To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartogra...To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning.展开更多
The modeling of crack growth in three-dimensional(3D)space poses significant challenges in rock mechanics due to the complex numerical computation involved in simulating crack propagation and interaction in rock mater...The modeling of crack growth in three-dimensional(3D)space poses significant challenges in rock mechanics due to the complex numerical computation involved in simulating crack propagation and interaction in rock materials.In this study,we present a novel approach that introduces a 3D numerical manifold method(3D-NMM)with a geometric kernel to enhance computational efficiency.Specifically,the maximum tensile stress criterion is adopted as a crack growth criterion to achieve strong discontinuous crack growth,and a local crack tracking algorithm and an angle correction technique are incorporated to address minor limitations of the algorithm in a 3D model.The implementation of the program is carried out in Python,using object-oriented programming in two independent modules:a calculation module and a crack module.Furthermore,we propose feasible improvements to enhance the performance of the algorithm.Finally,we demonstrate the feasibility and effectiveness of the enhanced algorithm in the 3D-NMM using four numerical examples.This study establishes the potential of the 3DNMM,combined with the local tracking algorithm,for accurately modeling 3D crack propagation in brittle rock materials.展开更多
A reliable and effective model for reservoir physical property prediction is a key to reservoir characterization and management.At present,using well logging data to estimate reservoir physical parameters is an import...A reliable and effective model for reservoir physical property prediction is a key to reservoir characterization and management.At present,using well logging data to estimate reservoir physical parameters is an important means for reservoir evaluation.Based on the characteristics of large quantity and complexity of estimating process,we have attempted to design a nonlinear back propagation neural network model optimized by genetic algorithm(BPNNGA)for reservoir porosity prediction.This model is with the advantages of self-learning and self-adaption of back propagation neural network(BPNN),structural parameters optimizing and global searching optimal solution of genetic algorithm(GA).The model is applied to the Chang 8 oil group tight sandstone of Yanchang Formation in southwestern Ordos Basin.According to the correlations between well logging data and measured core porosity data,5 well logging curves(gamma ray,deep induction,density,acoustic,and compensated neutron)are selected as the input neurons while the measured core porosity is selected as the output neurons.The number of hidden layer neurons is defined as 20 by the method of multiple calibrating optimizations.Modeling results demonstrate that the average relative error of the model output is 10.77%,indicating the excellent predicting effect of the model.The predicting results of the model are compared with the predicting results of conventional multivariate stepwise regression algorithm,and BPNN model.The average relative errors of the above models are 12.83%,12.9%,and 13.47%,respectively.Results show that the predicting results of the BPNNGA model are more accurate than that of the other two,and BPNNGA is a more applicable method to estimate the reservoir porosity parameters in the study area.展开更多
The Rock-soil interface is a common geological interface.Due to mechanical differences between soil and rock,the stress waves generated by underground blasting undergo intense polarization when crossing the rock-soil ...The Rock-soil interface is a common geological interface.Due to mechanical differences between soil and rock,the stress waves generated by underground blasting undergo intense polarization when crossing the rock-soil interface,making propagation laws difficult to predict.Currently,the characteristics of the impact of the rock-soil interface on blasting stress waves remain unclear.Therefore,the vibration field caused by cylindrical charge blasting in elastic rock and partial-saturation poro-viscoelastic soil was solved.A forward algorithm for the underground blasting vibration field in rock-soil sites was proposed,considering medium damping and geometric diffusion effects of stress waves.Further investigation into the influence of rock and soil parameters and blasting source parameters revealed the following conclusions:stress waves in soil exhibit dispersion,causing peak particle velocity(PPV)to display a discrete distribution.Soil parameters affect PPV attenuation only within the soil,while blasting source parameters affect PPV attenuation throughout the entire site.Multi-wave coupling effects induced by the rocksoil interface result in zones of enhanced and attenuated PPV within the site.The size of the enhancement zone is inversely correlated with the distance from the blasting source and positively correlated with the blasting source attenuation rate and burial depth,providing guidance for selecting explosives and blasting positions.Additionally,PPV attenuation rate increases with distance from the rock-soil interface,but an amplification effect occurs near the interface,most noticeable at 0.1 m.Thus,a sufficient safety distance from the rock-soil interface is necessary during underground blasting.展开更多
