期刊文献+
共找到88,990篇文章
< 1 2 250 >
每页显示 20 50 100
Inverse design of nonlinear phononic crystal configurations based on multi-label classification learning neural networks
1
作者 Kunqi Huang Yiran Lin +1 位作者 Yun Lai Xiaozhou Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期295-301,共7页
Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic feature... Phononic crystals,as artificial composite materials,have sparked significant interest due to their novel characteristics that emerge upon the introduction of nonlinearity.Among these properties,second-harmonic features exhibit potential applications in acoustic frequency conversion,non-reciprocal wave propagation,and non-destructive testing.Precisely manipulating the harmonic band structure presents a major challenge in the design of nonlinear phononic crystals.Traditional design approaches based on parameter adjustments to meet specific application requirements are inefficient and often yield suboptimal performance.Therefore,this paper develops a design methodology using Softmax logistic regression and multi-label classification learning to inversely design the material distribution of nonlinear phononic crystals by exploiting information from harmonic transmission spectra.The results demonstrate that the neural network-based inverse design method can effectively tailor nonlinear phononic crystals with desired functionalities.This work establishes a mapping relationship between the band structure and the material distribution within phononic crystals,providing valuable insights into the inverse design of metamaterials. 展开更多
关键词 multi-label classification learning nonlinear phononic crystals inverse design
原文传递
A Multi-Label Classification Algorithm Based on Label-Specific Features 被引量:2
2
作者 QU Huaqiao ZHANG Shichao +1 位作者 LIU Huawen ZHAO Jianmin 《Wuhan University Journal of Natural Sciences》 CAS 2011年第6期520-524,共5页
Aiming at the problem of multi-label classification, a multi-label classification algorithm based on label-specific features is proposed in this paper. In this algorithm, we compute feature density on the positive and... Aiming at the problem of multi-label classification, a multi-label classification algorithm based on label-specific features is proposed in this paper. In this algorithm, we compute feature density on the positive and negative instances set of each class firstly and then select mk features of high density from the positive and negative instances set of each class, respectively; the intersec- tion is taken as the label-specific features of the corresponding class. Finally, multi-label data are classified on the basis of la- bel-specific features. The algorithm can show the label-specific features of each class. Experiments show that our proposed method, the MLSF algorithm, performs significantly better than the other state-of-the-art multi-label learning approaches. 展开更多
关键词 multi-label classification label-specific features feature's value DENSITY
原文传递
Study on Multi-Label Classification of Medical Dispute Documents 被引量:2
3
作者 Baili Zhang Shan Zhou +2 位作者 Le Yang Jianhua Lv Mingjun Zhong 《Computers, Materials & Continua》 SCIE EI 2020年第12期1975-1986,共12页
The Internet of Medical Things(IoMT)will come to be of great importance in the mediation of medical disputes,as it is emerging as the core of intelligent medical treatment.First,IoMT can track the entire medical treat... The Internet of Medical Things(IoMT)will come to be of great importance in the mediation of medical disputes,as it is emerging as the core of intelligent medical treatment.First,IoMT can track the entire medical treatment process in order to provide detailed trace data in medical dispute resolution.Second,IoMT can infiltrate the ongoing treatment and provide timely intelligent decision support to medical staff.This information includes recommendation of similar historical cases,guidance for medical treatment,alerting of hired dispute profiteers etc.The multi-label classification of medical dispute documents(MDDs)plays an important role as a front-end process for intelligent decision support,especially in the recommendation of similar historical cases.However,MDDs usually appear as long texts containing a large amount of redundant information,and there is a serious distribution imbalance in the dataset,which directly leads to weaker classification performance.Accordingly,in this paper,a multi-label classification method based on key sentence extraction is proposed for MDDs.The method is divided into two parts.First,the attention-based hierarchical bi-directional long short-term memory(BiLSTM)model is used to extract key sentences from documents;second,random comprehensive sampling Bagging(RCS-Bagging),which is an ensemble multi-label classification model,is employed to classify MDDs based on key sentence sets.The use of this approach greatly improves the classification performance.Experiments show that the performance of the two models proposed in this paper is remarkably better than that of the baseline methods. 展开更多
