期刊文献+
共找到3,374篇文章
< 1 2 169 >
每页显示 20 50 100
Graph Attention Networks for Skin Lesion Classification with CNN-Driven Node Features
1
作者 Ghadah Naif Alwakid Samabia Tehsin +3 位作者 Mamoona Humayun Asad Farooq Ibrahim Alrashdi Amjad Alsirhani 《Computers, Materials & Continua》 2026年第1期1964-1984,共21页
Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and ... Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems. 展开更多
关键词 graph neural network image classification DermaMNIST dataset graph representation
在线阅读 下载PDF
Quantifying compatibility mechanisms in traditional Chinese medicine with interpretable graph neural networks 被引量:1
2
作者 Jingqi Zeng Xiaobin Jia 《Journal of Pharmaceutical Analysis》 2025年第8期1887-1901,共15页
Traditional Chinese medicine(TCM)features complex compatibility mechanisms involving multicomponent,multi-target,and multi-pathway interactions.This study presents an interpretable graph artificial intelligence(GraphA... Traditional Chinese medicine(TCM)features complex compatibility mechanisms involving multicomponent,multi-target,and multi-pathway interactions.This study presents an interpretable graph artificial intelligence(GraphAI)framework to quantify such mechanisms in Chinese herbal formulas(CHFs).A multidimensional TCM knowledge graph(TCM-MKG;https://zenodo.org/records/13763953)was constructed,integrating seven standardized modules:TCM terminology,Chinese patent medicines(CPMs),Chinese herbal pieces(CHPs),pharmacognostic origins(POs),chemical compounds,biological targets,and diseases.A neighbor-diffusion strategy was used to address the sparsity of compound-target associations,increasing target coverage from 12.0%to 98.7%.Graph neural networks(GNNs)with attention mechanisms were applied to 6,080 CHFs,modeled as graphs with CHPs as nodes.To embed domain-specific semantics,virtual nodes medicinal properties,i.e.,therapeutic nature,flavor,and meridian tropism,were introduced,enabling interpretable modeling of inter-CHP relationships.The model quantitatively captured classical compatibility roles such as“monarch-minister-assistant-guide”,and uncovered TCM etiological types derived from diagnostic and efficacy patterns.Model validation using 215 CHFs used for coronavirus disease 2019(COVID-19)management highlighted Radix Astragali-Rhizoma Phragmitis as a high-attention herb pair.Mass spectrometry(MS)and target prediction identified three active compounds,i.e.,methylinissolin-3-O-glucoside,corydalin,and pingbeinine,which converge on pathways such as neuroactive ligand-receptor interaction,xenobiotic response,and neuronal function,supporting their neuroimmune and detoxification potential.Given their high safety and dietary compatibility,this herb pair may offer therapeutic value for managing long COVID-19.All data and code are openly available(https://github.com/ZENGJingqi/GraphAI-for-TCM),providing a scalable and interpretable platform for TCM mechanism research and discovery of bioactive herbal constituents. 展开更多
关键词 Traditional Chinese medicine graph neural networks Knowledge graph Compatibility mechanism Artificial intelligence Coronavirus disease 2019
暂未订购
DIGNN-A:Real-Time Network Intrusion Detection with Integrated Neural Networks Based on Dynamic Graph
3
作者 Jizhao Liu Minghao Guo 《Computers, Materials & Continua》 SCIE EI 2025年第1期817-842,共26页
The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are cr... The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics. 展开更多
关键词 Intrusion detection graph neural networks attention mechanisms line graphs dynamic graph neural networks
在线阅读 下载PDF
Two-Phase Software Fault Localization Based on Relational Graph Convolutional Neural Networks 被引量:1
4
作者 Xin Fan Zhenlei Fu +2 位作者 Jian Shu Zuxiong Shen Yun Ge 《Computers, Materials & Continua》 2025年第2期2583-2607,共25页
Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accu... Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of the program is constructed, the intra-class and inter-class dependencies in MCDG are extracted by using the relational graph convolutional neural network, and the classifier is used to identify the faulty methods. Then, the GraphSMOTE algorithm is improved to alleviate the impact of class imbalance on classification accuracy. Aiming at the problem of parallel ranking of element suspicious values in traditional SBFL technology, in Phase 2, Doc2Vec is used to learn static features, while spectrum information serves as dynamic features. A RankNet model based on siamese multi-layer perceptron is constructed to score and rank statements in the faulty method. This work conducts experiments on 5 real projects of Defects4J benchmark. Experimental results show that, compared with the traditional SBFL technique and two baseline methods, our approach improves the Top-1 accuracy by 262.86%, 29.59% and 53.01%, respectively, which verifies the effectiveness of Two-RGCNFL. Furthermore, this work verifies the importance of inter-class dependencies through ablation experiments. 展开更多