In order to prevent cracking appeared in the work-piece during the hot stamping operation,this paper proposes a hybrid optimization method based on Hammersley sequence sampling( HSS),finite analysis,backpropagation( B...In order to prevent cracking appeared in the work-piece during the hot stamping operation,this paper proposes a hybrid optimization method based on Hammersley sequence sampling( HSS),finite analysis,backpropagation( BP) neural network and genetic algorithm( GA). The mechanical properties of high strength boron steel are characterized on the basis of uniaxial tensile test at elevated temperatures. The samples of process parameters are chosen via the HSS that encourages the exploration throughout the design space and hence achieves better discovery of possible global optimum in the solution space. Meanwhile, numerical simulation is carried out to predict the forming quality for the optimized design. A BP neural network model is developed to obtain the mathematical relationship between optimization goal and design variables,and genetic algorithm is used to optimize the process parameters. Finally,the results of numerical simulation are compared with those of production experiment to demonstrate that the optimization strategy proposed in the paper is feasible.展开更多
Any malfunctions of the actuators of the robots have the potential to destroy the robot’s normal motion,and most of the current actuator fault diagnosis methods are difficult to meet the requirements of simplifying t...Any malfunctions of the actuators of the robots have the potential to destroy the robot’s normal motion,and most of the current actuator fault diagnosis methods are difficult to meet the requirements of simplifying the actuator modeling and solving the difficulty of fault data collection.To solve the problem of real-time diagnosis of actuator faults in the 3-PR(P)S parallel robot,the model of 3-PR(P)S parallel robot and data-driven-based method for the fault diagnosis are presented.Firstly,only the input-output relationship of the actuator is considered for modeling actuator faults,reducing the complexity of fault modeling and reducing the time consumption of parameter identification,thereby meeting the requirements of real-time diagnosis.A Simulink model of the electromechanical actuator(EMA)was constructed to analyze actuator faults.Then the short-term analysis method was employed for collecting the sample data of the slider position on the test platform of the EMA system and feature extraction.Training samples for neural networks are obtained.Furthermore,we optimized the Back Propagation(BP)neural network using the Dung Beetle Optimization Algorithm(DBO),which effectively resolved the weights and thresholds of the BP neural network.Compared to BP and Particle Swarm Optimization(PSO)-BP,the DBO-BP has better convergence,convergence rate,and the best-classifying quality.So,the classification for the different actuator faults is obviously improved.Finally,a fault diagnosis system was designed for the actuator of the 3-PR(P)S parallel robot,and the experimental results demonstrate that this system can detect actuator faults within 0.1 seconds.This work also provides the technical support for the fault-tolerant control of the 3-PR(P)S Parallel robot.展开更多
Voice classification is important in creating more intelligent systems that help with student exams,identifying criminals,and security systems.The main aim of the research is to develop a system able to predicate and ...Voice classification is important in creating more intelligent systems that help with student exams,identifying criminals,and security systems.The main aim of the research is to develop a system able to predicate and classify gender,age,and accent.So,a newsystem calledClassifyingVoice Gender,Age,and Accent(CVGAA)is proposed.Backpropagation and bagging algorithms are designed to improve voice recognition systems that incorporate sensory voice features such as rhythm-based features used to train the device to distinguish between the two gender categories.It has high precision compared to other algorithms used in this problem,as the adaptive backpropagation algorithm had an accuracy of 98%and the Bagging algorithm had an accuracy of 98.10%in the gender identification data.Bagging has the best accuracy among all algorithms,with 55.39%accuracy in the voice common dataset and age classification and accent accuracy in a speech accent of 78.94%.展开更多
A multilayer perceptron neural network system is established to support the diagnosis for five most common heart diseases (coronary heart disease, rheumatic valvular heart disease, hypertension, chronic cor pulmonale ...A multilayer perceptron neural network system is established to support the diagnosis for five most common heart diseases (coronary heart disease, rheumatic valvular heart disease, hypertension, chronic cor pulmonale and congenital heart disease). Momentum term, adaptive learning rate, the forgetting mechanics, and conjugate gradients method are introduced to improve the basic BP algorithm aiming to speed up the convergence of the BP algorithm and enhance the accuracy for diagnosis. A heart disease database consisting of 352 samples is applied to the training and testing courses of the system. The performance of the system is assessed by cross-validation method. It is found that as the basic BP algorithm is improved step by step, the convergence speed and the classification accuracy of the network are enhanced, and the system has great application prospect in supporting heart diseases diagnosis.展开更多