关键词 Internet of Medical Things(IoMT) medical disputes medical dispute document(MDD) multi-label classification(MLC) key sentence extraction class imbalance
在线阅读 下载PDF
Dual Sum-Product Networks Autoencoder for Multi-Label Classification
4
作者 WANG Shengsheng ZHANG Hang CHEN Juan 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第5期665-673,共9页
Sum-product networks(SPNs)are an expressive deep probabilistic architecture with solid theoretical foundations,which allows tractable and exact inference.SPNs always act as black-box inference machine in many artifici... Sum-product networks(SPNs)are an expressive deep probabilistic architecture with solid theoretical foundations,which allows tractable and exact inference.SPNs always act as black-box inference machine in many artificial intelligence tasks.Due to their recursive definition,SPNs can also be naturally employed as hierarchical feature extractors.Recently,SPNs have been successfully employed as autoencoder framework in representation learning.However,SPNs autoencoder ignores the model structural duality and trains the models separately and independently.In this work,we propose a Dual-SPNs autoencoder which designs two SPNs autoencoders to compose as a dual form.This approach trains the models simultaneously,and explicitly exploits the structural duality between them to enhance the training process.Experimental results on several multilabel classification problems demonstrate that Dual-SPNs autoencoder is very competitive against with state-of-the-art autoencoder architectures. 展开更多
关键词 smn-product networks(SPNs) representation learning dual learning multi-label classification
原文传递
A Multi-Label Classification Method for Vehicle Video
5
作者 Yanqiu Cao Chao Tan Genlin Ji 《Journal on Big Data》 2020年第1期19-31,共13页
In the last few years,smartphone usage and driver sleepiness have been unanimously considered to lead to numerous road accidents,which causes many scholars to pay attention to autonomous driving.For this complexity sc... In the last few years,smartphone usage and driver sleepiness have been unanimously considered to lead to numerous road accidents,which causes many scholars to pay attention to autonomous driving.For this complexity scene,one of the major challenges is mining information comprehensively from massive features in vehicle video.This paper proposes a multi-label classification method MCM-VV(Multi-label Classification Method for Vehicle Video)for vehicle video to judge the label of road condition for unmanned system.Method MCM-VV includes a process of feature extraction and a process of multi-label classification.During feature extraction,grayscale,lane line and the edge of main object are extracted after video preprocessing.During the multi-label classification,the algorithm DR-ML-KNN(Multi-label K-nearest Neighbor Classification Algorithm based on Dimensionality Reduction)learns the training set to obtain multi-label classifier,then predicts the label of road condition according to maximum a posteriori principle,finally outputs labels and adds the new instance to training set for the optimization of classifier.Experimental results on five vehicle video datasets show that the method MCM-VV is effective and efficient.The DR-ML-KNN algorithm reduces the runtime by 50%.It also reduces the time complexity and improves the accuracy. 展开更多
关键词 Vehicle video multi-label classification dimensionality reduction
在线阅读 下载PDF
Feature Selection for Multi-label Classification Using Neighborhood Preservation 被引量:12
6
作者 Zhiling Cai William Zhu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期320-330,共11页
Multi-label learning deals with data associated with a set of labels simultaneously. Dimensionality reduction is an important but challenging task in multi-label learning. Feature selection is an efficient technique f... Multi-label learning deals with data associated with a set of labels simultaneously. Dimensionality reduction is an important but challenging task in multi-label learning. Feature selection is an efficient technique for dimensionality reduction to search an optimal feature subset preserving the most relevant information. In this paper, we propose an effective feature evaluation criterion for multi-label feature selection, called neighborhood relationship preserving score. This criterion is inspired by similarity preservation, which is widely used in single-label feature selection. It evaluates each feature subset by measuring its capability in preserving neighborhood relationship among samples. Unlike similarity preservation, we address the order of sample similarities which can well express the neighborhood relationship among samples, not just the pairwise sample similarity. With this criterion, we also design one ranking algorithm and one greedy algorithm for feature selection problem. The proposed algorithms are validated in six publicly available data sets from machine learning repository. Experimental results demonstrate their superiorities over the compared state-of-the-art methods. 展开更多
