How nonlinear joints affect the response of large space structures is an important problem to investigate.In this paper,a multi-harmonic equivalent modeling method is presented to establish a frequency-domain model of...How nonlinear joints affect the response of large space structures is an important problem to investigate.In this paper,a multi-harmonic equivalent modeling method is presented to establish a frequency-domain model of planar repetitive structures with nonlinear joints.First,at the local level,the nonlinear joint is modeled by the multi-harmonic describing function matrix.The element of the hybrid beam is obtained by the dynamic condensation of the beam-joint element.Second,at the global level,the displacement-equivalence method is used to model the multi-harmonic Euler continuum beam equivalent to the planar repetitive structure.Then,the pseudo-arc-length continuation method is applied to track the multi-harmonic trajectory of response.Afterwards,an experiment is conducted to validate the correctness of the modeling method,considering the effect of hanging rope and air damping.In the numerical studies,several simulation results indicate the similarity of response between a single-degree-of-freedom system with a single nonlinear joint and the system of the planar repetitive structure with a large number of nonlinear joints.Finally,the component of higher-order harmonics is shown to be important for predicting the resonance frequencies and amplitudes.展开更多
The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show...The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show clinical potential,their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity(R^(2)>0.99 up to 1 MPa)in conventional designs.Inspired by the tactile sensing mechanism of human skin,where dermal stratification enables wide-range pressure adaptation and ion-channelregulated signaling maintains linear electrical responses,we developed a dual-mechanism flexible iontronic pressure sensor(FIPS).This innovative design synergistically combines two bioinspired components:interdigitated fabric microstructures enabling pressure-proportional contact area expansion(αP1/3)and iontronic film facilitating self-adaptive ion concentration modulation(αP^(2/3)),which together generate a linear capacitance-pressure response(CαP).The FIPS achieves breakthrough performance:242 kPa^(-1)sensitivity with 0.997linearity across 0-1 MPa,yielding a record linear sensing factor(LSF=242,000).The design is validated across various substrates and ionic materials,demonstrating its versatility.Finally,the FIPS-driven design enables a smart insole demonstrating 1.8%error in tibial load assessment during gait analysis,outperforming nonlinear counterparts(6.5%error)in early fracture-risk prediction.The biomimetic design framework establishes a universal approach for developing high-performance linear sensors,establishing generalized principles for medical-grade wearable devices.展开更多
During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive...During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.展开更多
Aim To present a simple and effective method for the design of nonlinear and time varying control system. Methods A new concept of dynamic equilibrium of a system and its stability were presented first. It was poin...Aim To present a simple and effective method for the design of nonlinear and time varying control system. Methods A new concept of dynamic equilibrium of a system and its stability were presented first. It was pointed out that what is controlled directly by the input of a control system is the system's dynamic equilibrium rather than the states. Based on it, a new feedback linearization method for nonlinear system based on the Lyapunov direct method was given. Simulation studies were also carried out. Results The example and simulation show that by use of the method, the controller design becomes very simple and the control effect is quite satisfying. Conclusion The new method unifies the stabilizing problem(regulating problem) with the tracking problem. It is a very simple and effective method for the design of nonlinear and time varying control system.展开更多
In order to design a nonlinear controller for small-scale autonomous helicopters, the dynamic characteristics of a model helicopter are investigated, and an integrated nonlinear model of a small-scale helicopter for h...In order to design a nonlinear controller for small-scale autonomous helicopters, the dynamic characteristics of a model helicopter are investigated, and an integrated nonlinear model of a small-scale helicopter for hovering control is presented. It is proved that the nonlinear system of the small-scale helicopter can be transformed to a linear system using the dynamic feedback linearization technique. Finally, simulations are carried out to validate the nonlinear controller.展开更多
The equivalent linearization method (ELM) is modified to investigate the nonlinear flut- ter system of an airfoil with a cubic damping. After obtaining the linearization quantity of the cubic nonlinearity by the ELM...The equivalent linearization method (ELM) is modified to investigate the nonlinear flut- ter system of an airfoil with a cubic damping. After obtaining the linearization quantity of the cubic nonlinearity by the ELM, an equivalent system can be deduced and then investigated by linear flut- ter analysis methods. Different from the routine procedures of the ELM, the frequency rather than the amplitude of limit cycle oscillation (LCO) is chosen as an active increment to produce bifurca- tion charts. Numerical examples show that this modification makes the ELM much more efficient. Meanwhile, the LCOs obtained by the ELM are in good agreement with numerical solutions. The nonlinear damping can delay the occurrence of secondary bifurcation. On the other hand, it has marginal influence on bifurcation characteristics or LCOs.展开更多
