Integral reinforcement learning(IRL)is an effective tool for solving optimal control problems of nonlinear systems,and it has been widely utilized in optimal controller design for solving discrete-time nonlinearity.Ho...Integral reinforcement learning(IRL)is an effective tool for solving optimal control problems of nonlinear systems,and it has been widely utilized in optimal controller design for solving discrete-time nonlinearity.However,solving the Hamilton-Jacobi-Bellman(HJB)equations for nonlinear systems requires precise and complicated dynamics.Moreover,the research and application of IRL in continuous-time(CT)systems must be further improved.To develop the IRL of a CT nonlinear system,a data-based adaptive neural dynamic programming(ANDP)method is proposed to investigate the optimal control problem of uncertain CT multi-input systems such that the knowledge of the dynamics in the HJB equation is unnecessary.First,the multi-input model is approximated using a neural network(NN),which can be utilized to design an integral reinforcement signal.Subsequently,two criterion networks and one action network are constructed based on the integral reinforcement signal.A nonzero-sum Nash equilibrium can be reached by learning the optimal strategies of the multi-input model.In this scheme,the NN weights are constantly updated using an adaptive algorithm.The weight convergence and the system stability are analyzed in detail.The optimal control problem of a multi-input nonlinear CT system is effectively solved using the ANDP scheme,and the results are verified by a simulation study.展开更多
A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified ...A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multioutput kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well.展开更多
Both auto-power spectrum and cross-power spectrum need to be controlled in multi-input multi-output (MIMO) random vibration test. During the control process with the difference control algorithm (DCA), a lower tri...Both auto-power spectrum and cross-power spectrum need to be controlled in multi-input multi-output (MIMO) random vibration test. During the control process with the difference control algorithm (DCA), a lower triangular matrix is derived from Cholesky decomposition of a reference spectrum matrix. The diagonal elements of the lower triangular matrix (DELTM) may become negative. These negative values have no meaning in physical significance and can cause divergence of auto-power spectrum control. A proportional root mean square control algorithm (PRMSCA) provides another method to avoid the divergence caused by negative values of DELTM, but PRMSCA cannot control the cross-power spectrum. A new control algorithm named matrix power control algorithm (MPCA) is proposed in the paper. MPCA can guarantee that DELTM is always positive in the auto-power spectrum control. MPCA can also control the cross-power spectrum. After these three control algorithms are analyzed, three-input three-output random vibration control tests are implemented on a three-axis vibration shaker. The results show the validity of the proposed MPCA.展开更多
Noises always disturb the control effect of an environment test especially in multi-input multi-output(MIMO) systems. If the frequency response function matrices are ill-conditioned, the noises in the driving forces w...Noises always disturb the control effect of an environment test especially in multi-input multi-output(MIMO) systems. If the frequency response function matrices are ill-conditioned, the noises in the driving forces will be amplified and the response spectral lines may awfully exceed their tolerances. Most of the major biases between the response spectra and the reference spectra are produced by the amplified noises. However, ordinary control algorithms can hardly reduce the level of noises. The influences of the noises on both the auto- and cross-power spectra are analyzed in this paper. As a conventional frequency domain method on the inverse problem, the Tikhonov filter is adopted in the environment test to suppress the exceeding spectral lines. By altering regularization parameters gradually, the auto-power spectra can be improved in a closed control loop. Instead of using the traditional way of selecting regularization parameters, we observe the coherence change to estimate noise eliminations. Incidentally, the requirement of coherence control can be realized. The errors of the phase are then studied and a phase control algorithm is introduced at the end as a supplement of cross-power spectra control. The Tikhonov filter and the proposed phase control algorithm are tested numerically and experimentally. The results show that the noises in the vicinity of lightly damped resonant peaks are more stubborn. The response spectra are able to be greatly improved by the combination of these two methods.展开更多
