期刊文献+
共找到447篇文章
< 1 2 23 >
每页显示 20 50 100
Optimizing Fine-Tuning in Quantized Language Models:An In-Depth Analysis of Key Variables
1
作者 Ao Shen Zhiquan Lai +1 位作者 Dongsheng Li Xiaoyu Hu 《Computers, Materials & Continua》 SCIE EI 2025年第1期307-325,共19页
Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in speci... Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in specific tasks with reduced training costs,the substantial memory requirements during fine-tuning present a barrier to broader deployment.Parameter-Efficient Fine-Tuning(PEFT)techniques,such as Low-Rank Adaptation(LoRA),and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency.Among these,QLoRA,which combines PEFT and quantization,has demonstrated notable success in reducing memory footprints during fine-tuning,prompting the development of various QLoRA variants.Despite these advancements,the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored.This study presents a comprehensive analysis of these key variables,focusing on their influence across different layer types and depths within LLM architectures.Our investigation uncovers several critical findings:(1)Larger layers,such as MLP layers,can maintain performance despite reductions in adapter rank,while smaller layers,like self-attention layers,aremore sensitive to such changes;(2)The effectiveness of balancing factors depends more on specific values rather than layer type or depth;(3)In quantization-aware fine-tuning,larger layers can effectively utilize smaller adapters,whereas smaller layers struggle to do so.These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs.Moreover,for the same discount of trainable parameters,reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one.This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments. 展开更多
关键词 Large-scale Language model Parameter-Efficient Fine-Tuning parameter quantization key variable trainable parameters experimental analysis
在线阅读 下载PDF
A Novel Quantization and Model Compression Approach for Hardware Accelerators in Edge Computing
2
作者 Fangzhou He Ke Ding +3 位作者 DingjiangYan Jie Li Jiajun Wang Mingzhe Chen 《Computers, Materials & Continua》 SCIE EI 2024年第8期3021-3045,共25页
Massive computational complexity and memory requirement of artificial intelligence models impede their deploy-ability on edge computing devices of the Internet of Things(IoT).While Power-of-Two(PoT)quantization is pro... Massive computational complexity and memory requirement of artificial intelligence models impede their deploy-ability on edge computing devices of the Internet of Things(IoT).While Power-of-Two(PoT)quantization is pro-posed to improve the efficiency for edge inference of Deep Neural Networks(DNNs),existing PoT schemes require a huge amount of bit-wise manipulation and have large memory overhead,and their efficiency is bounded by the bottleneck of computation latency and memory footprint.To tackle this challenge,we present an efficient inference approach on the basis of PoT quantization and model compression.An integer-only scalar PoT quantization(IOS-PoT)is designed jointly with a distribution loss regularizer,wherein the regularizer minimizes quantization errors and training disturbances.Additionally,two-stage model compression is developed to effectively reduce memory requirement,and alleviate bandwidth