We extend LeVeque's wave propagation algorithm,a widely used finite volume method for hyperbolic partial differential equations,to a third-order accurate method.The resulting scheme shares main properties with the...We extend LeVeque's wave propagation algorithm,a widely used finite volume method for hyperbolic partial differential equations,to a third-order accurate method.The resulting scheme shares main properties with the original method,i.e.,it is based on a wave decomposition at grid cell interfaces,it can be used to approximate hyperbolic problems in divergence form as well as in quasilinear form and limiting is introduced in the form of a wave limiter.展开更多
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal...Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics.展开更多
In today’s rapid widespread of digital technologies into all live aspects to enhance efficiency and productivity on the one hand and on the other hand ensure customer engagement, personal data counterfeiting has beco...In today’s rapid widespread of digital technologies into all live aspects to enhance efficiency and productivity on the one hand and on the other hand ensure customer engagement, personal data counterfeiting has become a major concern for businesses and end-users. One solution to ensure data security is encryption, where keys are central. There is therefore a need to find robusts key generation implementation that is effective, inexpensive and non-invasive for protecting and preventing data counterfeiting. In this paper, we use the theory of electromagnetic wave propagation to generate encryption keys.展开更多
Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. I...Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network.展开更多
Community detection is a fundamental work to analyse the structural and functional properties of complex networks. The label propagation algorithm (LPA) is a near linear time algorithm to find a good community struc...Community detection is a fundamental work to analyse the structural and functional properties of complex networks. The label propagation algorithm (LPA) is a near linear time algorithm to find a good community structure. Despite various subsequent advances, an important issue of this algorithm has not yet been properly addressed. Random update orders within the algorithm severely hamper the stability of the identified community structure. In this paper, we executed the basic label propagation algorithm on networks multiple times, to obtain a set of consensus partitions. Based on these consensus partitions, we created a consensus weighted graph. In this consensus weighted graph, the weight value of the edge was the proportion value that the number of node pairs allocated in the same cluster was divided by the total number of partitions. Then, we introduced consensus weight to indicate the direction of label propagation. In label update steps, by computing the mixing value of consensus weight and label frequency, a node adopted the label which has the maximum mixing value instead of the most frequent one. For extending to different networks, we introduced a proportion parameter to adjust the proportion of consensus weight and label frequency in computing mixing value. Finally, we proposed an approach named the label propagation algorithm with consensus weight (LPAcw), and the experimental results showed that the LPAcw could enhance considerably both the stability and the accuracy of community partitions.展开更多
Gaussian belief propagation algorithm(GaBP) is one of the most important distributed algorithms in signal processing and statistical learning involving Markov networks. It is well known that the algorithm correctly co...Gaussian belief propagation algorithm(GaBP) is one of the most important distributed algorithms in signal processing and statistical learning involving Markov networks. It is well known that the algorithm correctly computes marginal density functions from a high dimensional joint density function over a Markov network in a finite number of iterations when the underlying Gaussian graph is acyclic. It is also known more recently that the algorithm produces correct marginal means asymptotically for cyclic Gaussian graphs under the condition of walk summability(or generalised diagonal dominance). This paper extends this convergence result further by showing that the convergence is exponential under the generalised diagonal dominance condition,and provides a simple bound for the convergence rate. Our results are derived by combining the known walk summability approach for asymptotic convergence analysis with the control systems approach for stability analysis.展开更多
A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first ...A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method.展开更多
