期刊文献+
共找到894篇文章
< 1 2 45 >
每页显示 20 50 100
Multi-Kernel Bandwidth Based Maximum Correntropy Extended Kalman Filter for GPS Navigation
1
作者 Amita Biswal Dah-Jing Jwo 《Computer Modeling in Engineering & Sciences》 2025年第7期927-944,共18页
The extended Kalman filter(EKF)is extensively applied in integrated navigation systems that combine the global navigation satellite system(GNSS)and strap-down inertial navigation system(SINS).However,the performance o... The extended Kalman filter(EKF)is extensively applied in integrated navigation systems that combine the global navigation satellite system(GNSS)and strap-down inertial navigation system(SINS).However,the performance of the EKF can be severely impacted by non-Gaussian noise and measurement noise uncertainties,making it difficult to achieve optimal GNSS/INS integration.Dealing with non-Gaussian noise remains a significant challenge in filter development today.Therefore,the maximum correntropy criterion(MCC)is utilized in EKFs to manage heavytailed measurement noise.However,its capability to handle non-Gaussian process noise and unknown disturbances remains largely unexplored.In this paper,we extend correntropy from using a single kernel to a multi-kernel approach.This leads to the development of a multi-kernel maximum correntropy extended Kalman filter(MKMC-EKF),which is designed to effectively manage multivariate non-Gaussian noise and disturbances.Further,theoretical analysis,including advanced stability proofs,can enhance understanding,while hybrid approaches integrating MKMC-EKF with particle filters may improve performance in nonlinear systems.The MKMC-EKF enhances estimation accuracy using a multi-kernel bandwidth approach.As bandwidth increases,the filter’s sensitivity to non-Gaussian features decreases,and its behavior progressively approximates that of the iterated EKF.The proposed approach for enhancing positioning in navigation is validated through performance evaluations,which demonstrate its practical applications in real-world systems like GPS navigation and measuring radar targets. 展开更多
关键词 Extended Kalman filter maximum correntropy criterion(MCC) multi-kernel maximum correntropy(MKMC) non-Gaussian noise
在线阅读 下载PDF
Nonlinear Model Predictive Control Based on Support Vector Machine with Multi-kernel 被引量:22
2
作者 包哲静 皮道映 孙优贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第5期691-697,共7页
Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a... Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm. 展开更多
关键词 nonlinear model predictive control support vector machine with multi-kernel nonlinear system identification kernel function
在线阅读 下载PDF
Lithofacies identi cation using support vector machine based on local deep multi-kernel learning 被引量:13
3
作者 Xing-Ye Liu Lin Zhou +1 位作者 Xiao-Hong Chen Jing-Ye Li 《Petroleum Science》 SCIE CAS CSCD 2020年第4期954-966,共13页
Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacie... Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacies and seismic information that is affected by many factors is complicated.Machine learning has received extensive attention in recent years,among which support vector machine(SVM) is a potential method for lithofacies classification.Lithofacies classification involves identifying various types of lithofacies and is generally a nonlinear problem,which needs to be solved by means of the kernel function.Multi-kernel learning SVM is one of the main tools for solving the nonlinear problem about multi-classification.However,it is very difficult to determine the kernel function and the parameters,which is restricted by human factors.Besides,its computational efficiency is low.A lithofacies classification method based on local deep multi-kernel learning support vector machine(LDMKL-SVM) that can consider low-dimensional global features and high-dimensional local features is developed.The method can automatically learn parameters of kernel function and SVM to build a relationship between lithofacies and seismic elastic information.The calculation speed will be expedited at no cost with respect to discriminant accuracy for multi-class lithofacies identification.Both the model data test results and the field data application results certify advantages of the method.This contribution offers an effective method for lithofacies recognition and reservoir prediction by using SVM. 展开更多
关键词 Lithofacies discriminant Support vector machine multi-kernel learning Reservoir prediction Machine learning
原文传递
基于Multi-kernel和KRR的数据还原算法 被引量:1
4
作者 刘剑 龚志恒 吴成东 《控制与决策》 EI CSCD 北大核心 2014年第5期821-826,共6页
由于数据被核化后不能还原,使核方法的应用受到局限.对此,提出一种基于Multi-kernel和KRR的数据还原算法.首先,通过同类数据中已知数据进行多次核化迭代,使已知数据在超高维欧氏空间中呈线性;然后,利用已知数据对同类未知数据进行线性表... 由于数据被核化后不能还原,使核方法的应用受到局限.对此,提出一种基于Multi-kernel和KRR的数据还原算法.首先,通过同类数据中已知数据进行多次核化迭代,使已知数据在超高维欧氏空间中呈线性;然后,利用已知数据对同类未知数据进行线性表示,并以Kernel ridge regression(KRR)算法进行未知数据的回归;最后实现数据还原.选取Iris flower和JAFFE两类数据集进行还原实验,实验结果表明,所提出的算法可以有效地还原未知数据,而且在其他领域的应用也有较好的效果. 展开更多
关键词 多核 数据还原 核岭回归 迭代 超高维欧氏空间
原文传递
Multi-channel differencing adaptive noise cancellation with multi-kernel method 被引量:1
5
作者 Wei Gao Jianguo Huang Jing Han 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期421-430,共10页
Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of n... Although a various of existing techniques are able to improve the performance of detection of the weak interesting sig- nal, how to adaptively and efficiently attenuate the intricate noises especially in the case of no available reference noise signal is still the bottleneck to be overcome. According to the characteristics of sonar arrays, a multi-channel differencing method is presented to provide the prerequisite reference noise. However, the ingre- dient of obtained reference noise is too complicated to be used to effectively reduce the interference noise only using the clas- sical linear cancellation methods. Hence, a novel adaptive noise cancellation method based on the multi-kernel normalized least- mean-square algorithm consisting of weighted linear and Gaussian kernel functions is proposed, which allows to simultaneously con- sider the cancellation of linear and nonlinear components in the reference noise. The simulation results demonstrate that the out- put signal-to-noise ratio (SNR) of the novel multi-kernel adaptive filtering method outperforms the conventional linear normalized least-mean-square method and the mono-kernel normalized least- mean-square method using the realistic noise data measured in the lake experiment. 展开更多
关键词 adaptive noise cancellation multi-channel differencing multi-kernel learning array signal processing.