usage in communications of networked heterogenous learning systems.The product look-up table(P-LUT)inference scheme is leveraged to replace bit-shifting with only indexing and addition operations for achieving low-latency computation and implementing efficient edge accelerators.Finally,comprehensive experiments on Residual Networks(ResNets)and efficient architectures with Canadian Institute for Advanced Research(CIFAR),ImageNet,and Real-world Affective Faces Database(RAF-DB)datasets,indicate that our approach achieves 2×∼10×improvement in the reduction of both weight size and computation cost in comparison to state-of-the-art methods.A P-LUT accelerator prototype is implemented on the Xilinx KV260 Field Programmable Gate Array(FPGA)platform for accelerating convolution operations,with performance results showing that P-LUT reduces memory footprint by 1.45×,achieves more than 3×power efficiency and 2×resource efficiency,compared to the conventional bit-shifting scheme. 展开更多
关键词 Edge computing model compression hardware accelerator power-of-two quantization
在线阅读 下载PDF
BER performance analysis of non-Hermitian symmetry OFDM-VLC systems with ADC quantization noise
3
作者 WANG Zhongpeng AI Caihua ZHANG Lijuan 《Optoelectronics Letters》 2025年第11期677-683,共7页
Quantization noise caused by analog-to-digital converter(ADC)gives rise to the reliability performance degradation of communication systems.In this paper,a quantized non-Hermitian symmetry(NHS)orthogonal frequency-div... Quantization noise caused by analog-to-digital converter(ADC)gives rise to the reliability performance degradation of communication systems.In this paper,a quantized non-Hermitian symmetry(NHS)orthogonal frequency-division multiplexing-based visible light communication(OFDM-VLC)system is presented.In order to analyze the effect of the resolution of ADC on NHS OFDM-VLC,a quantized mathematical model of NHS OFDM-VLC is established.Based on the proposed quantized model,a closed-form bit error rate(BER)expression is derived.The theoretical analysis and simulation results both confirm the effectiveness of the obtained BER formula in high-resolution ADC.In addition,channel coding is helpful in compensating for the BER performance loss due to the utilization of lower resolution ADC. 展开更多
关键词 quantized modela communication systemsin Bit Error Rate quantized mathematical model reliability performance degradation non hermitian symmetry ADC quantization OFDM VLC
原文传递
Optimizing BERT for Bengali Emotion Classification: Evaluating Knowledge Distillation, Pruning, and Quantization
4
作者 Md Hasibur Rahman Mohammed Arif Uddin +1 位作者 Zinnat Fowzia Ria Rashedur M.Rahman 《Computer Modeling in Engineering & Sciences》 2025年第2期1637-1666,共30页
The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text classificati... The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text classification.However,BERT’s size and computational demands limit its practicality,especially in resource-constrained settings.This research compresses the BERT base model for Bengali emotion classification through knowledge distillation(KD),pruning,and quantization techniques.Despite Bengali being the sixth most spoken language globally,NLP research in this area is limited.Our approach addresses this gap by creating an efficient BERT-based model for Bengali text.We