This paper presents the design of decentralized repetitive control (RC) for multi-input multi-output (MIMO) systems. An optimization method is used to obtain a RC compensator that ensures system stability and good...This paper presents the design of decentralized repetitive control (RC) for multi-input multi-output (MIMO) systems. An optimization method is used to obtain a RC compensator that ensures system stability and good tracking performance. The designed compensator is in the form of a stable, low order, and causal filter, in which the compensator can be implemented separately without being merged with the RC internal model. This will reduce complexity in the implementation. Simulation results and comparison study are given to demonstrate the effectiveness of the proposed design. The novelty of design is also verified in experiments on a 2 degrees of freedom (DOF) robot.展开更多
Lookup table is widely used in automotive industry for the design of engine control units(ECU).Together with a proportional-integral controller,a feed-forward and feedback control scheme is often adopted for automotiv...Lookup table is widely used in automotive industry for the design of engine control units(ECU).Together with a proportional-integral controller,a feed-forward and feedback control scheme is often adopted for automotive engine management system(EMS).Usually,an ECU has a structure of multi-input and single-output(MISO).Therefore,if there are multiple objectives proposed in EMS,there would be corresponding numbers of ECUs that need to be designed.In this situation,huge efforts and time were spent on calibration.In this work,a multi-input and multi-out(MIMO) approach based on model predictive control(MPC) was presented for the automatic cruise system of automotive engine.The results show that the tracking of engine speed command and the regulation of air/fuel ratio(AFR) can be achieved simultaneously under the new scheme.The mean absolute error(MAE) for engine speed control is 0.037,and the MAE for air fuel ratio is 0.069.展开更多
A form of iterative learning control (ILC) is used to update the set-point for the local controller. It is referred to as set-point-related (SPR) indirect ILC. SPR indirect ILC has shown excellent performance: as a su...A form of iterative learning control (ILC) is used to update the set-point for the local controller. It is referred to as set-point-related (SPR) indirect ILC. SPR indirect ILC has shown excellent performance: as a supervision module for the local controller, ILC can improve the tracking performance of the closed-loop system along the batch direction. In this study, an ILC-based P-type controller is proposed for multi-input multi-output (MIMO) linear batch processes, where a P-type controller is used to design the control signal directly and an ILC module is used to update the set-point for the P-type controller. Under the proposed ILC-based P-type controller, the closed-loop system can be transformed to a 2-dimensional (2D) Roesser s system. Based on the 2D system framework, a sufficient condition for asymptotic stability of the closed-loop system is derived in this paper. In terms of the average tracking error (ATE), the closed-loop control performance under the proposed algorithm can be improved from batch to batch, even though there are repetitive disturbances. A numerical example is used to validate the proposed results.展开更多
A novel nonlinear multi-input multi-output MIMO detection algorithm is proposed which is referred to as an ordered successive noise projection cancellation OSNPC algorithm. It is capable of improving the computation p...A novel nonlinear multi-input multi-output MIMO detection algorithm is proposed which is referred to as an ordered successive noise projection cancellation OSNPC algorithm. It is capable of improving the computation performance of the MIMO detector with the conventional ordered successive interference cancellation OSIC algorithm. In contrast to the OSIC in which the known interferences in the input signal vector are successively cancelled the OSNPC successively cancels the known noise projections from the decision statistic vector. Analysis indicates that the OSNPC is equivalent to the OSIC in error performance but it has significantly less complexity in computation.Furthermore when the OSNPC is applied to the MIMO detection with the preprocessing of dual lattice reduction DLR the computational complexity of the proposed OSNPC-based DLR-aided detector is further reduced due to the avoidance of the inverse of the reduced basis of the dual lattice in computation compared to that of the OSIC-based one. Simulation results validate the theoretical conclusions with regard to both the performance and complexity of the proposed MIMO detection scheme.展开更多