Social propagation denotes the spread phenomena directly correlated to the human world and society, which includes but is not limited to the diffusion of human epidemics, human-made malicious viruses, fake news, socia...Social propagation denotes the spread phenomena directly correlated to the human world and society, which includes but is not limited to the diffusion of human epidemics, human-made malicious viruses, fake news, social innovation, viral marketing, etc. Simulation and optimization are two major themes in social propagation, where network-based simulation helps to analyze and understand the social contagion, and problem-oriented optimization is devoted to contain or improve the infection results. Though there have been many models and optimization techniques, the matter of concern is that the increasing complexity and scales of propagation processes continuously refresh the former conclusions. Recently, evolutionary computation(EC) shows its potential in alleviating the concerns by introducing an evolving and developing perspective. With this insight, this paper intends to develop a comprehensive view of how EC takes effect in social propagation. Taxonomy is provided for classifying the propagation problems, and the applications of EC in solving these problems are reviewed. Furthermore, some open issues of social propagation and the potential applications of EC are discussed.This paper contributes to recognizing the problems in application-oriented EC design and paves the way for the development of evolving propagation dynamics.展开更多
Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of...Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN.展开更多
Multi-label text categorization refers to the problem of categorizing text througha multi-label learning algorithm. Text classification for Asian languages such as Chinese isdifferent from work for other languages suc...Multi-label text categorization refers to the problem of categorizing text througha multi-label learning algorithm. Text classification for Asian languages such as Chinese isdifferent from work for other languages such as English which use spaces to separate words.Before classifying text, it is necessary to perform a word segmentation operation to converta continuous language into a list of separate words and then convert it into a vector of acertain dimension. Generally, multi-label learning algorithms can be divided into twocategories, problem transformation methods and adapted algorithms. This work will usecustomer's comments about some hotels as a training data set, which contains labels for allaspects of the hotel evaluation, aiming to analyze and compare the performance of variousmulti-label learning algorithms on Chinese text classification. The experiment involves threebasic methods of problem transformation methods: Support Vector Machine, Random Forest,k-Nearest-Neighbor;and one adapted algorithm of Convolutional Neural Network. Theexperimental results show that the Support Vector Machine has better performance.展开更多
文摘To extract and display the significant information of combat systems,this paper introduces the methodology of functional cartography into combat networks and proposes an integrated framework named“functional cartography of heterogeneous combat networks based on the operational chain”(FCBOC).In this framework,a functional module detection algorithm named operational chain-based label propagation algorithm(OCLPA),which considers the cooperation and interactions among combat entities and can thus naturally tackle network heterogeneity,is proposed to identify the functional modules of the network.Then,the nodes and their modules are classified into different roles according to their properties.A case study shows that FCBOC can provide a simplified description of disorderly information of combat networks and enable us to identify their functional and structural network characteristics.The results provide useful information to help commanders make precise and accurate decisions regarding the protection,disintegration or optimization of combat networks.Three algorithms are also compared with OCLPA to show that FCBOC can most effectively find functional modules with practical meaning.
基金supported by the National Natural Science Foundation of China(Grant Nos.42172312 and 52211540395)support from the Institut Universitaire de France(IUF).
文摘The modeling of crack growth in three-dimensional(3D)space poses significant challenges in rock mechanics due to the complex numerical computation involved in simulating crack propagation and interaction in rock materials.In this study,we present a novel approach that introduces a 3D numerical manifold method(3D-NMM)with a geometric kernel to enhance computational efficiency.Specifically,the maximum tensile stress criterion is adopted as a crack growth criterion to achieve strong discontinuous crack growth,and a local crack tracking algorithm and an angle correction technique are incorporated to address minor limitations of the algorithm in a 3D model.The implementation of the program is carried out in Python,using object-oriented programming in two independent modules:a calculation module and a crack module.Furthermore,we propose feasible improvements to enhance the performance of the algorithm.Finally,we demonstrate the feasibility and effectiveness of the enhanced algorithm in the 3D-NMM using four numerical examples.This study establishes the potential of the 3DNMM,combined with the local tracking algorithm,for accurately modeling 3D crack propagation in brittle rock materials.