have explored 20 combinations for KD,quantization,and pruning,resulting in improved speedup,fewer parameters,and reduced memory size.Our best results demonstrate significant improvements in both speed and efficiency.For instance,in the case of mBERT,we achieved a 3.87×speedup and 4×compression ratio with a combination of Distil+Prune+Quant that reduced parameters from 178 to 46 M,while the memory size decreased from 711 to 178 MB.These results offer scalable solutions for NLP tasks in various languages and advance the field of model compression,making these models suitable for real-world applications in resource-limited environments. 展开更多
关键词 Bengali NLP black-box distillation emotion classification model compression post-training quantization unstructured pruning
在线阅读 下载PDF
Relativistic two-fluid hydrodynamics with quantized vorticity from the nonlinear Klein-Gordon equation
5
作者 Chi Xiong Kerson Huang 《Communications in Theoretical Physics》 2025年第2期159-169,共11页
We consider a relativistic two-fluid model of superfluidity,in which the superfluid is described by an order parameter that is a complex scalar field satisfying the nonlinear Klein-Gordon equation(NLKG).The coupling t... We consider a relativistic two-fluid model of superfluidity,in which the superfluid is described by an order parameter that is a complex scalar field satisfying the nonlinear Klein-Gordon equation(NLKG).The coupling to the normal fluid is introduced via a covariant current-current interaction,which results in the addition of an effective potential,whose imaginary part describes particle transfer between superfluid and normal fluid.Quantized vorticity arises in a class of singular solutions and the related vortex dynamics is incorporated in the modified NLKG,facilitating numerical analysis which is usually very complicated in the phenomenology of vortex filaments.The dual transformation to a string theory description(Kalb-Ramond)of quantum vorticity,the Magnus force,and the mutual friction between quantized vortices and normal fluid are also studied. 展开更多
关键词 relativistic superfluidity nonlinear Klein-Gordon field theory quantized vortices two-fluid model Kalb-Ramond field global string
原文传递
T-S-fuzzy-model-based quantized control for nonlinear networked control systems
6
作者 褚红燕 费树岷 +1 位作者 陈海霞 翟军勇 《Journal of Southeast University(English Edition)》 EI CAS 2010年第1期137-141,共5页
In order to overcome data-quantization, networked-induced delay, network packet dropouts and wrong sequences in the nonlinear networked control system, a novel nonlinear networked control system model is built by the ... In order to overcome data-quantization, networked-induced delay, network packet dropouts and wrong sequences in the nonlinear networked control system, a novel nonlinear networked control system model is built by the T-S fuzzy method. Two time-varying quantizers are added in the model. The key analysis steps in the method are to construct an improved interval-delay-dependent Lyapunov functional and to introduce the free-weighting matrix. By making use of the parallel distributed compensation technology and the convexity of the matrix function, the improved criteria of the stabilization and stability are obtained. Simulation experiments show that the parameters of the controllers and quantizers satisfying a certain performance can be obtained by solving a set of LMIs. The application of the nonlinear mass-spring system is provided to show that the proposed method is effective. 展开更多