关键词 Software fault localization graph neural network RankNet inter-class dependency class imbalance
在线阅读 下载PDF
BlastGraphNet:An Intelligent Computational Method for the Precise and Rapid Prediction of Blast Loads on Complex 3D Buildings Using Graph Neural Networks 被引量:1
5
作者 Zhiqiao Wang Jiangzhou Peng +6 位作者 Jie Hu Mingchuan Wang Xiaoli Rong Leixiang Bian Mingyang Wang Yong He Weitao Wu 《Engineering》 2025年第6期205-224,共20页
Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective meas... Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective measures,and designing civil defense engineering solutions.Current state-of-the-art methods face several issues:Experimental research is difficult and costly to implement,theoretical research is limited to simple geometries and lacks precision,and direct simulations require substantial computational resources.To address these challenges,this paper presents a data-driven method for predicting blast loads on building surfaces.This approach increases both the accuracy and computational efficiency of load predictions when the geometry of the building changes while the explosive yield remains constant,significantly improving its applicability in complex scenarios.This study introduces an innovative encoder-decoder graph neural network model named BlastGraphNet,which uses a message-passing mechanism to predict the overpressure and impulse load distributions on buildings with conventional and complex geometries during explosive events.The model also facilitates related downstream applications,such as damage mode identification and rapid assessment of virtual city explosions.The calculation results indicate that the prediction error of the model for conventional building tests is less than 2%,and its inference speed is 3-4 orders of magnitude faster than that of state-of-the-art numerical methods.In extreme test cases involving buildings with complex geometries and building clusters,the method achieved high accuracy and excellent generalizability.The strong adaptability and generalizability of BlastGraphNet confirm that this novel method enables precise real-time prediction of blast loads and provides a new paradigm for damage assessment in protective engineering. 展开更多
关键词 Blast load prediction graph neural networks Data-driven learning Real-time prediction Protective engineering
在线阅读 下载PDF
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
6
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 graph neural networks convolutional neural network deep learning dynamic multi-graph SPATIO-TEMPORAL
在线阅读 下载PDF
Fingerprint-enhanced hierarchical molecular graph neural networks for property prediction 被引量:1
7
作者 Shuo Liu Mengyun Chen +1 位作者 Xiaojun Yao Huanxiang Liu 《Journal of Pharmaceutical Analysis》 2025年第6期1311-1320,共10页
Accurate prediction of molecular properties is crucial for selecting compounds with ideal properties and reducing the costs and risks of trials.Traditional methods based on manually crafted features and graph-based me... Accurate prediction of molecular properties is crucial for selecting compounds with ideal properties and reducing the costs and risks of trials.Traditional methods based on manually crafted features and graph-based methods have shown promising results in molecular property prediction.However,traditional methods rely on expert knowledge and often fail to capture the complex structures and interactions within molecules.Similarly,graph-based methods typically overlook the chemical structure and function hidden in molecular motifs and struggle to effectively integrate global and local molecular information.To address these limitations,we propose a novel fingerprint-enhanced hierarchical graph neural network(FH-GNN)for molecular property prediction that simultaneously learns information from hierarchical molecular graphs and fingerprints.The FH-GNN captures diverse hierarchical chemical information by applying directed message-passing neural networks(D-MPNN)on a hierarchical molecular graph that integrates atomic-level,motif-level,and graph-level information along with their relationships.Addi-tionally,we used an adaptive attention mechanism to balance the importance of hierarchical graphs and fingerprint features,creating a comprehensive molecular embedding that integrated hierarchical mo-lecular structures with domain knowledge.Experiments on eight benchmark datasets from MoleculeNet showed that FH-GNN outperformed the baseline models in both classification and regression tasks for molecular property prediction,validating its capability to comprehensively capture molecular informa-tion.By integrating molecular structure and chemical knowledge,FH-GNN provides a powerful tool for the accurate prediction of molecular properties and aids in the discovery of potential drug candidates. 展开更多