The FRF estimator based on the errors-in-variables(EV)model of multi-input multi-output(MIMO)system is presented to reduce the bias error of FRF HI estimator.The FRF HI estimator is influenced by the noises in the inp...The FRF estimator based on the errors-in-variables(EV)model of multi-input multi-output(MIMO)system is presented to reduce the bias error of FRF HI estimator.The FRF HI estimator is influenced by the noises in the inputs of the system and generates an under-estimation of the true FRF.The FRF estimator based on the EV model takes into account the errors in both the inputs and outputs of the system and would lead to more accurate FRF estimation.The FRF estimator based on the EV model is applied to the waveform replication on the 6-DOF(degree-of-freedom)hydraulic vibration table.The result shows that it is favorable to improve the control precision of the MIMO vibration control system.展开更多
A new methodology for multi-step-ahead forecasting was proposed herein which combined the wavelet transform(WT), artificial neural network(ANN) and forecasting strategies based on the changing characteristics of avail...A new methodology for multi-step-ahead forecasting was proposed herein which combined the wavelet transform(WT), artificial neural network(ANN) and forecasting strategies based on the changing characteristics of available parking spaces(APS). First, several APS time series were decomposed and reconstituted by the wavelet transform. Then, using an artificial neural network, the following five strategies for multi-step-ahead time series forecasting were used to forecast the reconstructed time series: recursive strategy, direct strategy, multi-input multi-output(MIMO) strategy, DIRMO strategy(a combination of the direct and MIMO strategies), and newly proposed recursive multi-input multi-output(RECMO) strategy which is a combination of the recursive and MIMO strategies. Finally, integrating the predicted results with the reconstructed time series produced the final forecasted available parking spaces. Three findings appear to be consistently supported by the experimental results. First, applying the wavelet transform to multi-step ahead available parking spaces forecasting can effectively improve the forecasting accuracy. Second, the forecasting resulted from the DIRMO and RECMO strategies is more accurate than that of the other strategies. Finally, the RECMO strategy requires less model training time than the DIRMO strategy and consumes the least amount of training time among five forecasting strategies.展开更多
In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-s...In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-sensor technique becomes an indispensable method to implement real-time quality control. In this article, a new model of multi-inputs multi-outputs (MIMO) soft-sensor, which is constructed based on hybrid modeling technique, is proposed for these interactional variables. Data-driven modeling method and simplified first principle modelingmethod are combined in this model. Data-driven modeling method based on limited memory partial least squares(LM-PLS) al.gorithm is used to build soft-senor models for some secondary variables.then, the simplified first principle model is used to compute three primary variables on line. The proposed model has been used in practicalprocess; the results indicate that the proposed model is precise and efficient, and it is possible to realize on line quality control for compound fertilizer process.展开更多
In this paper, a novel real time non-linear model predictive controller(NMPC) for a multi-variable coupled tank system(CTS) is designed. CTSs are highly non-linear and can be found in many industrial process applicati...In this paper, a novel real time non-linear model predictive controller(NMPC) for a multi-variable coupled tank system(CTS) is designed. CTSs are highly non-linear and can be found in many industrial process applications. The involvement of multi-input multi-output(MIMO) system makes the design of an effective controller a challenging task. MIMO systems have inherent couplings,interactions in-between the process input-output variables and generally have an complex internal structure. The aim of this paper is to design, simulate, and implement a novel real time constrained NMPC for a multi-variable CTS with the aid of intelligent system techniques. There are two major formidable challenges hindering the success of the implementation of a NMPC strategy in the MIMO case. The first is the difficulty of obtaining a good non-linear model by training a non-convex complex network to avoid being trapped in a local minimum solution. The second is the online real time optimisation(RTO) of the manipulated variable at every sampling time.A novel wavelet neural network(WNN) with high predicting precision and time-frequency localisation characteristic was selected for an MIMO model and a fast stochastic wavelet gradient algorithm was used for initial training of the network. Furthermore, a genetic algorithm was used to obtain the optimised parameters of the WNN as well as the RTO during the NMPC strategy. The proposed strategy performed well in both simulation and real time on an MIMO CTS. The results indicated that WNN provided better trajectory regulation with less mean-squared-error and average control energy compared to an artificial neural network. It is also shown that the WNN is more robust during abnormal operating conditions.展开更多