关键词 T-S fuzzy model linear matrix inequalities(LMIs) quantizers
在线阅读 下载PDF
Establishing formal state space models via quantization forquantum control systems 被引量:2
7
作者 DongDaoyi ChenZonghai 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期398-402,共5页
Formal state space models of quantum control systems are deduced and a scheme to establish formal state space models via quantization could been obtained for quantum control systems is proposed. State evolution of qua... Formal state space models of quantum control systems are deduced and a scheme to establish formal state space models via quantization could been obtained for quantum control systems is proposed. State evolution of quantum control systems must accord with Schrdinger equations, so it is foremost to obtain Hamiltonian operators of systems. There are corresponding relations between operators of quantum systems and corresponding physical quantities of classical systems, such as momentum, energy and Hamiltonian, so Schrdinger equation models of corresponding quantum control systems via quantization could been obtained from classical control systems, and then establish formal state space models through the suitable transformation from Schrdinger equations for these quantum control systems. This method provides a new kind of path for modeling in quantum control. 展开更多
关键词 quantum control systems formal state space models quantization.
在线阅读 下载PDF
Pattern-Moving-Based Parameter Identification of Output Error Models with Multi-Threshold Quantized Observations 被引量:2
8
作者 Xiangquan Li Zhengguang Xu +1 位作者 Cheng Han Ning Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第3期1807-1825,共19页
This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm(M-AM-SGRPIA)for a class of single input single output(SISO)linear output error models with multi-thresho... This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm(M-AM-SGRPIA)for a class of single input single output(SISO)linear output error models with multi-threshold quantized observations.It proves the convergence of the designed algorithm.A pattern-moving-based system dynamics description method with hybrid metrics is proposed for a kind of practical single input multiple output(SIMO)or SISO nonlinear systems,and a SISO linear output error model with multi-threshold quantized observations is adopted to approximate the unknown system.The system input design is accomplished using the measurement technology of random repeatability test,and the probabilistic characteristic of the explicit metric value is employed to estimate the implicit metric value of the pattern class variable.A modified auxiliary model stochastic gradient recursive algorithm(M-AM-SGRA)is designed to identify the model parameters,and the contraction mapping principle proves its convergence.Two numerical examples are given to demonstrate the feasibility and effectiveness of the achieved identification algorithm. 展开更多
关键词 Pattern moving multi-threshold quantized observations output error model auxiliary model parameter identification
在线阅读 下载PDF
Using a Toy Model to Improve the Quantization of Gravity and Field Theories 被引量:1
9