在线阅读 下载PDF
LDD-YOLO:改进YOLOv8的轻量级密集行人检测算法
6
作者 杨迪 张喜龙 王鹏 《计算机科学与探索》 北大核心 2026年第1期251-265,共15页
针对当前行人检测算法在密集场景中由于遮挡和尺度变化导致的漏检、误检,以及模型计算复杂度高等问题,提出了一种基于YOLOv8的轻量级密集行人检测方法(LDD-YOLO),以实现检测效率与精度的平衡。设计了一种重参数化层聚合网络RELAN,融合... 针对当前行人检测算法在密集场景中由于遮挡和尺度变化导致的漏检、误检,以及模型计算复杂度高等问题,提出了一种基于YOLOv8的轻量级密集行人检测方法(LDD-YOLO),以实现检测效率与精度的平衡。设计了一种重参数化层聚合网络RELAN,融合了重参数化卷积和多分支结构,分别在训练阶段和推理阶段强化特征表达能力与模型推理效率。引入了分离式大卷积核注意力机制的空间金字塔池化模块SPPF-LSKA,结合分离式大卷积核操作以扩大感受野,增强对密集目标的特征捕获能力,抑制背景干扰。为解决YOLOv8在特征处理中未能充分挖掘局部与全局信息的局限性,提出了一种改进的多尺度特征融合模块FFDM,通过融合多尺度特征信息,提升模型密集行人检测的特征表达能力。设计了一种轻量化的特征对齐检测头LSCSBD,利用不同特征层级之间的共享卷积层,提高参数利用效率并减少冗余计算。在CrowdHuman与WiderPerson数据集上的对比实验结果表明,LDD-YOLO在总体性能上优于对比模型,实现了精度与效率的平衡。 展开更多
关键词 密集行人检测 YOLO 重参数化 可分离大核注意力机制 多尺度特征融合 轻量化
在线阅读 下载PDF
Fault diagnosis of wind turbine bearing based on stochastic subspace identification and multi-kernel support vector machine 被引量:17
7
作者 Hongshan ZHAO Yufeng GAO +1 位作者 Huihai LIU Lang LI 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2019年第2期350-356,共7页
In order to accurately identify a bearing fault on a wind turbine, a novel fault diagnosis method based on stochastic subspace identification(SSI) and multi-kernel support vector machine(MSVM) is proposed. Firstly, th... In order to accurately identify a bearing fault on a wind turbine, a novel fault diagnosis method based on stochastic subspace identification(SSI) and multi-kernel support vector machine(MSVM) is proposed. Firstly, the collected vibration signal of the wind turbine bearing is processed by the SSI method to extract fault feature vectors. Then, the MSVM is constructed based on Gauss kernel support vector machine(SVM) and polynomial kernel SVM. Finally, fault feature vectors which indicate the condition of the wind turbine bearing are inputted to the MSVM for fault pattern recognition. The results indicate that the SSI-MSVM method is effective in fault diagnosis for a wind turbine bearing and can successfully identify fault types of bearing and achieve higher diagnostic accuracy than that of K-means clustering, fuzzy means clustering and traditional SVM. 展开更多
关键词 Wind TURBINE BEARING Fault diagnosis Stochastic SUBSPACE identification(SSI) multi-kernel support vector machine(MSVM)
原文传递
Advancing the incremental fusion of robotic sensory features using online multi-kernel extreme learning machine 被引量:2
8
作者 Lele CAO Fuchun SUN +1 位作者 Hongbo LI Wenbing HUANG 《Frontiers of Computer Science》 SCIE EI CSCD 2017年第2期276-289,共14页
Robot recognition tasks usually require multiple homogeneous or heterogeneous sensors which intrinsically generate sequential, redundant, and storage demanding data with various noise pollution. Thus, online machine l... Robot recognition tasks usually require multiple homogeneous or heterogeneous sensors which intrinsically generate sequential, redundant, and storage demanding data with various noise pollution. Thus, online machine learning algorithms performing efficient sensory feature fusion have become a hot topic in robot recognition domain. This paper proposes an online multi-kernel extreme learning machine (OM-ELM) which assembles multiple ELM classifiers and optimizes the kernel weights with a p-norm formulation of multi-kernel learning (MKL) problem. It can be applied in feature fusion applications that require incremental learning over multiple sequential sensory readings. The performance of OM-ELM is tested towards four different robot recognition tasks. By comparing to several state-of-the-art online models for multi-kernel learning, we claim that our method achieves a superior or equivalent training accuracy and generalization ability with less training time. Practical suggestions are also given to aid effective online fusion of robot sensory features. 展开更多
