监测系统设计
12
作者 周渝琳 陈雨梦 张莉 《物联网技术》 2026年第1期45-49,共5页
针对传统沉降监测系统成本高、实时性差等问题,提出了一种高精度、实时化的分布式远程监测系统。该系统以STM32系列单片机为核心,子节点集成了MPU6050倾角传感器与VL6180激光测距模块以实现数据采集,并通过ZigBee模块将数据上传至主节... 针对传统沉降监测系统成本高、实时性差等问题,提出了一种高精度、实时化的分布式远程监测系统。该系统以STM32系列单片机为核心,子节点集成了MPU6050倾角传感器与VL6180激光测距模块以实现数据采集,并通过ZigBee模块将数据上传至主节点。主节点通过LCD屏实现数据显示,同时通过串口将数据转发至上位机进行解析。系统采用双层LSTM模型对沉降趋势进行预测,并利用DeepSeek大模型对采集到的数据进行评估,评估结果通过HTTPS同步至部署有Nginx与Flask框架的云服务器,再由云端推送至Android Unity3D移动端完成交互。系统测试结果表明,其测量精度可达±2 mm,ZigBee视距通信超50 m,LSTM预测平均绝对误差小于3%,整体运行稳定可靠,满足设计需求,为建筑沉降监测提供了实用方案。 展开更多
关键词 STM32 沉降监测 物联网 ZIGBEE lstm DeepSeek大模型
在线阅读 下载PDF
An improved model for predicting thermal contact resistance at multi-layered rock interface
13
作者 WEN Min-jie XIE Jia-hao +4 位作者 LI Li-chen TIAN Yi EL NAGGAR M.Hesham MEI Guo-xiong WU Wen-bing 《Journal of Central South University》 2025年第1期229-243,共15页
This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi... This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi analytical solutions of temperature increment and displacement of multi-layered composite structures are obtained by using the Laplace transform method,upon which the effects of thermal resistance coefficient,partition coefficient,thermal conductivity ratio and heat capacity ratio on the responses are studied.The results show that the generalized imperfect thermal contact model can realistically describe the imperfect thermal contact problem.Accordingly,it may degenerate into other thermal contact models by adjusting the thermal resistance coefficient and partition coefficient. 展开更多
关键词 multi-layered structures general thermal contact model thermal contact resistance GL thermoelastic theory Laplace transform
在线阅读 下载PDF
Numerical Exploration on Load Transfer Characteristics and Optimization of Multi-Layer Composite Pavement Structures Based on Improved Transfer Matrix Method
14
作者 Guo-Zhi Li Hua-Ping Wang +2 位作者 Si-Kai Wang Jing-Cheng Zhou Ping Xiang 《Computer Modeling in Engineering & Sciences》 2025年第12期3165-3195,共31页
Transportation structures such as composite pavements and railway foundations typically consist of multi-layered media designed to withstand high bearing capacity.A theoretical understanding of load transfer mechanism... Transportation structures such as composite pavements and railway foundations typically consist of multi-layered media designed to withstand high bearing capacity.A theoretical understanding of load transfer mechanisms in these multi-layer composites is essential,as it offers intuitive insights into parametric influences and facilitates enhanced structural performance.This paper employs an improved transfer matrix method to address the limitations of existing theoretical approaches for analyzing multi-layer composite structures.By establishing a twodimensional composite pavement model,it investigates load transfer characteristics and validates the accuracy through finite element simulation.The proposed method offers a straightforward analytical approach for examining internal interactions between structural layers.Case studies indicate that the concrete surface layer is the main load-bearing layer for most vertical normal and shear stresses.The soil base layer reduces the overall mechanical response of the substructure,while horizontal actions increase the risk of interfacial slip and cracking.Structural optimization analysis demonstrates that increasing the thickness of the concrete surface layer,enhancing the thickness and stiffness of the soil base layer,or incorporating gradient layers can significantly mitigate these risks of interfacial slip and cracking.The findings of this study can guide the optimization design,parameter analysis,and damage prevention of multi-layer composite structures. 展开更多