基金supported by the National Natural Science Foundation of China(No.41002045)。
文摘A reliable and effective model for reservoir physical property prediction is a key to reservoir characterization and management.At present,using well logging data to estimate reservoir physical parameters is an important means for reservoir evaluation.Based on the characteristics of large quantity and complexity of estimating process,we have attempted to design a nonlinear back propagation neural network model optimized by genetic algorithm(BPNNGA)for reservoir porosity prediction.This model is with the advantages of self-learning and self-adaption of back propagation neural network(BPNN),structural parameters optimizing and global searching optimal solution of genetic algorithm(GA).The model is applied to the Chang 8 oil group tight sandstone of Yanchang Formation in southwestern Ordos Basin.According to the correlations between well logging data and measured core porosity data,5 well logging curves(gamma ray,deep induction,density,acoustic,and compensated neutron)are selected as the input neurons while the measured core porosity is selected as the output neurons.The number of hidden layer neurons is defined as 20 by the method of multiple calibrating optimizations.Modeling results demonstrate that the average relative error of the model output is 10.77%,indicating the excellent predicting effect of the model.The predicting results of the model are compared with the predicting results of conventional multivariate stepwise regression algorithm,and BPNN model.The average relative errors of the above models are 12.83%,12.9%,and 13.47%,respectively.Results show that the predicting results of the BPNNGA model are more accurate than that of the other two,and BPNNGA is a more applicable method to estimate the reservoir porosity parameters in the study area.
基金supported by the National Natural Science Foundation of China(Grant Nos.41972286 and 42102329).
文摘The Rock-soil interface is a common geological interface.Due to mechanical differences between soil and rock,the stress waves generated by underground blasting undergo intense polarization when crossing the rock-soil interface,making propagation laws difficult to predict.Currently,the characteristics of the impact of the rock-soil interface on blasting stress waves remain unclear.Therefore,the vibration field caused by cylindrical charge blasting in elastic rock and partial-saturation poro-viscoelastic soil was solved.A forward algorithm for the underground blasting vibration field in rock-soil sites was proposed,considering medium damping and geometric diffusion effects of stress waves.Further investigation into the influence of rock and soil parameters and blasting source parameters revealed the following conclusions:stress waves in soil exhibit dispersion,causing peak particle velocity(PPV)to display a discrete distribution.Soil parameters affect PPV attenuation only within the soil,while blasting source parameters affect PPV attenuation throughout the entire site.Multi-wave coupling effects induced by the rocksoil interface result in zones of enhanced and attenuated PPV within the site.The size of the enhancement zone is inversely correlated with the distance from the blasting source and positively correlated with the blasting source attenuation rate and burial depth,providing guidance for selecting explosives and blasting positions.Additionally,PPV attenuation rate increases with distance from the rock-soil interface,but an amplification effect occurs near the interface,most noticeable at 0.1 m.Thus,a sufficient safety distance from the rock-soil interface is necessary during underground blasting.
基金Sponsored by the Fundamental Research Funds for the Central Universities(Grant No.CDJZR14130006)
文摘In order to prevent cracking appeared in the work-piece during the hot stamping operation,this paper proposes a hybrid optimization method based on Hammersley sequence sampling( HSS),finite analysis,backpropagation( BP) neural network and genetic algorithm( GA). The mechanical properties of high strength boron steel are characterized on the basis of uniaxial tensile test at elevated temperatures. The samples of process parameters are chosen via the HSS that encourages the exploration throughout the design space and hence achieves better discovery of possible global optimum in the solution space. Meanwhile, numerical simulation is carried out to predict the forming quality for the optimized design. A BP neural network model is developed to obtain the mathematical relationship between optimization goal and design variables,and genetic algorithm is used to optimize the process parameters. Finally,the results of numerical simulation are compared with those of production experiment to demonstrate that the optimization strategy proposed in the paper is feasible.
文摘Any malfunctions of the actuators of the robots have the potential to destroy the robot’s normal motion,and most of the current actuator fault diagnosis methods are difficult to meet the requirements of simplifying the actuator modeling and solving the difficulty of fault data collection.To solve the problem of real-time diagnosis of actuator faults in the 3-PR(P)S parallel robot,the model of 3-PR(P)S parallel robot and data-driven-based method for the fault diagnosis are presented.Firstly,only the input-output relationship of the actuator is considered for modeling actuator faults,reducing the complexity of fault modeling and reducing the time consumption of parameter identification,thereby meeting the requirements of real-time diagnosis.A Simulink model of the electromechanical actuator(EMA)was constructed to analyze actuator faults.Then the short-term analysis method was employed for collecting the sample data of the slider position on the test platform of the EMA system and feature extraction.Training samples for neural networks are obtained.Furthermore,we optimized the Back Propagation(BP)neural network using the Dung Beetle Optimization Algorithm(DBO),which effectively resolved the weights and thresholds of the BP neural network.Compared to BP and Particle Swarm Optimization(PSO)-BP,the DBO-BP has better convergence,convergence rate,and the best-classifying quality.So,the classification for the different actuator faults is obviously improved.Finally,a fault diagnosis system was designed for the actuator of the 3-PR(P)S parallel robot,and the experimental results demonstrate that this system can detect actuator faults within 0.1 seconds.This work also provides the technical support for the fault-tolerant control of the 3-PR(P)S Parallel robot.