关键词 multi-kernel learning online learning extreme learning machine feature fusion robot recognition
原文传递
An Ensemble Approach for Emotion Cause Detection with Event Extraction and Multi-Kernel SVMs 被引量:8
9
作者 Ruifeng Xu Jiannan Hu +2 位作者 Qin Lu Dongyin Wu Lin Gui 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2017年第6期646-659,共14页
In this paper, we present a new challenging task for emotion analysis, namely emotion cause extraction.In this task, we focus on the detection of emotion cause a.k.a the reason or the stimulant of an emotion, rather t... In this paper, we present a new challenging task for emotion analysis, namely emotion cause extraction.In this task, we focus on the detection of emotion cause a.k.a the reason or the stimulant of an emotion, rather than the regular emotion classification or emotion component extraction. Since there is no open dataset for this task available, we first designed and annotated an emotion cause dataset which follows the scheme of W3 C Emotion Markup Language. We then present an emotion cause detection method by using event extraction framework,where a tree structure-based representation method is used to represent the events. Since the distribution of events is imbalanced in the training data, we propose an under-sampling-based bagging algorithm to solve this problem. Even with a limited training set, the proposed approach may still extract sufficient features for analysis by a bagging of multi-kernel based SVMs method. Evaluations show that our approach achieves an F-measure 7.04%higher than the state-of-the-art methods. 展开更多
关键词 emotion cause detection event extraction multi-kernel SVMs bagging
原文传递
The Optimal Solution of Multi-kernel Regularization Learning 被引量:1
10
作者 Hong Wei SUN Ping LIU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第8期1607-1616,共10页
In regularized kernel methods, the solution of a learning problem is found by minimizing a functional consisting of a empirical risk and a regularization term. In this paper, we study the existence of optimal solution... In regularized kernel methods, the solution of a learning problem is found by minimizing a functional consisting of a empirical risk and a regularization term. In this paper, we study the existence of optimal solution of multi-kernel regularization learning. First, we ameliorate a previous conclusion about this problem given by Micchelli and Pontil, and prove that the optimal solution exists whenever the kernel set is a compact set. Second, we consider this problem for Gaussian kernels with variance σ∈(0,∞), and give some conditions under which the optimal solution exists. 展开更多
关键词 Learning theory multi-kernel regularization optimal solution Gaussian kernels
原文传递
Multi-kernel dictionary learning for classifying maize varieties 被引量:1
11
