Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a...Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm.展开更多
对不同故障下光伏组件内部等效参数和外特性电气参数进行特征提取,分别采用改进人工鱼群算法优化径向基函数神经网络(improved artificial fish swarm algorithm-radical basic function neural network,IAFSA-RBFNN)算法和相关向量机(r...对不同故障下光伏组件内部等效参数和外特性电气参数进行特征提取,分别采用改进人工鱼群算法优化径向基函数神经网络(improved artificial fish swarm algorithm-radical basic function neural network,IAFSA-RBFNN)算法和相关向量机(relevance vector machine,RVM)算法,建立了基于内部等效参数和外特性电气参数的4种光伏组件故障诊断模型,用于光伏组件的初步故障诊断。在此基础上,提出了一种基于改进证据相似度的光伏组件数据融合故障诊断模型,将上述4种模型的诊断结果作为该改进数据融合算法的基本概率分配(basic probability assignment,BPA)函数值,在决策层进行融合诊断输出,仿真和实验结果验证了上述方法可有效提高故障诊断的精度。展开更多
基金Supported by the State Key Development Program for Basic Research of China (No.2002CB312200) and the National Natural Science Foundation of China (No.60574019).
文摘Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm.
文摘对不同故障下光伏组件内部等效参数和外特性电气参数进行特征提取,分别采用改进人工鱼群算法优化径向基函数神经网络(improved artificial fish swarm algorithm-radical basic function neural network,IAFSA-RBFNN)算法和相关向量机(relevance vector machine,RVM)算法,建立了基于内部等效参数和外特性电气参数的4种光伏组件故障诊断模型,用于光伏组件的初步故障诊断。在此基础上,提出了一种基于改进证据相似度的光伏组件数据融合故障诊断模型,将上述4种模型的诊断结果作为该改进数据融合算法的基本概率分配(basic probability assignment,BPA)函数值,在决策层进行融合诊断输出,仿真和实验结果验证了上述方法可有效提高故障诊断的精度。