作者 John R. Klauder 《Journal of High Energy Physics, Gravitation and Cosmology》 2022年第2期303-308,共6页
A half-harmonic oscillator, which gets its name because the position coordinate is strictly positive, has been quantized and determined that it was a physically correct quantization. This positive result was found usi... A half-harmonic oscillator, which gets its name because the position coordinate is strictly positive, has been quantized and determined that it was a physically correct quantization. This positive result was found using affine quantization (AQ). The main purpose of this paper is to compare results of this new quantization procedure with those of canonical quantization (CQ). Using Ashtekar-like classical variables and CQ, we quantize the same toy model. While these two quantizations lead to different results, they both would reduce to the same classical Hamiltonian if &hstrok;→ 0. Since these two quantizations have differing results, only one of the quantizations can be physically correct. Two brief sections also illustrate how AQ can correctly help quantum gravity and the quantization of most field theory problems. 展开更多
关键词 Toy model Affine quantization (AQ) Canonical quantization (CQ)
在线阅读 下载PDF
The CP^1 nonlinear sigma model with ChernSimons term in the Faddeev-Jachiw quantization formalism
10
作者 王永龙 李子平 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第9期1976-1980,共5页
Using the Faddeev-Jackiw (FJ) quantization method, this paper treats the CP^1nonlinear sigma model with ChernSimons term. The generalized FJ brackets are obtained in the framework of this quantization method, which ... Using the Faddeev-Jackiw (FJ) quantization method, this paper treats the CP^1nonlinear sigma model with ChernSimons term. The generalized FJ brackets are obtained in the framework of this quantization method, which agree with the results obtained by using the Dirac's method. 展开更多
关键词 Faddeev-Jackiw quantization method CP^1 nonlinear sigma model Chern-Simons theories constrained systems
原文传递
Metaheuristics with Vector Quantization Enabled Codebook Compression Model for Secure Industrial Embedded Environment
11
作者 Adepu Shravan Kumar S.Srinivasan 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3607-3620,共14页
At the present time,the Industrial Internet of Things(IIoT)has swiftly evolved and emerged,and picture data that is collected by terminal devices or IoT nodes are tied to the user's private data.The use of image s... At the present time,the Industrial Internet of Things(IIoT)has swiftly evolved and emerged,and picture data that is collected by terminal devices or IoT nodes are tied to the user's private data.The use of image sensors as an automa-tion tool for the IIoT is increasingly becoming more common.Due to the fact that this organisation transfers an enormous number of photographs at any one time,one of the most significant issues that it has is reducing the total quantity of data that is sent and,as a result,the available bandwidth,without compromising the image quality.Image compression in the sensor,on the other hand,expedites the transfer of data while simultaneously reducing bandwidth use.The traditional method of protecting sensitive data is rendered less effective in an environment dominated by IoT owing to the involvement of third parties.The image encryp-tion