关键词 Feature selection multi-label learning neighborhood relationship preserving sample similarity
在线阅读 下载PDF
Coupled Attribute Similarity Learning on Categorical Data for Multi-Label Classification
7
作者 Zhenwu Wang Longbing Cao 《Journal of Beijing Institute of Technology》 EI CAS 2017年第3期404-410,共7页
In this paper a novel coupled attribute similarity learning method is proposed with the basis on the multi-label categorical data(CASonMLCD).The CASonMLCD method not only computes the correlations between different ... In this paper a novel coupled attribute similarity learning method is proposed with the basis on the multi-label categorical data(CASonMLCD).The CASonMLCD method not only computes the correlations between different attributes and multi-label sets using information gain,which can be regarded as the important degree of each attribute in the attribute learning method,but also further analyzes the intra-coupled and inter-coupled interactions between an attribute value pair for different attributes and multiple labels.The paper compared the CASonMLCD method with the OF distance and Jaccard similarity,which is based on the MLKNN algorithm according to 5common evaluation criteria.The experiment results demonstrated that the CASonMLCD method can mine the similarity relationship more accurately and comprehensively,it can obtain better performance than compared methods. 展开更多
关键词 COUPLED SIMILARITY multi-label categorical data CORRELATIONS
在线阅读 下载PDF
ENSOCOM: Ensemble of Multi-Output Neural Network’s Components for Multi-Label Classification
8
作者 Khudran M.Alzhrani 《Computers, Materials & Continua》 SCIE EI 2022年第9期5459-5479,共21页
Multitasking and multioutput neural networks models jointly learn related classification tasks from a shared structure.Hard parameters sharing is a multitasking approach that shares hidden layers between multiple task... Multitasking and multioutput neural networks models jointly learn related classification tasks from a shared structure.Hard parameters sharing is a multitasking approach that shares hidden layers between multiple taskspecific outputs.The output layers’weights are essential in transforming aggregated neurons outputs into tasks labels.This paper redirects the multioutput network research to prove that the ensemble of output layers prediction can improve network performance in classifying multi-label classification tasks.The network’s output layers initialized with different weights simulate multiple semi-independent classifiers that can make non-identical label sets predictions for the same instance.The ensemble of a multi-output neural network that learns to classify the same multi-label classification task per output layer can outperform an individual output layer neural network.We propose an ensemble strategy of output layers components in the multi-output neural network for multi-label classification(ENSOCOM).The baseline and proposed models are selected based on the size of the hidden layer and the number of output layers to evaluate the proposed method comprehensively.The ENSOCOM method improved the performance of the neural networks on five different multi-label datasets based on several evaluation metrics.The methods presented in this work can substitute the standard labels representation and predictions generation of any neural network. 展开更多
关键词 Ensemble learning multilabel classification neural networks
在线阅读 下载PDF
Multi-Label Movie Genre Classification with Attention Mechanism on Movie Plots
9
作者 Faheem Shaukat Naveed Ejaz +3 位作者 Rashid Kamal Tamim Alkhalifah Sheraz Aslam Mu Mu 《Computers, Materials & Continua》 2025年第6期5595-5622,共28页
Automated and accurate movie genre classification is crucial for content organization,recommendation systems,and audience targeting in the film industry.Although most existing approaches focus on audiovisual features ... Automated and accurate movie genre classification is crucial for content organization,recommendation systems,and audience targeting in the film industry.Although most existing approaches focus on audiovisual features such as trailers and posters,the text-based classification remains underexplored despite its accessibility and semantic richness.This paper introduces the Genre Attention Model(GAM),a deep learning architecture that integrates transformer models with a hierarchical attention mechanism to extract and leverage contextual information from movie plots formulti-label genre classification.In order to assess its effectiveness,we assessmultiple transformer-based models,including Bidirectional Encoder Representations fromTransformers(BERT),ALite BERT(ALBERT),Distilled BERT(DistilBERT),Robustly Optimized BERT Pretraining Approach(RoBERTa),Efficiently