关键词 Deep learning Hierarchical molecular graph Molecular fingerprint Molecular property prediction Directed message-passing neural network
在线阅读 下载PDF
Sparse graph neural network aided efficient decoder for polar codes under bursty interference
8
作者 Shengyu Zhang Zhongxiu Feng +2 位作者 Zhe Peng Lixia Xiao Tao Jiang 《Digital Communications and Networks》 2025年第2期359-364,共6页
In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the e... In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the encoding characteristic to achieve high-throughput polar decoding.To further improve the decoding performance,a residual gated bipartite graph neural network is designed for updating embedding vectors of heterogeneous nodes based on a bidirectional message passing neural network.This framework exploits gated recurrent units and residual blocks to address the gradient disappearance in deep graph recurrent neural networks.Finally,predictions are generated by feeding the embedding vectors into a readout module.Simulation results show that the proposed decoder is more robust than the existing ones in the presence of bursty interference and exhibits high universality. 展开更多
关键词 Sparse graph neural network Polar codes Bursty interference Sparse factor graph Message passing neural network
在线阅读 下载PDF
Physics-informed graph neural network for predicting fluid flow in porous media
9
作者 Hai-Yang Chen Liang Xue +6 位作者 Li Liu Gao-Feng Zou Jiang-Xia Han Yu-Bin Dong Meng-Ze Cong Yue-Tian Liu Seyed Mojtaba Hosseini-Nasab 《Petroleum Science》 2025年第10期4240-4253,共14页
With the rapid development of deep learning neural networks,new solutions have emerged for addressing fluid flow problems in porous media.Combining data-driven approaches with physical constraints has become a hot res... With the rapid development of deep learning neural networks,new solutions have emerged for addressing fluid flow problems in porous media.Combining data-driven approaches with physical constraints has become a hot research direction,with physics-informed neural networks(PINNs) being the most popular hybrid model.PINNs have gained widespread attention in subsurface fluid flow simulations due to their low computational resource requirements,fast training speeds,strong generalization capabilities,and broad applicability.Despite success in homogeneous settings,standard PINNs face challenges in accurately calculating flux between irregular Eulerian cells with disparate properties and capturing global field influences on local cells.This limits their suitability for heterogeneous reservoirs and the irregular Eulerian grids frequently used in reservoir.To address these challenges,this study proposes a physics-informed graph neural network(PIGNN) model.The PIGNN model treats the entire field as a whole,integrating information from neighboring grids and physical laws into the solution for the target grid,thereby improving the accuracy of solving partial differential equations in heterogeneous and Eulerian irregular grids.The optimized model was applied to pressure field prediction in a spatially heterogeneous reservoir,achieving an average L_(2) error and R_(2) score of 6.710×10^(-4)and 0.998,respectively,which confirms the effectiveness of model.Compared to the conventional PINN model,the average L_(2) error was reduced by 76.93%,the average R_(2) score increased by 3.56%.Moreover,evaluating robustness,training the PIGNN model using only 54% and 76% of the original data yielded average relative L_(2) error reductions of 58.63% and 56.22%,respectively,compared to the PINN model.These results confirm the superior performance of this approach compared to PINN. 展开更多
关键词 graph neural network(GNN) Deep-learning Physical-informed neural network(PINN) Physics-informed graph neural network(PIGNN) Flow in porous media Perpendicular bisectional grid(PEBI) Unstructured mesh
原文传递
Forecasting cryptocurrency volatility:a novel framework based on the evolving multiscale graph neural network
10
作者 Yang Zhou Chi Xie +2 位作者 Gang‑Jin Wang Jue Gong You Zhu 《Financial Innovation》 2025年第1期2484-2535,共52页