This paper is focused on developing a tracking controller for a hypersonic cruise vehicle using tangent linearization approach.The design of flight control systems for air-breathing hypersonic vehicles is a highly cha...This paper is focused on developing a tracking controller for a hypersonic cruise vehicle using tangent linearization approach.The design of flight control systems for air-breathing hypersonic vehicles is a highly challenging task due to the unique characteristics of the vehicle dynamics.Motivated by recent results on tangent linearization control,the tracking control problem for the hypersonic cruise vehicle is reduced to that of a feedback stabilizing controller design for a linear time-varying system which can be accomplished by a standard design method of frozen-time control.Through a proper model transformation,it can be proven that the tracking error of the designed closed-loop system decays exponentially.Simulation studies are conducted for trimmed cruise conditions of 110000 ft and Mach 15 where the responses of the vehicle to step changes in altitude and velocity are evaluated.The effectiveness of the controller is demonstrated by simulation results.展开更多
The impact angle control over guidance(IACG) law against stationary targets is proposed by using feedback linearization control(FLC) and finite time control(FTC). First, this paper transforms the kinematics equation o...The impact angle control over guidance(IACG) law against stationary targets is proposed by using feedback linearization control(FLC) and finite time control(FTC). First, this paper transforms the kinematics equation of guidance systems into the feedbackable linearization model, in which the guidance law is obtained without considering the impact angle via FLC. For the purpose of the line of sight(LOS) angle and its rate converging to the desired values, the second-order LOS angle is considered as a double-integral system. Then, this paper utilizes FTC to design a controller which can guarantee the states of the double-integral system converging to the desired values. Numerical simulation illustrates the performance of the IACG, in contrast to the existing guidance law.展开更多
Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple ...Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple local minima on the learning error surfaces, which affect the learning rate and solving optimal weights. This paper proposes a learning method linearizing non linearity of the activation function and discusses its merits and demerits theoretically.展开更多
An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The infl...An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The influence of unknown disturbances and uncertainties is reduced by RBFNN thanks to its approaching ability, and a robustifying itera is used to overcome the approximate error of RBFNN. The parameters adaptive adjusting laws are designed on the Lyapunov theory. The uniform ultimate boundedness of all signals of the composite closed-loop system is proved based on Lyapunov theory. Finally, the flight control system of an ASV is designed based on the proposed method. Simulation results demonstrate the effectiveness and robustness of the designed approach.展开更多
In 1960s, Hartman and Grobman pointed out that if all eigenvalues of a matrix A have no zero real part and f(x) is small Lipchitzian, then x′=Ax+f(x) can be locally linearized on a neighborhood of the origin. Later, ...In 1960s, Hartman and Grobman pointed out that if all eigenvalues of a matrix A have no zero real part and f(x) is small Lipchitzian, then x′=Ax+f(x) can be locally linearized on a neighborhood of the origin. Later, the above result was generalized to global under the condition that f(x) is a bounded function. In this paper, we delete the condition that f(x) is a bounded function, and prove that if f(x) has suitable structure, then x′=Ax+f(x) can be linearized.展开更多
A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertai...A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertainty are estimated by the T-S fuzzy system, and a robust adaptive control law is designed by the Lyapunov theory. Irrespective of whether the dimensions of the system and the rules of the fuzzy system are large or small, there is only one parameter adjusting on line. Uniformly ultimately boundedness of all signals of the composite closed-loop system are proved by theory analysis. Finally, a numerical example is studied based on the proposed method. The simulation results demonstrate the effectiveness and robustness of the control scheme.展开更多
This paper investigates the magnetohydrodynamic (MHD) boundary layer flow of an incompressible upper-convected Maxwell (UCM) fluid over a porous stretching surface. Similarity transformations are used to reduce th...This paper investigates the magnetohydrodynamic (MHD) boundary layer flow of an incompressible upper-convected Maxwell (UCM) fluid over a porous stretching surface. Similarity transformations are used to reduce the governing partial differential equations into a kind of nonlinear ordinary differential equations. The nonlinear prob- lem is solved by using the successive Taylor series linearization method (STSLM). The computations for velocity components are carried out for the emerging parameters. The numerical values of the skin friction coefficient are presented and analyzed for various parameters of interest in the problem.展开更多
The equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other models such as the small perturbation model and the piecewise-linear model. This paper analy...The equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other models such as the small perturbation model and the piecewise-linear model. This paper analyzes the physical significance of the equilibrium manifold linearization model, and the self-feedback mechanism of shock motion is revealed. This helps to describe the stability and dynamics of shock motion. Based on the model, the paper puts forwards a gain scheduling control method for nonlinear shock motion. Simulation has shown the validity of the control scheme.展开更多
This paper presents a flight control design for an unmanned aerial vehicle (UAV) using a nonlinear autoregressive moving average (NARMA-L2) neural network based feedback linearization and output redefinition techn...This paper presents a flight control design for an unmanned aerial vehicle (UAV) using a nonlinear autoregressive moving average (NARMA-L2) neural network based feedback linearization and output redefinition technique. The UAV investigated is non- minimum phase. The output redefinition technique is used in such a way that the resulting system to be inverted is a minimum phase system. The NARMA-L2 neural network is trained off-line for forward dynamics of the UAV model with redefined output and is then inverted to force the real output to approximately track a command input. Simulation results show that the proposed approaches have good performance.展开更多
Controlling chaotic oscillations of viscoelastic plates are investigated in this paper. Based on the exact linearization method in nonlinear system control theory, a nonlinear feedback control law is presented for a c...Controlling chaotic oscillations of viscoelastic plates are investigated in this paper. Based on the exact linearization method in nonlinear system control theory, a nonlinear feedback control law is presented for a class of non_affine control systems. The mathematical model describing motion of nonlinear viscoelastic plates is established, and it is simplified by the Galerkin method. The phase space portrait and the power spectrum are employed to demonstrate chaos in the system. The deflection is treated as an output, and is controlled to given periodic goals.展开更多
Most references on hydropneumatic suspension analysis regard it as harden Duffing spring and take the white noise as the system input, which is quite different from real physical model. It will introduce considerable ...Most references on hydropneumatic suspension analysis regard it as harden Duffing spring and take the white noise as the system input, which is quite different from real physical model. It will introduce considerable errors to the analytical result compared with the numerical simulation which makes it impossible to give a good depiction of the hydropneumatic suspension dynamics. In this paper, the dynamic response of the hydropneumatic suspension is worked out using statistical linearization based on 2 DOFs nonlinear suspension model. The damping of the suspension and the tire stiffness are both regarded as linear components and the real road roughness spectrum is used to work out the system input. The explicit analytical equivalent stiffness, dynamic mean value offset from statistic equilibrium position and the sprung acceleration varied with parameters of hydropneumatic spring, road roughness and vehicle velocity are worked out by substituting the nonlinear stiffness of hydropneumatic spring with its first three terms Tyler series at the static equilibrium position using James formula. The comparison of the numerical simulation and analytical result both on statistical parameters and distribution shows the validity of the analysis. The explicit form provides a concise and valid method on hydropneumatic suspension design and optimization.展开更多
In the mid-nineteenth century, Donders had proposed that for every human head rotating away from the primary pointing direction, the rotational vectors in the direction of the corresponding axes of rotation, is restri...In the mid-nineteenth century, Donders had proposed that for every human head rotating away from the primary pointing direction, the rotational vectors in the direction of the corresponding axes of rotation, is restricted to lie on a surface. Donders' intuition was that under such a restriction, the head orientation would be a function of its pointing direction. In this paper, we revisit Donders' Law and show that indeed the proposed intuition is true for a restricted class of head-orientations satisfying a class of quadratic Donders' surfaces, if the head points to a suitable neighborhood of the frontal pointing direction. Moreover, on a suitably chosen subspace of the 3D rotation group SO(3), we describe a head movement dynamical system with input control signals that are the three external torques on the head provided by muscles. Three output signals are also suitably chosen as follows. Two of the output signals are coordinates of the frontal pointing direction. The third signal measures deviation of the state vector from the Donders' surface. We claim that the square system is locally feedback linearizable on the subspace chosen, and the linear dynamics is decomposed into parts, transverse and tangential to the Donders' surface. We demonstrate our approach by synthesizing a tracking and path-following controller. Additionally, for different choices of the Donders' surface parameters, head gaits are visualized by simulating different movement patterns of the head-top vector, as the head-pointing vector rotates around a circle.展开更多