Based on the array architecture of multiple transmitting/receiving antennas, Multi-Input Multi-Output (MIMO) radar provides a new mechanism for radar imaging technology. In order to explore the processing approach to ...Based on the array architecture of multiple transmitting/receiving antennas, Multi-Input Multi-Output (MIMO) radar provides a new mechanism for radar imaging technology. In order to explore the processing approach to this imaging mechanism, the two dimensional (2D) imaging model of MIMO radar is established first, and the spatial sampling ability is analyzed from the concept of spatial convolution of the antenna elements. The target spatial spectral filling format of MIMO radar with monochromatic transmitting signal is described. High-resolution imaging capability of MIMO radar is analyzed according to spatial spectral coverage and the corresponding imaging algorithm is presented. Finally, field imaging experiment is used to demonstrate the superior imaging performance of MIMO radar.展开更多
In this paper a method that combines transmit antenna selection and reduced-constellation detection in spatially correlated Multi-Input Multi-Output (MIMO) fading channels is presented. To mitigate the performance d...In this paper a method that combines transmit antenna selection and reduced-constellation detection in spatially correlated Multi-Input Multi-Output (MIMO) fading channels is presented. To mitigate the performance degradation caused by the use of antenna selection that is based on correlation among columns, an iterative receiver scheme that uses only a subset of the constellation points close to the expected symbol vahle estimated in the previous iteration is proposed. The size of the subset can adapt to the maximum correlation of the sub-matrix after the simple antenna selection. Furthermore, the error rate performance of the scheme under linear Miniinutn Mean Square Error (MMSE) or Ordered Successive Interference Cancellation (OSIC) for the first run detection and different interleaver lengths is investigated while the transnlit antenna selection is considered. The simulation results show a significant advantage both for implementation complexity and for error rate performance under a fixed data rate.展开更多
An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the no...An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the nonlinear system and a recurrent neural network to minimize the difference between the linear model and the real nonlinear system. Because the current control input is not included in the input vector of recurrent neural network (RNN), the inverse control law can be calculated directly. This scheme can be used in real-time nonlinear single-input single-output (SISO) and multi-input multi-output (MIMO) system control with less computation work. Simulation studies have shown that this scheme is simple and affects good control accuracy and robustness.展开更多
Precoding methods at the Base Station (BS) can be used to deal with the inter-cell interference and improve the signal quality of the user especially at the cell edge. In this paper, a novel Zero-Forcing (ZF) precodin...Precoding methods at the Base Station (BS) can be used to deal with the inter-cell interference and improve the signal quality of the user especially at the cell edge. In this paper, a novel Zero-Forcing (ZF) precoding method is proposed and investigated for multi-cell Multi-Input Multi-Output (MIMO) systems. We propose a relaxed ZF precoding method by relaxing the ZF criterion to some degree so that the inter-cell interference may not be zero. Complexity analysis shows that compared with the conventional ZF method, the additional computation complexity for the proposed method is trivial. Simulation results show that the proposed relaxed ZF method has better performance than the conventional ZF method in terms of the sum-rate, especially at low Signal to Noise Ratio (SNR).展开更多
Sliding mode control(SMC) becomes a common tool in designing robust nonlinear control systems, due to its inherent characteristics such as insensitivity to system uncertainties and fast dynamic response.Two modes are ...Sliding mode control(SMC) becomes a common tool in designing robust nonlinear control systems, due to its inherent characteristics such as insensitivity to system uncertainties and fast dynamic response.Two modes are involved in the SMC operation, namely reaching mode and sliding mode.In the reaching mode, the system state is forced to reach the sliding surface in a finite time.The major drawback of the SMC approach is the occurrence of chattering in the sliding mode, which is undesirable in most applications.Generally, the trade-off between chattering reduction and fast reaching time must be considered in the conventional SMC design.This paper proposes SMC design with a novel reaching law called the exponential rate reaching law(ERRL) to reduce chattering, and the control structure of the converter is designed based on the multiinput SMC that is applied to a three-phase AC/DC power converter.The simulation and experimental results show the effectiveness of the proposed technique.展开更多