Cryptocurrency is a remarkable financial innovation that has affected the financial system in fundamental ways.Its increasingly complex interactions with the conventional financial market make precisely forecasting it... Cryptocurrency is a remarkable financial innovation that has affected the financial system in fundamental ways.Its increasingly complex interactions with the conventional financial market make precisely forecasting its volatility increasingly challenging.To this end,we propose a novel framework based on the evolving multiscale graph neural network(EMGNN).Specifically,we embed a graph that depicts the interactions between the cryptocurrency and conventional financial markets into the predictive process.Furthermore,we employ hierarchical evolving graph structure learners to model the dynamic and scale-specific interactions.We also evaluate our framework’s robustness and discuss its interpretability by extracting the learned graph structure.The empirical results show that(i)cryptocurrency volatility is not isolated from the conventional market,and the embedded graph can provide effective information for prediction;(ii)the EMGNN-based forecasting framework generally yields outstanding and robust performance in terms of multiple volatility estimators,cryptocurrency samples,forecasting horizons,and evaluation criteria;and(iii)the graph structure in the predictive process varies over time and scales and is well captured by our framework.Overall,our work provides new insights into risk management for market participants and into policy formulation for authorities. 展开更多
关键词 Cryptocurrency Volatility forecasting graph neural network Deep learning Multiscale
在线阅读 下载PDF
A diagnosis method based on graph neural networks embedded with multirelationships of intrinsic mode functions for multiple mechanical faults
11
作者 Bin Wang Manyi Wang +3 位作者 Yadong Xu Liangkuan Wang Shiyu Chen Xuanshi Chen 《Defence Technology(防务技术)》 2025年第8期364-373,共10页
Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types o... Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems. 展开更多
关键词 Fault diagnosis graph neural networks graph topological structure Intrinsic mode functions Feature learning
在线阅读 下载PDF
Graph Neural Networks and Multimodal DTI Features for Schizophrenia Classification:Insights from Brain Network Analysis and Gene Expression
12
作者 Jingjing Gao Heping Tang +25 位作者 Zhengning Wang Yanling Li Na Luo Ming Song Sangma Xie Weiyang Shi Hao Yan Lin Lu Jun Yan Peng Li Yuqing Song Jun Chen Yunchun Chen Huaning Wang Wenming Liu Zhigang Li Hua Guo Ping Wan Luxian Lv Yongfeng Yang Huiling Wang Hongxing Zhang Huawang Wu Yuping Ning Dai Zhang Tianzi Jiang 《Neuroscience Bulletin》 2025年第6期933-950,共18页
Schizophrenia(SZ)stands as a severe psychiatric disorder.This study applied diffusion tensor imaging(DTI)data in conjunction with graph neural networks to distinguish SZ patients from normal controls(NCs)and showcases... Schizophrenia(SZ)stands as a severe psychiatric disorder.This study applied diffusion tensor imaging(DTI)data in conjunction with graph neural networks to distinguish SZ patients from normal controls(NCs)and showcases the superior performance of a graph neural network integrating combined fractional anisotropy and fiber number brain network features,achieving an accuracy of 73.79%in distinguishing SZ patients from NCs.Beyond mere discrimination,our study delved deeper into the advantages of utilizing white matter brain network features for identifying SZ patients through interpretable model analysis and gene expression analysis.These analyses uncovered intricate interrelationships between brain imaging markers and genetic biomarkers,providing novel insights into the neuropathological basis of SZ.In summary,our findings underscore the potential of graph neural networks applied to multimodal DTI data for enhancing SZ detection through an integrated analysis of neuroimaging and genetic features. 展开更多
关键词 SCHIZOPHRENIA Magnetic resonance imaging CLASSIFICATION Deep learning graph neural network
原文传递
Optimized graph neural network-multilayer perceptron fusion classifier for metastatic prostate cancer detection in Western and Asian populations
13
作者 Fengxian Han Xiaohui Fan +12 位作者 Pengwei Long Wenhui Zhang Qiting Li Yingxuan Li Xingpeng Guo Yinran Luo Rongqi Wen Sheng Wang Shan Zhang Yizhuo Li Yan Wang Xu Gao Jing Li 《Asian Journal of Urology》 2025年第3期327-337,共11页
Objective:Prostate cancer(PCa)exhibits significant genomic differences between Western and Asian populations.This study aimed to design a predictive model applicable across diverse populations while selecting a limite... Objective:Prostate cancer(PCa)exhibits significant genomic differences between Western and Asian populations.This study aimed to design a predictive model applicable across diverse populations while selecting a limited set of genes suitable for clinical implementation.Methods:We utilized an integrated dataset of 1360 whole-exome and whole-genome sequences from Chinese and Western PCa cohorts to develop and evaluate the model.External validation was conducted using an independent cohort of patients.A graph neural network architecture,termed the pathway-aware multi-layered hierarchical network-Western and Asian(P-NETwa),was developed and trained on combined genomic profiles from Chinese and Western cohorts.The model employed a multilayer perceptron(MLP)to identify key signature genes from multiomics