The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but w...The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but with small strains. A singularity-free parametrization of the rotation field is adopted. The constitutive equations, derived with respect to laminate curvilinear coordinates, are applicable to shell elements with an arbitrary number of orthotropic layers and where the material principal axes can vary from layer to layer. A careful consideration of the consistent linearization procedure pertinent to the proposed parametrization of finite rotations leads to symmetric tangent stiffness matrices. The matrix formulation adopted here makes it possible to implement the present formulation within the framework of the finite element method as a straightforward task.展开更多
In this paper,a fifth-order fully differential interface circuit( IC) is presented to improve the noise performance for micromechanical sigma-delta( Σ-Δ) accelerometer. A lead compensator is adopted to ensure the st...In this paper,a fifth-order fully differential interface circuit( IC) is presented to improve the noise performance for micromechanical sigma-delta( Σ-Δ) accelerometer. A lead compensator is adopted to ensure the stability of the closed-loop high-order system. A low noise capacitance detection circuit is described with a correlated-double-sampling( CDS) technique to decrease 1 /f noise and offset of the operational amplifier. This paper also proposes a self-test technique for the interface circuit to test the harmonic distortion. An electrostatic force feedback linearization circuit is presented to reduce the harmonic distortion resulting in larger dynamic range( DR). The layout of the IC is implemented in a standard 0. 6 μm CMOS technology and operates at a sampling frequency of 250 kHz. The interface consumes 20 mW from a 5 V supply. The post-simulation results indicate that the noise floor of the digital accelerometer is about- 140 dBV /Hz1 /2at low frequency. The sensitivity is 2. 5 V /g and the nonlinearity is 0. 11%. The self-test function is achieved with 98. 2 dB thirdorder harmonic distortion detection based on the electrostatic force feedback linearization.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11827801,12172181 and 11732006).
文摘How nonlinear joints affect the response of large space structures is an important problem to investigate.In this paper,a multi-harmonic equivalent modeling method is presented to establish a frequency-domain model of planar repetitive structures with nonlinear joints.First,at the local level,the nonlinear joint is modeled by the multi-harmonic describing function matrix.The element of the hybrid beam is obtained by the dynamic condensation of the beam-joint element.Second,at the global level,the displacement-equivalence method is used to model the multi-harmonic Euler continuum beam equivalent to the planar repetitive structure.Then,the pseudo-arc-length continuation method is applied to track the multi-harmonic trajectory of response.Afterwards,an experiment is conducted to validate the correctness of the modeling method,considering the effect of hanging rope and air damping.In the numerical studies,several simulation results indicate the similarity of response between a single-degree-of-freedom system with a single nonlinear joint and the system of the planar repetitive structure with a large number of nonlinear joints.Finally,the component of higher-order harmonics is shown to be important for predicting the resonance frequencies and amplitudes.
基金supported by the National Natural Science Foundation of China(NSFC 52175281,52475315)Youth Innovation Promotion Association of CAS(2021382)。
文摘The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show clinical potential,their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity(R^(2)>0.99 up to 1 MPa)in conventional designs.Inspired by the tactile sensing mechanism of human skin,where dermal stratification enables wide-range pressure adaptation and ion-channelregulated signaling maintains linear electrical responses,we developed a dual-mechanism flexible iontronic pressure sensor(FIPS).This innovative design synergistically combines two bioinspired components:interdigitated fabric microstructures enabling pressure-proportional contact area expansion(αP1/3)and iontronic film facilitating self-adaptive ion concentration modulation(αP^(2/3)),which together generate a linear capacitance-pressure response(CαP).The FIPS achieves breakthrough performance:242 kPa^(-1)sensitivity with 0.997linearity across 0-1 MPa,yielding a record linear sensing factor(LSF=242,000).The design is validated across various substrates and ionic materials,demonstrating its versatility.Finally,the FIPS-driven design enables a smart insole demonstrating 1.8%error in tibial load assessment during gait analysis,outperforming nonlinear counterparts(6.5%error)in early fracture-risk prediction.The biomimetic design framework establishes a universal approach for developing high-performance linear sensors,establishing generalized principles for medical-grade wearable devices.