文摘Integral reinforcement learning(IRL)is an effective tool for solving optimal control problems of nonlinear systems,and it has been widely utilized in optimal controller design for solving discrete-time nonlinearity.However,solving the Hamilton-Jacobi-Bellman(HJB)equations for nonlinear systems requires precise and complicated dynamics.Moreover,the research and application of IRL in continuous-time(CT)systems must be further improved.To develop the IRL of a CT nonlinear system,a data-based adaptive neural dynamic programming(ANDP)method is proposed to investigate the optimal control problem of uncertain CT multi-input systems such that the knowledge of the dynamics in the HJB equation is unnecessary.First,the multi-input model is approximated using a neural network(NN),which can be utilized to design an integral reinforcement signal.Subsequently,two criterion networks and one action network are constructed based on the integral reinforcement signal.A nonzero-sum Nash equilibrium can be reached by learning the optimal strategies of the multi-input model.In this scheme,the NN weights are constantly updated using an adaptive algorithm.The weight convergence and the system stability are analyzed in detail.The optimal control problem of a multi-input nonlinear CT system is effectively solved using the ANDP scheme,and the results are verified by a simulation study.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX17_0234)
文摘A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multioutput kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well.
基金National Natural Science Foundation of China (10972104) The Fundamental Research Funds for NUAA(NS2010007)
文摘Both auto-power spectrum and cross-power spectrum need to be controlled in multi-input multi-output (MIMO) random vibration test. During the control process with the difference control algorithm (DCA), a lower triangular matrix is derived from Cholesky decomposition of a reference spectrum matrix. The diagonal elements of the lower triangular matrix (DELTM) may become negative. These negative values have no meaning in physical significance and can cause divergence of auto-power spectrum control. A proportional root mean square control algorithm (PRMSCA) provides another method to avoid the divergence caused by negative values of DELTM, but PRMSCA cannot control the cross-power spectrum. A new control algorithm named matrix power control algorithm (MPCA) is proposed in the paper. MPCA can guarantee that DELTM is always positive in the auto-power spectrum control. MPCA can also control the cross-power spectrum. After these three control algorithms are analyzed, three-input three-output random vibration control tests are implemented on a three-axis vibration shaker. The results show the validity of the proposed MPCA.
基金supported by the Fundamental Research Funds for the Central Universities (No. NS2015008)the corresponding work was performed in the State Key Laboratory of Mechanics and Control of Mechanical Structures
文摘Noises always disturb the control effect of an environment test especially in multi-input multi-output(MIMO) systems. If the frequency response function matrices are ill-conditioned, the noises in the driving forces will be amplified and the response spectral lines may awfully exceed their tolerances. Most of the major biases between the response spectra and the reference spectra are produced by the amplified noises. However, ordinary control algorithms can hardly reduce the level of noises. The influences of the noises on both the auto- and cross-power spectra are analyzed in this paper. As a conventional frequency domain method on the inverse problem, the Tikhonov filter is adopted in the environment test to suppress the exceeding spectral lines. By altering regularization parameters gradually, the auto-power spectra can be improved in a closed control loop. Instead of using the traditional way of selecting regularization parameters, we observe the coherence change to estimate noise eliminations. Incidentally, the requirement of coherence control can be realized. The errors of the phase are then studied and a phase control algorithm is introduced at the end as a supplement of cross-power spectra control. The Tikhonov filter and the proposed phase control algorithm are tested numerically and experimentally. The results show that the noises in the vicinity of lightly damped resonant peaks are more stubborn. The response spectra are able to be greatly improved by the combination of these two methods.