data,enabling precise prediction of PCa metastasis.Results:The model achieved an accuracy of 0.87 and an F1-score of 0.85 on Western population datasets.The application of integrated Chinese and Western population data improved the accuracy to 0.88,achieving an F1-score of 0.75.The analysis identified 18 signature genes implicated in PCa progression,including established markers(AR and TP53)and novel candidates(MUC16,MUC4,and ASB12).For clinical adoption,the model was optimized for commercially available gene panels while maintaining high classification accuracy.Additionally,a user-friendly web interface was developed to facilitate real-time prediction of primary versus metastatic status using the pre-trained P-NETwa-MLP model.Conclusion:The P-NETwa-MLP model integrates a query system that allows for efficient retrieval of prediction outcomes and associated genomic signatures via sample ID,enhancing its potential for seamless integration into clinical workflows. 展开更多
关键词 Prostate cancer Machine learning Multilayer perceptron graph neural network
在线阅读 下载PDF
DSGNN:Dual-Shield Defense for Robust Graph Neural Networks
14
作者 Xiaohan Chen Yuanfang Chen +2 位作者 Gyu Myoung Lee Noel Crespi Pierluigi Siano 《Computers, Materials & Continua》 2025年第10期1733-1750,共18页
Graph Neural Networks(GNNs)have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models,such as Large Language Models(LLMs),t... Graph Neural Networks(GNNs)have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models,such as Large Language Models(LLMs),to enhance structural reasoning,knowledge retrieval,and memory management.The expansion of their application scope imposes higher requirements on the robustness of GNNs.However,as GNNs are applied to more dynamic and heterogeneous environments,they become increasingly vulnerable to real-world perturbations.In particular,graph data frequently encounters joint adversarial perturbations that simultaneously affect both structures and features,which are significantly more challenging than isolated attacks.These disruptions,caused by incomplete data,malicious attacks,or inherent noise,pose substantial threats to the stable and reliable performance of traditional GNN models.To address this issue,this study proposes the Dual-Shield Graph Neural Network(DSGNN),a defense model that simultaneously mitigates structural and feature perturbations.DSGNN utilizes two parallel GNN channels to independently process structural noise and feature noise,and introduces an adaptive fusion mechanism that integrates information from both pathways to generate robust node representations.Theoretical analysis demonstrates that DSGNN achieves a tighter robustness boundary under joint perturbations compared to conventional single-channel methods.Experimental evaluations across Cora,CiteSeer,and Industry datasets show that DSGNN achieves the highest average classification accuracy under various adversarial settings,reaching 81.24%,71.94%,and 81.66%,respectively,outperforming GNNGuard,GCN-Jaccard,GCN-SVD,RGCN,and NoisyGNN.These results underscore the importance of multi-view perturbation decoupling in constructing resilient GNN models for real-world applications. 展开更多
关键词 graph neural networks adversarial attacks dual-shield defense certified robustness node classification
在线阅读 下载PDF
A Multi-Scale Graph Neural Network for the Prediction of Multi-Component Gas Adsorption
15
作者 Lujun Li Haibin Yu 《Engineering》 2025年第9期102-111,共10页
Metal–organic frameworks(MOFs)hold great potential for gas separation and storage,and graph neural networks have proven to be a powerful tool for exploring material structure–property relationships and discovering n... Metal–organic frameworks(MOFs)hold great potential for gas separation and storage,and graph neural networks have proven to be a powerful tool for exploring material structure–property relationships and discovering new materials.Unlike traditional molecular graphs,crystal graphs require consideration of periodic invariance and modes.In addition,MOF structures such as covalent bonds,functional groups,and global structures impact adsorption performance in different ways.However,redundant atomic interactions can disrupt training accuracy,potentially leading to overfitting.In this paper,we propose a multi-scale crystal graph for describing periodic crystal structures,modeling interatomic interactions at different scales while preserving periodicity invariance.We also propose a multi-head attention crystal graph network in multi-scale graphs(MHACGN-MS),which learns structural characteristics by focusing on interatomic interactions at different scales,thereby reducing interference from redundant interactions.Using MOF adsorption for gases as an example,we demonstrate that MHACGN-MS outperforms traditional graph neural networks in predicting multi-component gas adsorption.We also visualize attention scores to validate effective learning and demonstrate the model’s interpretability. 展开更多