Learning an Encoder that Classifies Token Replacements Accurately(ELECTRA),eXtreme Learning Network(XLNet)and Decodingenhanced BERT with Disentangled Attention(DeBERTa).Experimental results demonstrate the superior performance of DeBERTa-based GAM,which employs a two-tier hierarchical attention mechanism:word-level attention highlights key terms,while sentence-level attention captures critical narrative segments,ensuring a refined and interpretable representation of movie plots.Evaluated on three benchmark datasets Trailers12K,Large Movie Trailer Dataset-9(LMTD-9),and MovieLens37K.GAM achieves micro-average precision scores of 83.63%,83.32%,and 83.34%,respectively,surpassing state-of-the-artmodels.Additionally,GAMis computationally efficient,requiring just 6.10Giga Floating Point Operations Per Second(GFLOPS),making it a scalable and cost-effective solution.These results highlight the growing potential of text-based deep learning models in genre classification and GAM’s effectiveness in improving predictive accuracy while maintaining computational efficiency.With its robust performance,GAM offers a versatile and scalable framework for content recommendation,film indexing,and media analytics,providing an interpretable alternative to traditional audiovisual-based classification techniques. 展开更多
关键词 multi-label classification artificial intelligence movie genre classification hierarchical attention mechanisms natural language processing content recommendation text-based genre classification explainable AI(Artificial Intelligence) transformer models BERT
在线阅读 下载PDF
Multi-Label Machine Learning Classification of Cardiovascular Diseases
10
作者 Chih-Ta Yen Jung-Ren Wong Chia-Hsang Chang 《Computers, Materials & Continua》 2025年第7期347-363,共17页
In its 2023 global health statistics,the World Health Organization noted that noncommunicable diseases(NCDs)remain the leading cause of disease burden worldwide,with cardiovascular diseases(CVDs)resulting in more deat... In its 2023 global health statistics,the World Health Organization noted that noncommunicable diseases(NCDs)remain the leading cause of disease burden worldwide,with cardiovascular diseases(CVDs)resulting in more deaths than the three other major NCDs combined.In this study,we developed a method that can comprehensively detect which CVDs are present in a patient.Specifically,we propose a multi-label classification method that utilizes photoplethysmography(PPG)signals and physiological characteristics from public datasets to classify four types of CVDs and related conditions:hypertension,diabetes,cerebral infarction,and cerebrovascular disease.Our approach to multi-disease classification of cardiovascular diseases(CVDs)using PPG signals achieves the highest classification performance when encompassing the broadest range of disease categories,thereby offering a more comprehensive assessment of human health.We employ a multi-label classification strategy to simultaneously predict the presence or absence of multiple diseases.Specifically,we first apply the Savitzky-Golay(S-G)filter to the PPG signals to reduce noise and then transform into statistical features.We integrate processed PPG signals with individual physiological features as a multimodal input,thereby expanding the learned feature space.Notably,even with a simple machine learning method,this approach can achieve relatively high accuracy.The proposed method achieved a maximum F1-score of 0.91,minimum Hamming loss of 0.04,and an accuracy of 0.95.Thus,our method represents an effective and rapid solution for detecting multiple diseases simultaneously,which is beneficial for comprehensively managing CVDs. 展开更多
关键词 PHOTOPLETHYSMOGRAPHY machine learning health management multi-label classification cardiovascu-lar disease
在线阅读 下载PDF
Performance evaluation of seven multi-label classification methods on real-world patent and publication datasets
11
作者 Shuo Xu Yuefu Zhang +1 位作者 Xin An Sainan Pi 《Journal of Data and Information Science》 2024年第2期81-103,共23页
Purpose:Many science,technology and innovation(STI)resources are attached with several different labels.To assign automatically the resulting labels to an interested instance,many approaches with good performance on t... Purpose:Many science,technology and innovation(STI)resources are attached with several different labels.To assign automatically the resulting labels to an interested instance,many approaches with good performance on the benchmark datasets have been proposed for multi-label classification task in the literature.Furthermore,several open-source tools implementing these approaches have also been developed.However,the characteristics of real-world multi-label patent and publication datasets are not completely in line with those of benchmark ones.Therefore,the main purpose of this paper is to evaluate comprehensively seven multi-label classification methods on real-world datasets.Research