文摘This paper presents the design of decentralized repetitive control (RC) for multi-input multi-output (MIMO) systems. An optimization method is used to obtain a RC compensator that ensures system stability and good tracking performance. The designed compensator is in the form of a stable, low order, and causal filter, in which the compensator can be implemented separately without being merged with the RC internal model. This will reduce complexity in the implementation. Simulation results and comparison study are given to demonstrate the effectiveness of the proposed design. The novelty of design is also verified in experiments on a 2 degrees of freedom (DOF) robot.
基金Project supported by the Centre for Smart Grid and Information Convergence(CeSGIC)at Xi’an Jiaotong-Liverpool University,China
文摘Lookup table is widely used in automotive industry for the design of engine control units(ECU).Together with a proportional-integral controller,a feed-forward and feedback control scheme is often adopted for automotive engine management system(EMS).Usually,an ECU has a structure of multi-input and single-output(MISO).Therefore,if there are multiple objectives proposed in EMS,there would be corresponding numbers of ECUs that need to be designed.In this situation,huge efforts and time were spent on calibration.In this work,a multi-input and multi-out(MIMO) approach based on model predictive control(MPC) was presented for the automatic cruise system of automotive engine.The results show that the tracking of engine speed command and the regulation of air/fuel ratio(AFR) can be achieved simultaneously under the new scheme.The mean absolute error(MAE) for engine speed control is 0.037,and the MAE for air fuel ratio is 0.069.
基金supported by National Natural Science Foundation of China (No. 60874116)Natural Science Foundation of Hebei Province (No. F2009000857)
文摘A form of iterative learning control (ILC) is used to update the set-point for the local controller. It is referred to as set-point-related (SPR) indirect ILC. SPR indirect ILC has shown excellent performance: as a supervision module for the local controller, ILC can improve the tracking performance of the closed-loop system along the batch direction. In this study, an ILC-based P-type controller is proposed for multi-input multi-output (MIMO) linear batch processes, where a P-type controller is used to design the control signal directly and an ILC module is used to update the set-point for the P-type controller. Under the proposed ILC-based P-type controller, the closed-loop system can be transformed to a 2-dimensional (2D) Roesser s system. Based on the 2D system framework, a sufficient condition for asymptotic stability of the closed-loop system is derived in this paper. In terms of the average tracking error (ATE), the closed-loop control performance under the proposed algorithm can be improved from batch to batch, even though there are repetitive disturbances. A numerical example is used to validate the proposed results.
基金The National Science and Technology Major Project(No.2012ZX03004005-003)the National Natural Science Foundation of China(No.61171081,61201175)the Innovation Technology Fund of Jiangsu Province(No.BC2012006)
文摘A novel nonlinear multi-input multi-output MIMO detection algorithm is proposed which is referred to as an ordered successive noise projection cancellation OSNPC algorithm. It is capable of improving the computation performance of the MIMO detector with the conventional ordered successive interference cancellation OSIC algorithm. In contrast to the OSIC in which the known interferences in the input signal vector are successively cancelled the OSNPC successively cancels the known noise projections from the decision statistic vector. Analysis indicates that the OSNPC is equivalent to the OSIC in error performance but it has significantly less complexity in computation.Furthermore when the OSNPC is applied to the MIMO detection with the preprocessing of dual lattice reduction DLR the computational complexity of the proposed OSNPC-based DLR-aided detector is further reduced due to the avoidance of the inverse of the reduced basis of the dual lattice in computation compared to that of the OSIC-based one. Simulation results validate the theoretical conclusions with regard to both the performance and complexity of the proposed MIMO detection scheme.
基金This project is supported by Program for New Century Excellent Talents in University,China(No.NCET-04-0325).