关键词 Metal-organic frameworks Multi-head attention score graph neural network Adsorption
在线阅读 下载PDF
GLM-EP: An Equivariant Graph Neural Network and Protein Language Model Integrated Framework for Predicting Essential Proteins in Bacteriophages
16
作者 Jia Mi Zhikang Liu +1 位作者 Chang Li Jing Wan 《Computer Modeling in Engineering & Sciences》 2025年第12期4089-4106,共18页
Recognizing essential proteins within bacteriophages is fundamental to uncovering their replication and survival mechanisms and contributes to advances in phage-based antibacterial therapies.Despite notable progress,e... Recognizing essential proteins within bacteriophages is fundamental to uncovering their replication and survival mechanisms and contributes to advances in phage-based antibacterial therapies.Despite notable progress,existing computational techniques struggle to represent the interplay between sequence-derived and structuredependent protein features.To overcome this limitation,we introduce GLM-EP,a unified framework that fuses protein language models with equivariant graph neural networks.Bymerging semantic embeddings extracted from amino acid sequences with geometry-aware graph representations,GLM-EP enables an in-depth depiction of phage proteins and enhances essential protein identification.Evaluation on diverse benchmark datasets confirms that GLM-EP surpasses conventional sequence-based and independent deep-learning methods,yielding higher F1 and AUROC outcomes.Component-wise analysis demonstrates that GCNII,EGNN,and the gated multi-head attention mechanism function in a complementary manner to encode complex molecular attributes.In summary,GLM-EP serves as a robust and efficient tool for bacteriophage genomic analysis and provides valuable methodological perspectives for the discovery of antibiotic-resistance therapeutic targets.The corresponding code repository is available at:https://github.com/MiJia-ID/GLM-EP(accessed on 01 November 2025). 展开更多
关键词 Essential proteins BACTERIOPHAGES protein language models graph neural networks
在线阅读 下载PDF
PIAFGNN:Property Inference Attacks against Federated Graph Neural Networks
17
作者 Jiewen Liu Bing Chen +2 位作者 Baolu Xue Mengya Guo Yuntao Xu 《Computers, Materials & Continua》 2025年第2期1857-1877,共21页
Federated Graph Neural Networks (FedGNNs) have achieved significant success in representation learning for graph data, enabling collaborative training among multiple parties without sharing their raw graph data and so... Federated Graph Neural Networks (FedGNNs) have achieved significant success in representation learning for graph data, enabling collaborative training among multiple parties without sharing their raw graph data and solving the data isolation problem faced by centralized GNNs in data-sensitive scenarios. Despite the plethora of prior work on inference attacks against centralized GNNs, the vulnerability of FedGNNs to inference attacks has not yet been widely explored. It is still unclear whether the privacy leakage risks of centralized GNNs will also be introduced in FedGNNs. To bridge this gap, we present PIAFGNN, the first property inference attack (PIA) against FedGNNs. Compared with prior works on centralized GNNs, in PIAFGNN, the attacker can only obtain the global embedding gradient distributed by the central server. The attacker converts the task of stealing the target user’s local embeddings into a regression problem, using a regression model to generate the target graph node embeddings. By training shadow models and property classifiers, the attacker can infer the basic property information within the target graph that is of interest. Experiments on three benchmark graph datasets demonstrate that PIAFGNN achieves attack accuracy of over 70% in most cases, even approaching the attack accuracy of inference attacks against centralized GNNs in some instances, which is much higher than the attack accuracy of the random guessing method. Furthermore, we observe that common defense mechanisms cannot mitigate our attack without affecting the model’s performance on mainly classification tasks. 展开更多
关键词 Federated graph neural networks GNNs privacy leakage regression model property inference attacks EMBEDDINGS
在线阅读 下载PDF
Intelligent Medical Diagnosis Model Based on Graph Neural Networks for Medical Images
18
作者 Ashutosh Sharma Amit Sharma Kai Guo 《CAAI Transactions on Intelligence Technology》 2025年第4期1201-1216,共16页