model provides a safe and adaptable method to protect the confidentiality of picture transformation and storage inside an IIoT system.This helps to ensure that image datasets are kept safe.The Linde–Buzo–Gray(LBG)methodology is an example of a vector quantization algorithm that is extensively used and a rela-tively new form of picture reduction known as vector quantization(VQ).As a result,the purpose of this research is to create an artificial humming bird optimi-zation approach that combines LBG-enabled codebook creation and encryption(AHBO-LBGCCE)for use in an IIoT setting.In the beginning,the AHBO-LBGCCE method used the LBG model in conjunction with the AHBO algorithm in order to construct the VQ.The Burrows-Wheeler Transform(BWT)model is used in order to accomplish codebook compression.In addition,the Blowfish algorithm is used in order to carry out the encryption procedure so that security may be attained.A comprehensive experimental investigation is carried out in order to verify the effectiveness of the proposed algorithm in comparison to other algorithms.The experimental values ensure that the suggested approach and the outcomes are examined in a variety of different perspectives in order to further enhance them. 展开更多
关键词 Codebook compression industrial internet of things lbg model metaheuristics vector quantization
在线阅读 下载PDF
Gravitationally Quantized Orbits in the Solar System: Computations Based on the Global Polytropic Model
12
作者 Vassilis Geroyannis Florendia Valvi Themis Dallas 《International Journal of Astronomy and Astrophysics》 2014年第3期464-473,共10页
The so-called “global polytropic model” is based on the assumption of hydrostatic equilibrium for the solar system, or for a planet’s system of statellites (like the Jovian system), described by the Lane-Emden diff... The so-called “global polytropic model” is based on the assumption of hydrostatic equilibrium for the solar system, or for a planet’s system of statellites (like the Jovian system), described by the Lane-Emden differential equation. A polytropic sphere of polytropic index?n?and radius?R1?represents the central component?S1?(Sun or planet) of a polytropic configuration with further components the polytropic spherical shells?S2,?S3,?..., defined by the pairs of radi (R1,?R2), (R2,?R3),?..., respectively.?R1,?R2,?R3,?..., are the roots of the real part Re(θ) of the complex Lane-Emden function?θ. Each polytropic shell is assumed to be an appropriate place for a planet, or a planet’s satellite, to be “born” and “live”. This scenario has been studied numerically for the cases of the solar and the Jovian systems. In the present paper, the Lane-Emden differential equation is solved numerically in the complex plane by using the Fortran code DCRKF54 (modified Runge-Kutta-Fehlberg code of fourth and fifth order for solving initial value problems in the complex plane along complex paths). We include in our numerical study some trans-Neptunian objects. 展开更多
关键词 Complex-Plane Strategy GLOBAL Polytropic model Jovian SYSTEM quantizED ORBITS Solar SYSTEM Trans-Neptunian Objects
在线阅读 下载PDF
Reinforcement Learning Based Quantization Strategy Optimal Assignment Algorithm for Mixed Precision
13
作者 Yuejiao Wang Zhong Ma +2 位作者 Chaojie Yang Yu Yang Lu Wei 《Computers, Materials & Continua》 SCIE EI 2024年第4期819-836,共18页