文摘Voice classification is important in creating more intelligent systems that help with student exams,identifying criminals,and security systems.The main aim of the research is to develop a system able to predicate and classify gender,age,and accent.So,a newsystem calledClassifyingVoice Gender,Age,and Accent(CVGAA)is proposed.Backpropagation and bagging algorithms are designed to improve voice recognition systems that incorporate sensory voice features such as rhythm-based features used to train the device to distinguish between the two gender categories.It has high precision compared to other algorithms used in this problem,as the adaptive backpropagation algorithm had an accuracy of 98%and the Bagging algorithm had an accuracy of 98.10%in the gender identification data.Bagging has the best accuracy among all algorithms,with 55.39%accuracy in the voice common dataset and age classification and accent accuracy in a speech accent of 78.94%.
基金the Natural Science Foundation of China (No. 30070211).
文摘A multilayer perceptron neural network system is established to support the diagnosis for five most common heart diseases (coronary heart disease, rheumatic valvular heart disease, hypertension, chronic cor pulmonale and congenital heart disease). Momentum term, adaptive learning rate, the forgetting mechanics, and conjugate gradients method are introduced to improve the basic BP algorithm aiming to speed up the convergence of the BP algorithm and enhance the accuracy for diagnosis. A heart disease database consisting of 352 samples is applied to the training and testing courses of the system. The performance of the system is assessed by cross-validation method. It is found that as the basic BP algorithm is improved step by step, the convergence speed and the classification accuracy of the network are enhanced, and the system has great application prospect in supporting heart diseases diagnosis.
基金This work was supported by the DFG through HE 4858/4-1
文摘We extend LeVeque's wave propagation algorithm,a widely used finite volume method for hyperbolic partial differential equations,to a third-order accurate method.The resulting scheme shares main properties with the original method,i.e.,it is based on a wave decomposition at grid cell interfaces,it can be used to approximate hyperbolic problems in divergence form as well as in quasilinear form and limiting is introduced in the form of a wave limiter.
文摘Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics.
文摘In today’s rapid widespread of digital technologies into all live aspects to enhance efficiency and productivity on the one hand and on the other hand ensure customer engagement, personal data counterfeiting has become a major concern for businesses and end-users. One solution to ensure data security is encryption, where keys are central. There is therefore a need to find robusts key generation implementation that is effective, inexpensive and non-invasive for protecting and preventing data counterfeiting. In this paper, we use the theory of electromagnetic wave propagation to generate encryption keys.
基金National Natural Science Foundation of China(No. 60474021)
文摘Various force disturbances influence the thrust force of linear motors when a linear motor (LM) is running. Among all of force disturbances, the force ripple is the dominant while a linear motor runs in low speed. In order to suppress the force ripple, back propagation(BP) neural network is proposed to learn the function of the force ripple of linear motors, and the acquisition method of training samples is proposed based on a disturbance observer. An off-line BP neural network is used mainly because of its high running efficiency and the real-time requirement of the servo control system of a linear motor. By using the function, the force ripple is on-line compensated according to the position of the LM. The experimental results show that the force ripple is effectively suppressed by the compensation of the BP neural network.
基金supported by the National Natural Science Foundation of China(Grant No.61370073)the China Scholarship Council,China(Grant No.201306070037)
文摘Community detection is a fundamental work to analyse the structural and functional properties of complex networks. The label propagation algorithm (LPA) is a near linear time algorithm to find a good community structure. Despite various subsequent advances, an important issue of this algorithm has not yet been properly addressed. Random update orders within the algorithm severely hamper the stability of the identified community structure. In this paper, we executed the basic label propagation algorithm on networks multiple times, to obtain a set of consensus partitions. Based on these consensus partitions, we created a consensus weighted graph. In this consensus weighted graph, the weight value of the edge was the proportion value that the number of node pairs allocated in the same cluster was divided by the total number of partitions. Then, we introduced consensus weight to indicate the direction of label propagation. In label update steps, by computing the mixing value of consensus weight and label frequency, a node adopted the label which has the maximum mixing value instead of the most frequent one. For extending to different networks, we introduced a proportion parameter to adjust the proportion of consensus weight and label frequency in computing mixing value. Finally, we proposed an approach named the label propagation algorithm with consensus weight (LPAcw), and the experimental results showed that the LPAcw could enhance considerably both the stability and the accuracy of community partitions.