文摘The FRF estimator based on the errors-in-variables(EV)model of multi-input multi-output(MIMO)system is presented to reduce the bias error of FRF HI estimator.The FRF HI estimator is influenced by the noises in the inputs of the system and generates an under-estimation of the true FRF.The FRF estimator based on the EV model takes into account the errors in both the inputs and outputs of the system and would lead to more accurate FRF estimation.The FRF estimator based on the EV model is applied to the waveform replication on the 6-DOF(degree-of-freedom)hydraulic vibration table.The result shows that it is favorable to improve the control precision of the MIMO vibration control system.
基金Project(51561135003)supported by the International Cooperation and Exchange of the National Natural Science Foundation of ChinaProject(51338003)supported by the Key Project of National Natural Science Foundation of China
文摘A new methodology for multi-step-ahead forecasting was proposed herein which combined the wavelet transform(WT), artificial neural network(ANN) and forecasting strategies based on the changing characteristics of available parking spaces(APS). First, several APS time series were decomposed and reconstituted by the wavelet transform. Then, using an artificial neural network, the following five strategies for multi-step-ahead time series forecasting were used to forecast the reconstructed time series: recursive strategy, direct strategy, multi-input multi-output(MIMO) strategy, DIRMO strategy(a combination of the direct and MIMO strategies), and newly proposed recursive multi-input multi-output(RECMO) strategy which is a combination of the recursive and MIMO strategies. Finally, integrating the predicted results with the reconstructed time series produced the final forecasted available parking spaces. Three findings appear to be consistently supported by the experimental results. First, applying the wavelet transform to multi-step ahead available parking spaces forecasting can effectively improve the forecasting accuracy. Second, the forecasting resulted from the DIRMO and RECMO strategies is more accurate than that of the other strategies. Finally, the RECMO strategy requires less model training time than the DIRMO strategy and consumes the least amount of training time among five forecasting strategies.
基金Supported by the National Natural Science Foundation of China (No.60421002) and the New Century 151 Talent Project of Zhejiang Province.
文摘In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-sensor technique becomes an indispensable method to implement real-time quality control. In this article, a new model of multi-inputs multi-outputs (MIMO) soft-sensor, which is constructed based on hybrid modeling technique, is proposed for these interactional variables. Data-driven modeling method and simplified first principle modelingmethod are combined in this model. Data-driven modeling method based on limited memory partial least squares(LM-PLS) al.gorithm is used to build soft-senor models for some secondary variables.then, the simplified first principle model is used to compute three primary variables on line. The proposed model has been used in practicalprocess; the results indicate that the proposed model is precise and efficient, and it is possible to realize on line quality control for compound fertilizer process.
基金supported by Petroleum Training Development Fund,Nigeria
文摘In this paper, a novel real time non-linear model predictive controller(NMPC) for a multi-variable coupled tank system(CTS) is designed. CTSs are highly non-linear and can be found in many industrial process applications. The involvement of multi-input multi-output(MIMO) system makes the design of an effective controller a challenging task. MIMO systems have inherent couplings,interactions in-between the process input-output variables and generally have an complex internal structure. The aim of this paper is to design, simulate, and implement a novel real time constrained NMPC for a multi-variable CTS with the aid of intelligent system techniques. There are two major formidable challenges hindering the success of the implementation of a NMPC strategy in the MIMO case. The first is the difficulty of obtaining a good non-linear model by training a non-convex complex network to avoid being trapped in a local minimum solution. The second is the online real time optimisation(RTO) of the manipulated variable at every sampling time.A novel wavelet neural network(WNN) with high predicting precision and time-frequency localisation characteristic was selected for an MIMO model and a fast stochastic wavelet gradient algorithm was used for initial training of the network. Furthermore, a genetic algorithm was used to obtain the optimised parameters of the WNN as well as the RTO during the NMPC strategy. The proposed strategy performed well in both simulation and real time on an MIMO CTS. The results indicated that WNN provided better trajectory regulation with less mean-squared-error and average control energy compared to an artificial neural network. It is also shown that the WNN is more robust during abnormal operating conditions.