The quantization algorithm compresses the original network by reducing the numerical bit width of the model,which improves the computation speed. Because different layers have different redundancy and sensitivity to d... The quantization algorithm compresses the original network by reducing the numerical bit width of the model,which improves the computation speed. Because different layers have different redundancy and sensitivity to databit width. Reducing the data bit width will result in a loss of accuracy. Therefore, it is difficult to determinethe optimal bit width for different parts of the network with guaranteed accuracy. Mixed precision quantizationcan effectively reduce the amount of computation while keeping the model accuracy basically unchanged. In thispaper, a hardware-aware mixed precision quantization strategy optimal assignment algorithm adapted to low bitwidth is proposed, and reinforcement learning is used to automatically predict the mixed precision that meets theconstraints of hardware resources. In the state-space design, the standard deviation of weights is used to measurethe distribution difference of data, the execution speed feedback of simulated neural network accelerator inferenceis used as the environment to limit the action space of the agent, and the accuracy of the quantization model afterretraining is used as the reward function to guide the agent to carry out deep reinforcement learning training. Theexperimental results show that the proposed method obtains a suitable model layer-by-layer quantization strategyunder the condition that the computational resources are satisfied, and themodel accuracy is effectively improved.The proposed method has strong intelligence and certain universality and has strong application potential in thefield of mixed precision quantization and embedded neural network model deployment. 展开更多
关键词 Mixed precision quantization quantization strategy optimal assignment reinforcement learning neural network model deployment
在线阅读 下载PDF
基于改进EFD-小波去噪算法的岩石压裂声发射信号分类 被引量:1
14
作者 王婷婷 霍雨佳 +2 位作者 赵万春 史晓东 李方 《无损检测》 2025年第1期52-59,共8页
为准确识别岩石破裂过程中不同阶段产生的声发射信号,提出了一种改进经验傅里叶分解(Empirical Fourier decomposition,EFD)-小波去噪算法,对采集的声发射信号进行降噪处理后,将提取特征输入学习向量量化(Learning vector quantization,... 为准确识别岩石破裂过程中不同阶段产生的声发射信号,提出了一种改进经验傅里叶分解(Empirical Fourier decomposition,EFD)-小波去噪算法,对采集的声发射信号进行降噪处理后,将提取特征输入学习向量量化(Learning vector quantization,LVQ)算法中进行识别分类。首先,使用改进后的EFD算法将岩心破裂的声发射信号进行分解,设定方差贡献率为筛选条件,用小波阈值去噪法进一步滤除噪声后重构信号;然后,用高斯混合模型得到特征向量概率分布,对破裂过程的不同阶段进行分析;最后,提取声发射信号的参数构造特征向量,根据LVQ算法对岩心破裂声发射信号进行分类识别。试验结果表明,该方法可以依据声发射信号准确识别岩心破裂的不同阶段。 展开更多
关键词 岩石破裂声发射信号 傅里叶分解 谱峭度 高斯混合模型 学习向量量化
在线阅读 下载PDF
山东省黄河流域生态保护与高质量发展战略模式比较与路径实践--基于政策文本分析视角
15
作者 肖华斌 朱琳霄 +2 位作者 盛硕 曹情情 夏甜甜 《现代城市研究》 北大核心 2025年第3期52-59,共8页
山东省地处黄河流域的河海交汇区域,是黄河流域生态保护、防洪减灾以及新旧动能转换等关键任务的主战场。为响应《黄河流域生态保护和高质量发展规划纲要》,山东省沿黄地区制定了一系列相关政策与规划,全力推动规划纲要的落地落实。文... 山东省地处黄河流域的河海交汇区域,是黄河流域生态保护、防洪减灾以及新旧动能转换等关键任务的主战场。为响应《黄河流域生态保护和高质量发展规划纲要》,山东省沿黄地区制定了一系列相关政策与规划,全力推动规划纲要的落地落实。文章选取山东省及其沿黄地区52份相关政策文本,利用LDA主题模型构建了政策目标、政策工具、政策主体三维评价体系,借助NVivo 11质性分析工具进行综合评价。研究发现:政策目标层面聚焦生态资源保护、经济社会发展、居民福祉提升3大方面,其中,生态资源保护强调了河道防洪与滩区治理,经济社会发展体现了不同区域的发展战略,居民福祉提升关联了黄河文化与民生保障;政策工具层面,表现出内部分配不协调、与政策目标不匹配的问题。为进一步推进落实规划纲要的要求,山东省省级层面应增加供给型政策工具的具体实施,地市层面应稳定政策内容并拓宽焦点,县(区)层面应增加需求型政策工具制定与落实。通过各层级政府的协同联动以及各类政策工具的有机整合与高效运用,助力山东省成为黄河流域生态保护与高质量发展的典范。 展开更多