limitations:Three real-world datasets differ in the following aspects:statement,data quality,and purposes.Additionally,open-source tools designed for multi-label classification also have intrinsic differences in their approaches for data processing and feature selection,which in turn impacts the performance of a multi-label classification approach.In the near future,we will enhance experimental precision and reinforce the validity of conclusions by employing more rigorous control over variables through introducing expanded parameter settings.Practical implications:The observed Macro F1 and Micro F1 scores on real-world datasets typically fall short of those achieved on benchmark datasets,underscoring the complexity of real-world multi-label classification tasks.Approaches leveraging deep learning techniques offer promising solutions by accommodating the hierarchical relationships and interdependencies among labels.With ongoing enhancements in deep learning algorithms and large-scale models,it is expected that the efficacy of multi-label classification tasks will be significantly improved,reaching a level of practical utility in the foreseeable future.Originality/value:(1)Seven multi-label classification methods are comprehensively compared on three real-world datasets.(2)The TextCNN and TextRCNN models perform better on small-scale datasets with more complex hierarchical structure of labels and more balanced document-label distribution.(3)The MLkNN method works better on the larger-scale dataset with more unbalanced document-label distribution. 展开更多
关键词 multi-label classification Real-World datasets Hierarchical structure classification system Label correlation Machine learning
在线阅读 下载PDF
Learning Label Correlations for Multi-Label Online Passive Aggressive Classification Algorithm
12
作者 ZHANG Yongwei 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第1期51-58,共8页
Label correlations are an essential technique for data mining that solves the possible correlation problem between different labels in multi-label classification.Although this technique is widely used in multi-label c... Label correlations are an essential technique for data mining that solves the possible correlation problem between different labels in multi-label classification.Although this technique is widely used in multi-label classification problems,batch learning deals with most issues,which consumes a lot of time and space resources.Unlike traditional batch learning methods,online learning represents a promising family of efficient and scalable machine learning algorithms for large-scale datasets.However,existing online learning research has done little to consider correlations between labels.On the basis of existing research,this paper proposes a multi-label online learning algorithm based on label correlations by maximizing the interval between related labels and unrelated labels in multi-label samples.We evaluate the performance of the proposed algorithm on several public datasets.Experiments show the effectiveness of our algorithm. 展开更多
关键词 label correlations passive aggressive multi-label classification online learning
原文传递
Classification research of TCM pulse conditions based on multi-label voice analysis
13
作者 Haoran Shen Junjie Cao +5 位作者 Lin Zhang Jing Li Jianghong Liu Zhiyuan Chu Shifeng Wang Yanjiang Qiao 《Journal of Traditional Chinese Medical Sciences》 CAS 2024年第2期172-179,共8页
Objective:To explore the feasibility of remotely obtaining complex information on traditional Chinese medicine(TCM)pulse conditions through voice signals.Methods: We used multi-label pulse conditions as the entry poin... Objective:To explore the feasibility of remotely obtaining complex information on traditional Chinese medicine(TCM)pulse conditions through voice signals.Methods: We used multi-label pulse conditions as the entry point and modeled and analyzed TCM pulse diagnosis by combining voice analysis and machine learning.Audio features were extracted from voice recordings in the TCM pulse condition dataset.The obtained features were combined with information from tongue and facial diagnoses.A multi-label pulse condition voice classification DNN model was built using 10-fold cross-validation,and the modeling methods were validated using publicly available datasets.Results: The analysis showed that the proposed method achieved an accuracy of 92.59%on the public dataset.The accuracies of the three single-label pulse manifestation models in the test set were 94.27%,96.35%,and 95.39%.The absolute accuracy of the multi-label model was 92.74%.Conclusion: Voice data analysis may serve as a remote adjunct to the TCM diagnostic method for pulse condition assessment. 展开更多
关键词 Pulse conditions TCM pulse diagnosis Voice analysis multi-label classification Machine learning
在线阅读 下载PDF
Urban tree species classification based on multispectral airborne LiDAR 被引量:1
14