作者 Hua Zhu Jun Yue +1 位作者 Zhenbo Li Zhiwang Zhang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第3期183-189,共7页
The automatic classification and identification of maize varieties is one of the important research contents in agriculture.A multi-kernel maize varieties classification approach was proposed in this paper in order to... The automatic classification and identification of maize varieties is one of the important research contents in agriculture.A multi-kernel maize varieties classification approach was proposed in this paper in order to improve the recognition rate of maize varieties.In this approach,four kinds of maize varieties were selected,in each variety 200 grains were selected randomly as the samples,and in each sample 160 grains were taken as the training samples randomly;the characteristics of maize grain were extracted as the typical characteristics to distinguish maize varieties,by which the dictionary required by K-SVD was constructed;for the test samples,the feature-matrixes were extracted by dimension reduction method which were mapped to the high-dimension space by muti-kernel function mapping.The high-dimension characteristic matrixes were trained by K-SVD method and the corresponding feature dictionary was obtained respectively.Finally,the test samples representing were trained and classified by l2,1 minimization sparse coefficient.The experiment results showed that recognition rate was improved obviously through this approach,and the poor-effect to maize variety identification from partial occlusion can be eliminated effectively. 展开更多
关键词 multi-kernel sparse representation dictionary learning maize classification
原文传递
基于多任务学习的跳频调制方式识别与信噪比估计方法
12
作者 汪有鹏 王昊 曹建银 《现代电子技术》 北大核心 2026年第1期66-72,共7页
针对目前在跳频信号识别的多任务学习中存在跷跷板现象和使用IQ信号训练出的模型泛化能力较差的问题,文中提出一种改进的方法,采用CGC的多任务网络框架结合大卷积核与结构重参数化技术,以提高跳频信号调制识别和信噪比估计的准确性。该... 针对目前在跳频信号识别的多任务学习中存在跷跷板现象和使用IQ信号训练出的模型泛化能力较差的问题,文中提出一种改进的方法,采用CGC的多任务网络框架结合大卷积核与结构重参数化技术,以提高跳频信号调制识别和信噪比估计的准确性。该多任务网络架构采用硬参数共享,将网络通道划分为专家通道和共享通道,并引入了包含大卷积核结构重参数化与残差结构的MobileBlock层。与多任务学习中常用的MMOE结构模型相比,跳频信号调制识别的分类准确率更高,信噪比估计的均方误差更小。实验结果证明了该方法在现代军事通信对抗中的应用潜力,为跳频信号识别和参数估计提供了一个较好的解决方案。 展开更多
关键词 跳频信号 调制识别 信噪比估计 多任务学习 大核卷积 结构重参数化
在线阅读 下载PDF
Learning multi-kernel multi-view canonical correlations for image recognition 被引量:1
13
作者 Yun-Hao Yuan Yun Li +4 位作者 Jianjun Liu Chao-Feng Li Xiao-Bo Shen Guoqing Zhang Quan-Sen Sun 《Computational Visual Media》 2016年第2期153-162,共10页
In this paper, we propose a multi-kernel multi-view canonical correlations(M2CCs) framework for subspace learning. In the proposed framework,the input data of each original view are mapped into multiple higher dimensi... In this paper, we propose a multi-kernel multi-view canonical correlations(M2CCs) framework for subspace learning. In the proposed framework,the input data of each original view are mapped into multiple higher dimensional feature spaces by multiple nonlinear mappings determined by different kernels. This makes M2 CC can discover multiple kinds of useful information of each original view in the feature spaces. With the framework, we further provide a specific multi-view feature learning method based on direct summation kernel strategy and its regularized version. The experimental results in visual recognition tasks demonstrate the effectiveness and robustness of the proposed method. 展开更多