关键词 multi-layer composite pavement improved theoretical analysis transfer matrix method structural optimization damage prevention
在线阅读 下载PDF
基于注意力机制的LSTM多因素滨海航道水深预测及应用研究
15
作者 凌干展 韩玉 +6 位作者 解威威 唐睿楷 胡家锴 梁光越 曹璐 梁铭 刘祥 《工程科学与技术》 北大核心 2026年第1期266-275,共10页
为提高平陆运河航道施工运输的安全性、效率与精确性,本文提出一种基于注意力机制的长短期记忆网络(LSTM)多因素滨海航道水深预测模型,并将其集成于航道运输辅助决策平台中。首先,结合上游流量、日降雨量、潮流流速和潮汐水位等关键水... 为提高平陆运河航道施工运输的安全性、效率与精确性,本文提出一种基于注意力机制的长短期记忆网络(LSTM)多因素滨海航道水深预测模型,并将其集成于航道运输辅助决策平台中。首先,结合上游流量、日降雨量、潮流流速和潮汐水位等关键水文因子,构建基于LSTM的滨海航道水深预测模型。然后,引入注意力机制优化模型架构,提高模型在复杂水文环境下超长龄期水深预测的精度和稳定性。在此基础上,将模型集成至航道运输辅助决策平台中,实现水深预测及动态修正、通航窗口期评估等多模块协同工作。最后,通过与现有模型和实测数据的对比分析,验证模型的有效性。分析结果表明:相较于传统LSTM模型,基于注意力机制的LSTM模型在枯水期和丰水期水文地质环境条件下水深预测平均绝对误差(MAE)分别降低了64.68%和72.36%,决定系数R2分别提升了2.18%和5.60%;与单一特征向量相比,采用日降雨量、潮流流速和潮汐水位3特征向量组合模型,MAE值不超过0.15 m,R^(2)不低于0.99,显著提升模型对滨海航道复杂水文环境下水深预测的精度与稳定性。本文研究成果为提升航道运输智能化和数字化管理水平提供可靠的技术支撑。 展开更多
关键词 平陆运河 航道施工运输 航道水深预测 注意力机制 lstm模型 航道运输辅助决策平台
在线阅读 下载PDF
基于注意力机制LSTM神经网络的北方岩溶大泉水位预测研究
16
作者 黄林显 徐征和 +7 位作者 支传顺 李双 刘治政 邢立亭 朱恒华 王晓玮 毕雯雯 胡晓农 《地学前缘》 北大核心 2026年第1期419-431,共13页
岩溶地下水是北方岩溶区重要供水水源,准确预测其水位动态对地下水资源科学管理和保护具有重要意义。但岩溶含水系统具有强烈的非均质性和各向异性,导致其水位动态往往体现出非平稳及非线性波动状态,造成进行地下水位预测时易产生较大... 岩溶地下水是北方岩溶区重要供水水源,准确预测其水位动态对地下水资源科学管理和保护具有重要意义。但岩溶含水系统具有强烈的非均质性和各向异性,导致其水位动态往往体现出非平稳及非线性波动状态,造成进行地下水位预测时易产生较大误差。论文提出一种耦合注意力机制(Attention)和长短时记忆(LSTM,Long Short-Term Memory)神经网络的多变量趵突泉地下水位预测模型,利用泉域2013—2024年日降水(代表补给项)及水汽压、日气温和开采量(代表排泄项)进行模型训练和预测,结果表明:①采用BEAST(Bayesian Estimator of Abrupt Change,Seasonality,and Trend)算法对1958—2024年趵突泉水位时间序列进行分解,共识别出四个突变点并以此为依据将水位动态划分为四个阶段;②互相关分析揭示降雨和趵突泉水位动态变化之间存在2~3个月的时间滞后,表明两者之间动态变化较为一致;③所提出的预测模型以多种变量(降水量、水汽压、气温及开采量)作为模型输入,不同变量间的交互作用可相互验证,能有效提升预测精度;④采用正弦函数拟合日气温数据,可消除测量误差影响,能在一定程度上提高预测精度;⑤相较于单一LSTM神经网络和门控循环单元(GRU)神经网络,LSTM_Attention神经网络由于引入注意力机制,能聚焦更重要特征的影响,从而显著提高预测精度,其水位预测RMSE和R 2值分别为0.13 m和0.94。总体来说,本文所提出的LSTM_Attention神经网络岩溶地下水位预测模型具有较强的准确性和稳定性,可为岩溶地下水位精确预测提供借鉴。 展开更多
关键词 北方岩溶 水位预测 多变量模拟 lstm_Attention神经网络
在线阅读 下载PDF
Routing cost-integrated intelligent handover strategy for multi-layer LEO mega-constellation networks
17
作者 Zhenglong YIN Quan CHEN +2 位作者 Lei YANG Yong ZHAO Xiaoqian CHEN 《Chinese Journal of Aeronautics》 2025年第6期487-500,共14页
Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed ... Low Earth Orbit(LEO)mega-constellation networks,exemplified by Starlink,are poised to play a pivotal role in future mobile communication networks,due to their low latency and high capacity.With the massively deployed satellites,ground users now can be covered by multiple visible satellites,but also face complex handover issues with such massive high-mobility satellites in multi-layer.The end-to-end routing is also affected by the handover behavior.In this paper,we propose an intelligent handover strategy dedicated to multi-layer LEO mega-constellation networks.Firstly,an analytic model is utilized to rapidly estimate the end-to-end propagation latency as a key handover factor to construct a multi-objective optimization model.Subsequently,an intelligent handover strategy is proposed by employing the Dueling Double Deep Q Network(D3QN)-based deep reinforcement learning algorithm for single-layer constellations.Moreover,an optimal crosslayer handover scheme is proposed by predicting the latency-jitter and minimizing the cross-layer overhead.Simulation results demonstrate the superior performance of the proposed method in the multi-layer LEO mega-constellation,showcasing reductions of up to 8.2%and 59.5%in end-to-end latency and jitter respectively,when compared to the existing handover strategies. 展开更多