基金supported by the National Natural Science Foundation of China(61633014,61803101,U1701264)。
文摘Gaussian belief propagation algorithm(GaBP) is one of the most important distributed algorithms in signal processing and statistical learning involving Markov networks. It is well known that the algorithm correctly computes marginal density functions from a high dimensional joint density function over a Markov network in a finite number of iterations when the underlying Gaussian graph is acyclic. It is also known more recently that the algorithm produces correct marginal means asymptotically for cyclic Gaussian graphs under the condition of walk summability(or generalised diagonal dominance). This paper extends this convergence result further by showing that the convergence is exponential under the generalised diagonal dominance condition,and provides a simple bound for the convergence rate. Our results are derived by combining the known walk summability approach for asymptotic convergence analysis with the control systems approach for stability analysis.
文摘A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method.
基金by National Key Research and Development Project,Ministry of Science and Technology,China(No.2018AAA0101300)National Natural Science Foundation of China(Nos.61976093 and 61873097)+1 种基金Guangdong-Hong Kong Joint Innovative Platform of Big Data and Computational Intelligence(No.2018B050502006)Guangdong Natural Science Foundation Research Team(No.2018B030312003).
文摘Social propagation denotes the spread phenomena directly correlated to the human world and society, which includes but is not limited to the diffusion of human epidemics, human-made malicious viruses, fake news, social innovation, viral marketing, etc. Simulation and optimization are two major themes in social propagation, where network-based simulation helps to analyze and understand the social contagion, and problem-oriented optimization is devoted to contain or improve the infection results. Though there have been many models and optimization techniques, the matter of concern is that the increasing complexity and scales of propagation processes continuously refresh the former conclusions. Recently, evolutionary computation(EC) shows its potential in alleviating the concerns by introducing an evolving and developing perspective. With this insight, this paper intends to develop a comprehensive view of how EC takes effect in social propagation. Taxonomy is provided for classifying the propagation problems, and the applications of EC in solving these problems are reviewed. Furthermore, some open issues of social propagation and the potential applications of EC are discussed.This paper contributes to recognizing the problems in application-oriented EC design and paves the way for the development of evolving propagation dynamics.
基金National Natural Science Foundation of China(No.61371024)Aviation Science Fund of China(No.2013ZD53051)+2 种基金Aerospace Technology Support Fund of Chinathe Industry-Academy-Research Project of AVIC,China(No.cxy2013XGD14)the Open Research Project of Guangdong Key Laboratory of Popular High Performance Computers/Shenzhen Key Laboratory of Service Computing and Applications,China
文摘Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN.
基金supported by the NSFC (Grant Nos. 61772281,61703212, 61602254)Jiangsu Province Natural Science Foundation [grant numberBK2160968]the Priority Academic Program Development of Jiangsu Higher Edu-cationInstitutions (PAPD) and Jiangsu Collaborative Innovation Center on AtmosphericEnvironment and Equipment Technology (CICAEET).
文摘Multi-label text categorization refers to the problem of categorizing text througha multi-label learning algorithm. Text classification for Asian languages such as Chinese isdifferent from work for other languages such as English which use spaces to separate words.Before classifying text, it is necessary to perform a word segmentation operation to converta continuous language into a list of separate words and then convert it into a vector of acertain dimension. Generally, multi-label learning algorithms can be divided into twocategories, problem transformation methods and adapted algorithms. This work will usecustomer's comments about some hotels as a training data set, which contains labels for allaspects of the hotel evaluation, aiming to analyze and compare the performance of variousmulti-label learning algorithms on Chinese text classification. The experiment involves threebasic methods of problem transformation methods: Support Vector Machine, Random Forest,k-Nearest-Neighbor;and one adapted algorithm of Convolutional Neural Network. Theexperimental results show that the Support Vector Machine has better performance.