关键词 image recognition CANONICAL CORRELATION multiple KERNEL LEARNING MULTI-VIEW data FEATURE LEARNING
原文传递
基于GMDE和MFO-MKELM算法的往复压缩机轴承故障诊断研究 被引量:2
14
作者 李彦阳 王金东 +1 位作者 宁留洋 马磊 《机械传动》 北大核心 2025年第2期170-176,共7页
【目的】针对往复压缩机轴承间隙振动信号呈现局部强非平稳性、非线性等特点,导致出现轴承故障特征提取困难、识别准确率不高等问题,提出了基于广义多尺度散布熵(Generalized Multi-scale Dispersal Entropy,GMDE)和飞蛾捕焰优化-多核... 【目的】针对往复压缩机轴承间隙振动信号呈现局部强非平稳性、非线性等特点,导致出现轴承故障特征提取困难、识别准确率不高等问题,提出了基于广义多尺度散布熵(Generalized Multi-scale Dispersal Entropy,GMDE)和飞蛾捕焰优化-多核极限学习机智能模型算法(Moth Flame Catching Optimization and Multiple Kernel Extreme Learning Machine,MFO-MKELM)的往复压缩机轴承故障诊断新方法。【方法】首先,针对多尺度散布熵在粗粒化过程中采用均值粗粒化方式、在一定程度“中和”了原始信号的动力学突变行为、降低了熵值分析准确性,提出了一种广义多尺度散布熵算法,并提取往复压缩机轴承间隙振动信号的故障特征;接着,将多项式核函数和改进高斯核函数进行线性组合,构建多核极限学习机智能识别算法,并针对提取的特征向量集进行了故障诊断研究。【结果】仿真结果表明,该诊断方法识别准确率达98.6%,实现了轴承不同种类故障的高效、智能诊断。 展开更多
关键词 往复压缩机 广义多尺度散布熵 飞蛾捕焰优化算法 多核极限学习机
在线阅读 下载PDF
融合多核学习和多源特征的胰腺囊性肿瘤分类方法
15
作者 武杰 徐真顺 +2 位作者 张志伟 田慧 边云 《数据采集与处理》 北大核心 2025年第1期247-257,共11页
胰腺囊性肿瘤的良恶性分类对于医学决策至关重要,本文致力于提高胰腺囊性肿瘤的分类准确性,以辅助医生更精确地制定诊疗方案。基于影像组学技术和ResNet50神经网络,提出了融合多核学习和多源特征的胰腺囊性肿瘤分类方法,其关键步骤包括... 胰腺囊性肿瘤的良恶性分类对于医学决策至关重要,本文致力于提高胰腺囊性肿瘤的分类准确性,以辅助医生更精确地制定诊疗方案。基于影像组学技术和ResNet50神经网络,提出了融合多核学习和多源特征的胰腺囊性肿瘤分类方法,其关键步骤包括特征筛选、核矩阵融合及构建分类模型。首先采用最小绝对收缩与选择算子(Least absolute shrinkage and selection operator,LASSO)进行特征筛选,减少冗余特征,提高模型的泛化能力;然后选取经过特征筛选的多源特征,通过在基础核函数中进行特征映射,构建多源特征的基础核矩阵,优化选取核矩阵的权重系数,并加权相加这些基础核矩阵以形成融合的核矩阵;最后,利用支持向量机(Support vector machine,SVM)分类器对胰腺浆液性和黏液性囊性肿瘤进行分类。这一过程的关键在于,SVM可以利用核矩阵在高维空间中内积,在高维空间中寻找一个超平面来分类数据,而融合的核矩阵中包含了经过特征映射的多源信息,可以提供更高维度和更复杂的特征表示。实验结果表明,该方法在胰腺囊性肿瘤良恶性分类任务中取得了显著的性能提升,可为医生提供更可靠的辅助信息,具有显著的临床应用潜力。 展开更多
关键词 胰腺囊性肿瘤 多核学习 多源特征 影像组学 深度学习
在线阅读 下载PDF
多尺度大核注意力遥感图像语义分割实验设计
16
作者 项学智 宁怡博 +2 位作者 王路 贲晛烨 乔玉龙 《实验室研究与探索》 北大核心 2025年第10期56-62,共7页
针对遥感图像语义分割任务中卷积神经网络(CNN)远程建模能力不足与Transformer计算复杂度过高的问题,提出一种基于多尺度大核注意力(MSLKA)的遥感图像语义分割网络MSLKASeg。MSLKA将多尺度机制与大核注意力(LKA)相结合,并引入门控机制... 针对遥感图像语义分割任务中卷积神经网络(CNN)远程建模能力不足与Transformer计算复杂度过高的问题,提出一种基于多尺度大核注意力(MSLKA)的遥感图像语义分割网络MSLKASeg。MSLKA将多尺度机制与大核注意力(LKA)相结合,并引入门控机制以抑制无关信息,能在保持较低复杂度的同时,生成多粒度级别的注意力图,从而有效聚合全局和局部信息。在两个典型数据集实验表明,所提方法取得了具有竞争力的结果。在ISPRS Vaihingen数据集上,mF1和mIoU得分分别达到了90.31%和82.73%;在LoveDA Urban数据集,mF1和mIoU得分分别为66.24%和50.41%。多场景实验结果表明,所提方法有效提升了遥感图像语义分割效果。 展开更多
关键词 遥感图像 语义分割 多尺度大核 大核注意力
在线阅读 下载PDF
基于混合核模糊熵的多类型数据属性约简算法
17
作者 贾润亮 张海玉 《计算机工程与设计》 北大核心 2025年第7期1864-1873,共10页
为解决模糊粗糙集属性约简中模糊相似关系运算的不合理性以及多类型数据的不适用性,提出一种基于混合核模糊熵的多类型数据属性约简算法。提出基于核函数的多类型属性模糊关系计算方法,称之为混合核函数度量,并构造出相应的模糊信息粒... 为解决模糊粗糙集属性约简中模糊相似关系运算的不合理性以及多类型数据的不适用性,提出一种基于混合核模糊熵的多类型数据属性约简算法。提出基于核函数的多类型属性模糊关系计算方法,称之为混合核函数度量,并构造出相应的模糊信息粒化模型;利用混合核函数度量进一步提出多类型数据的模糊互补信息熵模型和相关性质;利用模糊互补条件熵和模糊互补互信息熵,提出多类型数据信息系统的不确定性度量和属性约简。实验结果验证了所提出不确定性度量和属性约简方法在多类型数据上的有效性。 展开更多
关键词 模糊粗糙集 多类型属性 核函数 信息熵 条件熵 互信息熵 不确定性度量 属性约简
在线阅读 下载PDF
A photovoltaic array DC arc fault location method integrating MKDANN and SPA
18
作者 Chenye Huang Wei Gao +1 位作者 Chenhao Huang Liangshi Lin 《Global Energy Interconnection》 2025年第5期760-777,共18页