作者 HU Pei-Lun CHEN Yu-Wei +3 位作者 Mohammad Imangholiloo Markus Holopainen WANG Yi-Cheng Juha Hyyppä 《红外与毫米波学报》 北大核心 2025年第2期211-216,共6页
Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services... Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy. 展开更多
关键词 multispectral airborne LiDAR machine learning tree species classification
在线阅读 下载PDF
Nondestructive detection and classification of impurities-containing seed cotton based on hyperspectral imaging and one-dimensional convolutional neural network 被引量:1
15
作者 Yeqi Fei Zhenye Li +2 位作者 Tingting Zhu Zengtao Chen Chao Ni 《Digital Communications and Networks》 2025年第2期308-316,共9页
The cleanliness of seed cotton plays a critical role in the pre-treatment of cotton textiles,and the removal of impurity during the harvesting process directly determines the quality and market value of cotton textile... The cleanliness of seed cotton plays a critical role in the pre-treatment of cotton textiles,and the removal of impurity during the harvesting process directly determines the quality and market value of cotton textiles.By fusing band combination optimization with deep learning,this study aims to achieve more efficient and accurate detection of film impurities in seed cotton on the production line.By applying hyperspectral imaging and a one-dimensional deep learning algorithm,we detect and classify impurities in seed cotton after harvest.The main categories detected include pure cotton,conveyor belt,film covering seed cotton,and film adhered to the conveyor belt.The proposed method achieves an impurity detection rate of 99.698%.To further ensure the feasibility and practical application potential of this strategy,we compare our results against existing mainstream methods.In addition,the model shows excellent recognition performance on pseudo-color images of real samples.With a processing time of 11.764μs per pixel from experimental data,it shows a much improved speed requirement while maintaining the accuracy of real production lines.This strategy provides an accurate and efficient method for removing impurities during cotton processing. 展开更多
关键词 Seed cotton Film impurity Hyperspectral imaging Band optimization classification
在线阅读 下载PDF
Multi-Scale Dilated Convolution Network for SPECT-MPI Cardiovascular Disease Classification with Adaptive Denoising and Attenuation Correction
16
作者 A.Robert Singh Suganya Athisayamani +1 位作者 Gyanendra Prasad Joshi Bhanu Shrestha 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期299-327,共29页
Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronar... Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronary artery disease(CAD).The automatic classification of SPECT images for different techniques has achieved near-optimal accuracy when using convolutional neural networks(CNNs).This paper uses a SPECT classification framework with three steps:1)Image denoising,2)Attenuation correction,and 3)Image classification.Image denoising is done by a U-Net architecture that ensures effective image denoising.Attenuation correction is implemented by a convolution neural network model that can remove the attenuation that affects the feature extraction process of classification.Finally,a novel multi-scale diluted convolution(MSDC)network is proposed.It merges the features extracted in different scales and makes the model learn the features more efficiently.Three scales of filters with size 3×3 are used to extract features.All three steps are compared with state-of-the-art methods.The proposed denoising architecture ensures a high-quality image with the highest peak signal-to-noise ratio(PSNR)value of 39.7.The proposed classification method is compared with the five different CNN models,and the proposed method ensures better classification with an accuracy of 96%,precision of 87%,sensitivity of 87%,specificity of 89%,and F1-score of 87%.To demonstrate the importance of preprocessing,the classification model was analyzed without denoising and attenuation correction. 展开更多
关键词 SPECT-MPI CAD MSDC DENOISING attenuation correction classification
在线阅读 下载PDF
Various classification methods for diabetes mellitus in the management of blood glucose control 被引量:1
17
作者 Qing Jiang Yun Hu Jian-Hua Ma 《World Journal of Diabetes》 2025年第5期1-7,共7页
In the era of precision medicine,the classification of diabetes mellitus has evolved beyond the traditional categories.Various classification methods now account for a multitude of factors,including variations in spec... In the era of precision medicine,the classification of diabetes mellitus has evolved beyond the traditional categories.Various classification methods now account for a multitude of factors,including variations in specific genes,type ofβ-cell impairment,degree of insulin resistance,and clinical characteristics of metabolic profiles.Improved classification methods enable healthcare providers to formulate blood glucose management strategies more precisely.Applying these updated classification systems,will assist clinicians in further optimising treatment plans,including targeted drug therapies,personalized dietary advice,and specific exercise plans.Ultimately,this will facilitate stricter blood glucose control,minimize the risks of hypoglycaemia and hyperglycaemia,and reduce long-term complications associated with diabetes. 展开更多