关键词 黄河流域 生态保护 高质量发展 政策文本 三维量化 战略模式 山东省
在线阅读 下载PDF
具有双端量化的T-S模糊系统混合触发H_(∞)控制
16
作者 李艳辉 仲崇小 《吉林大学学报(信息科学版)》 2025年第3期547-556,共10页
针对一类具有时变时滞和量化误差的不确定网络化随机T-S(Takagi-Sugeno)模糊系统,研究考虑双端量化的混合触发鲁棒H_(∞)控制问题。首先,为减轻网络通信负担,设计混合触发方案减少数据传输。考虑在传感器端和执行器端分别构建静态对数... 针对一类具有时变时滞和量化误差的不确定网络化随机T-S(Takagi-Sugeno)模糊系统,研究考虑双端量化的混合触发鲁棒H_(∞)控制问题。首先,为减轻网络通信负担,设计混合触发方案减少数据传输。考虑在传感器端和执行器端分别构建静态对数量化器量化采样信号和控制信号并考虑量化误差以提高系统的控制精度,在混合触发机制下重新建立网络化随机T-S模糊模型并深入刻画网络诱导延迟、不确定性和量化误差等网络随机诱导现象。其次,选取时滞依赖和模糊基依赖的Lyapunov函数,引入自由权矩阵,推导出使双端量化模糊系统渐近稳定的充分条件,并将能量有界的噪声信号对输出的影响抑制在H_(∞)性能指标γ下。仿真实验表明,所提方案可以有效减少数据传输,提高系统控制精度,并且相较于传统方法降低了设计的保守性。 展开更多
关键词 网络化随机系统 T-S模糊模型 混合触发方案 双端量化 模糊基依赖
在线阅读 下载PDF
基于轻量化网络的帕金森步态识别方法 被引量:1
17
作者 郭坛 时文雅 +1 位作者 郇战 刘洋 《传感器与微系统》 北大核心 2025年第4期143-147,共5页
为了提高帕金森步态的识别效率并保持高识别精度,提出了一种基于轻量化帕金森步态识别方法-多头量化时域卷积网络(MQ-TCN)。用TCN层替换深度可分离卷积中的逐通道卷积,并部署TTQ算法,减少模型的参数量和参数复杂度。其次,该研究还分析... 为了提高帕金森步态的识别效率并保持高识别精度,提出了一种基于轻量化帕金森步态识别方法-多头量化时域卷积网络(MQ-TCN)。用TCN层替换深度可分离卷积中的逐通道卷积,并部署TTQ算法,减少模型的参数量和参数复杂度。其次,该研究还分析了帕金森步态数据的冗余性,在略微损失识别精度的前提下大幅降低了模型训练所需的存储空间,进一步提升了模型在轻量设备中的可部署能力。实验结果显示:改进的MQ-TCN平均识别精度达到94.9%,参数量仅为目前最小帕金森步态识别模型的5%,不但保持高效的识别精度,还大幅度降低了模型的参数量与参数复杂度,为后续帕金森步态识别工具在轻量设备上的部署提供了参考依据。 展开更多
关键词 异常步态识别 轻量化卷积 时域卷积网络 参数量化 模型压缩
在线阅读 下载PDF
多方法融合的卷积神经网络模型压缩方法
18
作者 郭开泰 李宇哲 +4 位作者 付东豪 郑洋 任胜寒 胡海虹 梁继民 《西安电子科技大学学报》 北大核心 2025年第3期232-241,共10页
卷积神经网络在实际应用中的计算和存储成本较高,因此模型压缩技术成为部署此类模型的关键。然而,单一压缩技术通常会导致性能下降、泛化能力降低或计算复杂度增加的问题。为此提出了一种融合模型剪枝、知识蒸馏和模型量化的压缩框架。... 卷积神经网络在实际应用中的计算和存储成本较高,因此模型压缩技术成为部署此类模型的关键。然而,单一压缩技术通常会导致性能下降、泛化能力降低或计算复杂度增加的问题。为此提出了一种融合模型剪枝、知识蒸馏和模型量化的压缩框架。首先通过稀疏化训练对模型进行剪枝,减少冗余通道;随后,以原始模型作为教师网络,利用知识蒸馏方法对剪枝后的学生网络进行指导,提升压缩模型的性能;最后采用模型量化技术对压缩后的网络进一步优化以提高其适用性。利用卷积网络中的分类模型和目标检测模型对所提出方法进行测试,实验结果表明,该模型压缩框架能够有效降低模型的存储和计算需求,在多个测试模型上,模型大小缩减幅度超过90%,推理速度提升3~4倍,同时精度损失控制在2%以内。提出的多方法融合的模型压缩框架在保证卷积神经网络模型性能的同时,减少了模型大小,提升了推理速度,适用于资源受限环境中卷积神经网络的高效部署。 展开更多
关键词 模型压缩 卷积神经网络 模型剪枝 知识蒸馏 模型量化
在线阅读 下载PDF
基于可解释嵌入学习的推荐系统
19
作者 李雅静 卢香葵 +1 位作者 刘林 邬俊 《南京大学学报(自然科学版)》 北大核心 2025年第4期660-671,共12页
隐因子模型旨在从历史行为数据中学习用户和商品的“隐式”嵌入,是构建现代推荐系统的核心技术.然而,“隐式”嵌入缺乏可解释性,极大地限制了推荐系统的可信度.鉴于此,提出一种基于提示集成的嵌入可解释评论感知评分回归方法(Prompt Ens... 隐因子模型旨在从历史行为数据中学习用户和商品的“隐式”嵌入,是构建现代推荐系统的核心技术.然而,“隐式”嵌入缺乏可解释性,极大地限制了推荐系统的可信度.鉴于此,提出一种基于提示集成的嵌入可解释评论感知评分回归方法(Prompt Ensemble-based Explainable Embedding for Review-aware Rating Regression,PE3R3).该方法联合利用文本评论和数值评分数据,旨在学习具有明确语义的“显式”嵌入,从而增强推荐结果的可解释性.首先,PE3R3借助预训练语言模型及多样化提示模板,从评论文本中提炼出具有显式语义的元码本;然后,以数值评分为监督信号,通过残差量化机制将用户和商品表征为多个元码的线性组合,从而获得富有语义的“显式”嵌入,使推荐结果具备可解释性. PE3R3具有“即插即用”的特点,可以与现有评分回归模型无缝集成.实验结果表明,结合PE3R3模型的预测精度实现了5%的平均性能提升和16%的最大性能提升;在可解释性方面,定量分析和定性分析均表明,PE3R3的引入显著提升了推荐结果的可解释性. 展开更多
关键词 可解释推荐 隐因子模型 提示学习 评论感知评分回归 向量量化
在线阅读 下载PDF
融合深度强化学习的卷积神经网络联合压缩方法
20
作者 马祖鑫 崔允贺 +4 位作者 秦永彬 申国伟 郭春 陈意 钱清 《计算机工程与应用》 北大核心 2025年第6期210-219,共10页
随着边缘计算、边缘智能等概念的兴起,卷积神经网络的轻量化部署逐渐成为研究热点。传统的卷积神经网络压缩技术通常分阶段地、独立地执行剪枝与量化策略,但这种方式没有考虑剪枝与量化过程的相互影响,使其无法达到最优的剪枝与量化结果... 随着边缘计算、边缘智能等概念的兴起,卷积神经网络的轻量化部署逐渐成为研究热点。传统的卷积神经网络压缩技术通常分阶段地、独立地执行剪枝与量化策略,但这种方式没有考虑剪枝与量化过程的相互影响,使其无法达到最优的剪枝与量化结果,影响压缩后的模型性能。针对以上问题,提出一种基于深度强化学习的神经网络联合压缩方法——CoTrim。CoTrim同时执行通道剪枝与权值量化,利用深度强化学习算法搜索出全局最优的剪枝与量化策略,以平衡剪枝与量化对网络性能的影响。在CIFAR-10数据集上对VGG和ResNet进行实验,实验表明,对于常见的单分支卷积和残差卷积结构,CoTrim能够在精度损失仅为2.49个百分点的情况下,将VGG16的模型大小压缩至原来的1.41%。在复杂数据集Imagenet-1K上对紧凑网络MobileNet和密集连接网络DenseNet进行实验,实验表明,对于深度可分离卷积结构以及密集连接结构,CoTrim依旧能保证精度损失在可接受范围内将模型压缩为原始大小的1/5~1/8。 展开更多
关键词 卷积神经网络 深度强化学习 模型压缩 通道剪枝 权值量化 边缘智能
在线阅读 下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部