This paper proposes a fingerprint matching method integrating transfer learning and online learning to tackle the challenges of environmental adaptability and dynamic interference resistance in photovoltaic(PV)array D... This paper proposes a fingerprint matching method integrating transfer learning and online learning to tackle the challenges of environmental adaptability and dynamic interference resistance in photovoltaic(PV)array DC arc fault location methods based on electromagnetic radiation(EMR)signals.Initially,a comprehensive analysis of the time–frequency characteristics of series arc EMR signals is carried out to pinpoint effective data sources that reflect fault features.Subsequently,a multi-kernel domain-adversarial neural network(MKDANN)is introduced to extract domain-invariant features,and a feature extractor designed specifically for fingerprint matching is devised.To reduce inter-domain distribution differences,a multi-kernel maximum mean discrepancy(MK-MMD)is integrated into the adaptation layer.Moreover,to deal with dynamic environmental changes in real-world situations,the support-class passive aggressive(SPA)algorithm is utilized to adjust model parameters in real time.Finally,MKDANN and SPA technologies are smoothly combined to build a fully operational fault location model.Experimental results indicate that the proposed method attains an overall fault location accuracy of at least 95%,showing strong adaptability to environmental changes and robust interference resistance while maintaining excellent online learning capabilities during model migration. 展开更多
关键词 Photovoltaic array Arc fault location Support-class passive aggressive multi-kernel maximum mean discrepancy Fingerprint matching
在线阅读 下载PDF
基于可变核卷积和多尺度卷积注意力的生猪姿态识别研究
19
作者 王鲁 朱永泉 +2 位作者 王韵 刘瑞麟 唐辉 《山东农业科学》 北大核心 2025年第11期170-180,共11页
养猪业是我国农业领域的重要组成部分,近年来规模化养殖场发展迅速。生猪姿态改变往往预示着健康状况变化或疾病发生,因此,实时监测生猪姿态可以帮助养殖户掌握猪只生长发育和健康状况,及时调整养殖方案或采取疾病防治措施,从而提高养... 养猪业是我国农业领域的重要组成部分,近年来规模化养殖场发展迅速。生猪姿态改变往往预示着健康状况变化或疾病发生,因此,实时监测生猪姿态可以帮助养殖户掌握猪只生长发育和健康状况,及时调整养殖方案或采取疾病防治措施,从而提高养殖效益并保障最终的猪肉产品质量,同时还可为生猪养殖产业分析研究提供数据支持。传统的监测方法主要依靠养殖户不定期的肉眼观察,耗时费力且无法满足实时需求,不适合规模化养殖场使用。计算机视觉技术的发展为实现生猪姿态的实时监测提供了技术手段。本研究基于YOLOv8s模型进行改进,提出一种生猪姿态识别模型RMAK-YOLOv8s。主要从三个方面进行改进:一是通过结构重参数化改进主干网络的C2f模块,实现隐式特征复用,达到模型轻量化及检测速度提高的目的;二是添加多尺度卷积注意力机制,用于捕捉多尺度特征图,加强有效特征的权重比例;三是使用可变核卷积代替标准卷积,获得更有效的特征信息,为平衡网络开销和性能提供更多选择。实验结果表明,与原始模型YOLOv8s相比,RMAK-YOLOv8s的参数量减少10.77%,计算量减少5.23%,平均精度均值mAP@0.5、mAP@0.5∶0.95分别达到93.7%、78.5%,分别提高1.7、1.3个百分点,能精确识别生猪姿态,可为实时监测生猪姿态及后续行为分析和健康管理等提供技术支撑。 展开更多
关键词 生猪姿态识别 YOLOv8s 结构重参数化 多尺度卷积注意力 可变核卷积
在线阅读 下载PDF
基于多路径自适应信息增强的矿井图像超分辨率重建方法
20
作者 齐爱玲 付远远 张广明 《煤炭科学技术》 北大核心 2025年第11期172-184,共13页
煤矿井下环境复杂,光照条件差,高湿度与悬浮粉尘易形成水雾和辉光,导致高频信息缺失与边缘细节模糊,同时叠加噪声干扰。为提升矿井图像质量,解决矿井场景下超分辨率重建中噪声抑制与细节恢复的协同难题,提出一种基于多路径自适应信息增... 煤矿井下环境复杂,光照条件差,高湿度与悬浮粉尘易形成水雾和辉光,导致高频信息缺失与边缘细节模糊,同时叠加噪声干扰。为提升矿井图像质量,解决矿井场景下超分辨率重建中噪声抑制与细节恢复的协同难题,提出一种基于多路径自适应信息增强的矿井图像超分辨率重建方法。方法上,首先设计残差多路径特征聚集块(Residual Multi-path Feature Aggregation Block,RMFAB),通过残差学习和多路径自适应卷积网络(Multi-path Adaptive Convolution Network,MACN)充分利用不同路径的特征,增强全局与局部高频信息建模能力;其次,引入多注意力融合模块,在通道和空间维度聚焦图像中的高频信息,提升特征表达能力;最后,构建大核感知块(Large Kernel Perception Block,LKPA),利用多尺度卷积扩展感受野并实现层次特征融合,从而优化图像纹理与结构细节。实验在公开矿井数据集CMUID上开展,结果显示该算法在峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)和结构相似性(Structural Similarity,SSIM)指标上优于其他主流先进算法。尤其在缩放因子为4时,该算法在PSNR指标上较Bicubic、CRAFT-SR、PAN、ESRGCNN、DiVANet及SMAFNet分别提升2.88、2.04、1.94、1.52、0.53、0.36 dB;SSIM指标分别提升4.32%、3.37%、3.20%、2.74%、3.19%、1.08%。实验结果表明,该方法实现了对矿井图像多层次特征的精细化提取与融合,在抑制噪声干扰的同时有效恢复了复杂纹理特征,提升了矿井图像的超分辨率重建质量,为煤矿井下智能感知提供了技术支持。 展开更多
关键词 矿井图像 超分辨率重建 多路径自适应卷积 大核感知块 并联多注意力机制
在线阅读 下载PDF
上一页 1 2 45 下一页 到第
使用帮助 返回顶部