关键词 Diabetes classification Glycaemic control Personalised treatment Soft clustering Precision medicine
暂未订购
Three-Stage Transfer Learning with AlexNet50 for MRI Image Multi-Class Classification with Optimal Learning Rate
18
作者 Suganya Athisayamani A.Robert Singh +1 位作者 Gyanendra Prasad Joshi Woong Cho 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期155-183,共29页
In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue... In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue anomalies.Traditionally,radiologists manually interpret these images,which can be labor-intensive and time-consuming due to the vast amount of data.To address this challenge,machine learning,and deep learning approaches can be utilized to improve the accuracy and efficiency of anomaly detection in MRI scans.This manuscript presents the use of the Deep AlexNet50 model for MRI classification with discriminative learning methods.There are three stages for learning;in the first stage,the whole dataset is used to learn the features.In the second stage,some layers of AlexNet50 are frozen with an augmented dataset,and in the third stage,AlexNet50 with an augmented dataset with the augmented dataset.This method used three publicly available MRI classification datasets:Harvard whole brain atlas(HWBA-dataset),the School of Biomedical Engineering of Southern Medical University(SMU-dataset),and The National Institute of Neuroscience and Hospitals brain MRI dataset(NINS-dataset)for analysis.Various hyperparameter optimizers like Adam,stochastic gradient descent(SGD),Root mean square propagation(RMS prop),Adamax,and AdamW have been used to compare the performance of the learning process.HWBA-dataset registers maximum classification performance.We evaluated the performance of the proposed classification model using several quantitative metrics,achieving an average accuracy of 98%. 展开更多
关键词 MRI TUMORS classification AlexNet50 transfer learning hyperparameter tuning OPTIMIZER
在线阅读 下载PDF
TMC-GCN: Encrypted Traffic Mapping Classification Method Based on Graph Convolutional Networks 被引量:1
19
作者 Baoquan Liu Xi Chen +2 位作者 Qingjun Yuan Degang Li Chunxiang Gu 《Computers, Materials & Continua》 2025年第2期3179-3201,共23页
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based... With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%. 展开更多
关键词 Encrypted traffic classification deep learning graph neural networks multi-layer perceptron graph convolutional networks
在线阅读 下载PDF
Multi-Scale Feature Fusion and Advanced Representation Learning for Multi Label Image Classification
20
作者 Naikang Zhong Xiao Lin +1 位作者 Wen Du Jin Shi 《Computers, Materials & Continua》 2025年第3期5285-5306,共22页
Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feat... Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feature representation.However,existing methods often rely on the single-scale deep feature,neglecting shallow and deeper layer features,which poses challenges when predicting objects of varying scales within the same image.Although some studies have explored multi-scale features,they rarely address the flow of information between scales or efficiently obtain class-specific precise representations for features at different scales.To address these issues,we propose a two-stage,three-branch Transformer-based framework.The first stage incorporates multi-scale image feature extraction and hierarchical scale attention.This design enables the model to consider objects at various scales while enhancing the flow of information across different feature scales,improving the model’s generalization to diverse object scales.The second stage includes a global feature enhancement module and a region selection module.The global feature enhancement module strengthens interconnections between different image regions,mitigating the issue of incomplete represen-tations,while the region selection module models the cross-modal relationships between image features and labels.Together,these components enable the efficient acquisition of class-specific precise feature representations.Extensive experiments on public datasets,including COCO2014,VOC2007,and VOC2012,demonstrate the effectiveness of our proposed method.Our approach achieves consistent performance gains of 0.3%,0.4%,and 0.2%over state-of-the-art methods on the three datasets,respectively.These results validate the reliability and superiority of our approach for multi-label image classification. 展开更多
关键词 Image classification multi-label multi scale attention mechanisms feature fusion
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部