文摘Based on the array architecture of multiple transmitting/receiving antennas, Multi-Input Multi-Output (MIMO) radar provides a new mechanism for radar imaging technology. In order to explore the processing approach to this imaging mechanism, the two dimensional (2D) imaging model of MIMO radar is established first, and the spatial sampling ability is analyzed from the concept of spatial convolution of the antenna elements. The target spatial spectral filling format of MIMO radar with monochromatic transmitting signal is described. High-resolution imaging capability of MIMO radar is analyzed according to spatial spectral coverage and the corresponding imaging algorithm is presented. Finally, field imaging experiment is used to demonstrate the superior imaging performance of MIMO radar.
基金Supported by the National Natural Science Foundation of China (No.60496311)China High-Tech 863 Plan (No.2006AA01Z264).
文摘In this paper a method that combines transmit antenna selection and reduced-constellation detection in spatially correlated Multi-Input Multi-Output (MIMO) fading channels is presented. To mitigate the performance degradation caused by the use of antenna selection that is based on correlation among columns, an iterative receiver scheme that uses only a subset of the constellation points close to the expected symbol vahle estimated in the previous iteration is proposed. The size of the subset can adapt to the maximum correlation of the sub-matrix after the simple antenna selection. Furthermore, the error rate performance of the scheme under linear Miniinutn Mean Square Error (MMSE) or Ordered Successive Interference Cancellation (OSIC) for the first run detection and different interleaver lengths is investigated while the transnlit antenna selection is considered. The simulation results show a significant advantage both for implementation complexity and for error rate performance under a fixed data rate.
基金Supported by the National Natural Science Foundation of China (60575009, 60574036)
文摘An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the nonlinear system and a recurrent neural network to minimize the difference between the linear model and the real nonlinear system. Because the current control input is not included in the input vector of recurrent neural network (RNN), the inverse control law can be calculated directly. This scheme can be used in real-time nonlinear single-input single-output (SISO) and multi-input multi-output (MIMO) system control with less computation work. Simulation studies have shown that this scheme is simple and affects good control accuracy and robustness.
基金Supported by Shantou Youth Scientific Research Fund(No.YR11002)Distinguished Youth Fund in Higher Education of Guangdong Province(No.2012LYM_0064)
文摘Precoding methods at the Base Station (BS) can be used to deal with the inter-cell interference and improve the signal quality of the user especially at the cell edge. In this paper, a novel Zero-Forcing (ZF) precoding method is proposed and investigated for multi-cell Multi-Input Multi-Output (MIMO) systems. We propose a relaxed ZF precoding method by relaxing the ZF criterion to some degree so that the inter-cell interference may not be zero. Complexity analysis shows that compared with the conventional ZF method, the additional computation complexity for the proposed method is trivial. Simulation results show that the proposed relaxed ZF method has better performance than the conventional ZF method in terms of the sum-rate, especially at low Signal to Noise Ratio (SNR).
文摘Sliding mode control(SMC) becomes a common tool in designing robust nonlinear control systems, due to its inherent characteristics such as insensitivity to system uncertainties and fast dynamic response.Two modes are involved in the SMC operation, namely reaching mode and sliding mode.In the reaching mode, the system state is forced to reach the sliding surface in a finite time.The major drawback of the SMC approach is the occurrence of chattering in the sliding mode, which is undesirable in most applications.Generally, the trade-off between chattering reduction and fast reaching time must be considered in the conventional SMC design.This paper proposes SMC design with a novel reaching law called the exponential rate reaching law(ERRL) to reduce chattering, and the control structure of the converter is designed based on the multiinput SMC that is applied to a three-phase AC/DC power converter.The simulation and experimental results show the effectiveness of the proposed technique.