关键词 multi-layer LEO mega-constellation networks HANDOVER Routing cost Dueling Double Deep Q Network(D3QN)
原文传递
基于Prophet-LSTM模型的流感节假日效应分析及预测效果研究
18
作者 程文林 毛军军 +1 位作者 汪亦哲 吴家兵 《公共卫生与预防医学》 2026年第1期8-12,共5页
目的基于Prophet-LSTM混合模型探究节假日效应与防控措施对合肥市流感发展特征及发病趋势的影响,通过比较不同预测模型的性能,验证Prophet-LSTM模型在流感预测中的适用性。方法收集2016—2024年合肥市流感发病数据,构建Prophet-LSTM特... 目的基于Prophet-LSTM混合模型探究节假日效应与防控措施对合肥市流感发展特征及发病趋势的影响,通过比较不同预测模型的性能,验证Prophet-LSTM模型在流感预测中的适用性。方法收集2016—2024年合肥市流感发病数据,构建Prophet-LSTM特征分析与预测模型,分析节假日效应和防控措施对流感发病趋势的影响;同时建立ARIMA、GRU、TimeGPT等对比模型,在相同测试集上比较各模型的预测性能。结果分析表明,元旦、春节、国庆等节假日期间流感发病率显著上升,而防控措施实施期间发病率呈现下降趋势。Prophet-LSTM模型的预测值与实际值高度吻合,其MAE(0.209)、MSE(0.195)和IA(0.914)均优于对比模型,展现出更高的预测精度和趋势拟合能力。结论Prophet-LSTM模型能有效捕捉流感发病的时空特征,在纳入节假日效应和防控措施因素后表现出更好的预测性能,证明其在流感预测领域具有显著优势和应用价值。 展开更多
关键词 Prophet-lstm 流感 节假日效应 防控效应 预测模型
原文传递
Experimental investigation on dynamic stab resistance of highperformance multi-layer textile materials
19
作者 Mulat Alubel Abtew François Boussu +1 位作者 Irina Cristian Bekinew Kitaw Dejene 《Defence Technology(防务技术)》 2025年第5期1-14,共14页
Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the... Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the effects of textile structure,layering,and ply orientation on the stab resistance of multi-layer textiles.Three 3D warp interlock(3DWI)structures({f1},{f2},{f3})and a 2D woven fabric({f4}),all made of high-performance p-aramid yarns,were engineered and manufactured.Multi-layer specimens were prepared and subjected to drop-weight stabbing tests following HOSBD standards.Stabbing performance metrics,including Depth of Trauma(DoT),Depth of Penetration(DoP),and trauma deformation(Ymax,Xmax),were investigated and analyzed.Statistical analyses(Two-and One-Way ANOVA)indicated that fabric type and layer number significantly impacted DoP(P<0.05),while ply orientation significantly affected DoP(P<0.05)but not DoT(P>0.05).Further detailed analysis revealed that 2D woven fabrics exhibited greater trauma deformation than 3D WIF structures.Increasing the number of layers reduced both DoP and DoT across all fabric structures,with f3 demonstrating the best performance in multi-layer configurations.Aligned ply orientations also enhanced stab resistance,underscoring the importance of alignment in dissipating impact energy. 展开更多
关键词 2D/3D woven fabrics High-performance fibers Protective textiles multi-layer panels Impact ply orientation Dynamic stab resistance
在线阅读 下载PDF
Bi-LSTM模型在遥感海浪数据质量控制中的应用
20
作者 满世豪 谢涛 +2 位作者 李建 王超 张雪红 《应用海洋学学报》 北大核心 2026年第1期65-71,共7页
在遥感海浪数据质量控制研究中,由于数据的复杂与不规则性,传统质量控制方法对海浪数据单点异常值的检测具有一定局限性。深度学习具有强大的特征学习能力,在解决非线性复杂问题方面具有一定优势,将其应用在数据质量控制领域可以提高异... 在遥感海浪数据质量控制研究中,由于数据的复杂与不规则性,传统质量控制方法对海浪数据单点异常值的检测具有一定局限性。深度学习具有强大的特征学习能力,在解决非线性复杂问题方面具有一定优势,将其应用在数据质量控制领域可以提高异常值检测能力。本研究采用遥感海浪有效波高数据,构建双向长短期记忆网络(bi-directional long short term memory,Bi-LSTM)模型对有效波高进行预测,结合阈值方法进行异常检测,与3σ准则法、孤立森林模型法、 LSTM模型法以及VAE-LSTM模型法进行异常检测精度比较,探究基于Bi-LSTM的质量控制模型在遥感海浪数据异常值检测方面的能力。试验结果表明,Bi-LSTM质量控制模型具有良好的异常值检测效果,其精准率、召回率、 F1分数和运行时间分别为91%、 93%、 92和3.35 s,综合评价效果最佳,可有效对遥感海浪数据进行质量控制。 展开更多
关键词 遥感海浪数据 质量控制 深度学习 Bi-lstm模型 异常检测
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部