Recently,numerous estimation issues have been solved due to the developments in data-driven artificial neural networks(ANN)and graph neural networks(GNN).The primary limitation of previous methodologies has been the d... Recently,numerous estimation issues have been solved due to the developments in data-driven artificial neural networks(ANN)and graph neural networks(GNN).The primary limitation of previous methodologies has been the dependence on data that can be structured in a grid format.However,physiological recordings often exhibit irregular and unordered patterns,posing a significant challenge in conceptualising them as matrices.As a result,GNNs which comprise interactive nodes connected by edges whose weights are defined by anatomical junctions or temporal relationships have received a lot of consideration by leveraging implicit data that exists in a biological system.Additionally,our study incorporates a structural GNN to effectively differentiate between different degrees of infection in both the left and right hemispheres of the brain.Subsequently,demographic data are included,and a multi-task learning architecture is devised,integrating classification and regression tasks.The trials used an authentic dataset,including 800 brain x-ray pictures,consisting of 560 instances classified as moderate cases and 240 instances classified as severe cases.Based on empirical evidence,our methodology demonstrates superior performance in classification,surpassing other comparison methods with a notable achievement of 92.27%in terms of area under the curve as well as a correlation coefficient of 0.62. 展开更多
关键词 artificial intelligence disease prediction electronic medical records graph neural networks medical imaging
在线阅读 下载PDF
A graph neural network and multi-task learning-based decoding algorithm for enhancing XZZX code stability in biased noise
19
作者 Bo Xiao Zai-Xu Fan +2 位作者 Hui-Qian Sun Hong-Yang Ma Xing-Kui Fan 《Chinese Physics B》 2025年第5期250-257,共8页
Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The... Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The XZZX surface code,with only one stabilizer generator on each face,demonstrates significant application potential under biased noise.However,the existing minimum weight perfect matching(MWPM)algorithm has high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoding method that combines graph neural networks(GNN)with multi-classifiers,the syndrome is transformed into an undirected graph,and the features are aggregated by convolutional layers,providing a more efficient and accurate decoding strategy.In the experiments,we evaluated the performance of the XZZX code under different biased noise conditions(bias=1,20,200)and different code distances(d=3,5,7,9,11).The experimental results show that under low bias noise(bias=1),the GNN decoder achieves a threshold of 0.18386,an improvement of approximately 19.12%compared to the MWPM decoder.Under high bias noise(bias=200),the GNN decoder reaches a threshold of 0.40542,improving by approximately 20.76%,overcoming the limitations of the conventional decoder.They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code. 展开更多
关键词 quantum error correction XZZX code biased noise graph neural network
原文传递
Integrating Attention Mechanisms in Graph Neural Networks for Marine Oil Spill Detection
20
作者 CAI Fengjing WANG Yue +5 位作者 TIAN Zhuangcai LI Xi’an XU Jing MO Yuming ZHANG Shaotong WU Jinran 《Journal of Ocean University of China》 2025年第5期1327-1340,I0003-I0014,共26页
The increasing frequency of offshore engineering activities,particularly the expansion of offshore oil transport and the rise in the number of oil platforms,has greatly increased the potential risk of marine oil spill... The increasing frequency of offshore engineering activities,particularly the expansion of offshore oil transport and the rise in the number of oil platforms,has greatly increased the potential risk of marine oil spill incidents.Historically,several large oil spills have had long-term adverse effects on marine ecosystems and economic development,highlighting the importance of accurate-ly delineating and monitoring oil spill areas.In this study,graph neural network technology is introduced to implement semantic seg-mentation of SAR images,and two graph neural network models based on Graph-FCN and Graph-DeepLabV3+with the introduction of an attention mechanism are constructed and evaluated to improve the accuracy and efficiency of oil spill detection.By com-paring the Swin-Unet model,the Graph-DeepLabV3+model performs better in complex scenarios,especially in edge detail recognition.This not only provides strong technical support for marine oil spill monitoring but also provides an effective solution to deal with the potential risks brought by the increase of marine engineering activities,which is of great practical significance as it helps to safeguard the health and sustainable development of marine ecosystems and reduce the economic losses. 展开更多
关键词 marine oil spill monitoring graph neural network semantic segmentation Swin-Unet graph-DeeplabV3+
在线阅读 下载PDF
上一页 1 2 169 下一页 到第
使用帮助 返回顶部