基金supported by the National Natural Sci‐ence Foundation of China(Grant No.62306325)。
文摘During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.
文摘Aim To present a simple and effective method for the design of nonlinear and time varying control system. Methods A new concept of dynamic equilibrium of a system and its stability were presented first. It was pointed out that what is controlled directly by the input of a control system is the system's dynamic equilibrium rather than the states. Based on it, a new feedback linearization method for nonlinear system based on the Lyapunov direct method was given. Simulation studies were also carried out. Results The example and simulation show that by use of the method, the controller design becomes very simple and the control effect is quite satisfying. Conclusion The new method unifies the stabilizing problem(regulating problem) with the tracking problem. It is a very simple and effective method for the design of nonlinear and time varying control system.
基金supported by the National Natural Science Foundation of China (No.60975023)
文摘In order to design a nonlinear controller for small-scale autonomous helicopters, the dynamic characteristics of a model helicopter are investigated, and an integrated nonlinear model of a small-scale helicopter for hovering control is presented. It is proved that the nonlinear system of the small-scale helicopter can be transformed to a linear system using the dynamic feedback linearization technique. Finally, simulations are carried out to validate the nonlinear controller.
基金supported by the National Natural Science Foundation of China (Nos.:11002088,11172333,11272361)
文摘The equivalent linearization method (ELM) is modified to investigate the nonlinear flut- ter system of an airfoil with a cubic damping. After obtaining the linearization quantity of the cubic nonlinearity by the ELM, an equivalent system can be deduced and then investigated by linear flut- ter analysis methods. Different from the routine procedures of the ELM, the frequency rather than the amplitude of limit cycle oscillation (LCO) is chosen as an active increment to produce bifurca- tion charts. Numerical examples show that this modification makes the ELM much more efficient. Meanwhile, the LCOs obtained by the ELM are in good agreement with numerical solutions. The nonlinear damping can delay the occurrence of secondary bifurcation. On the other hand, it has marginal influence on bifurcation characteristics or LCOs.
基金supported by the National Natural Science Foundation of China (6071000260904007)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in Universitythe State Key Laboratory of Robotics and System (SKLRS200801AO3)
文摘This paper is focused on developing a tracking controller for a hypersonic cruise vehicle using tangent linearization approach.The design of flight control systems for air-breathing hypersonic vehicles is a highly challenging task due to the unique characteristics of the vehicle dynamics.Motivated by recent results on tangent linearization control,the tracking control problem for the hypersonic cruise vehicle is reduced to that of a feedback stabilizing controller design for a linear time-varying system which can be accomplished by a standard design method of frozen-time control.Through a proper model transformation,it can be proven that the tracking error of the designed closed-loop system decays exponentially.Simulation studies are conducted for trimmed cruise conditions of 110000 ft and Mach 15 where the responses of the vehicle to step changes in altitude and velocity are evaluated.The effectiveness of the controller is demonstrated by simulation results.
基金supported by the National Natural Science Foundation of China(51679201)
文摘The impact angle control over guidance(IACG) law against stationary targets is proposed by using feedback linearization control(FLC) and finite time control(FTC). First, this paper transforms the kinematics equation of guidance systems into the feedbackable linearization model, in which the guidance law is obtained without considering the impact angle via FLC. For the purpose of the line of sight(LOS) angle and its rate converging to the desired values, the second-order LOS angle is considered as a double-integral system. Then, this paper utilizes FTC to design a controller which can guarantee the states of the double-integral system converging to the desired values. Numerical simulation illustrates the performance of the IACG, in contrast to the existing guidance law.
文摘Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple local minima on the learning error surfaces, which affect the learning rate and solving optimal weights. This paper proposes a learning method linearizing non linearity of the activation function and discusses its merits and demerits theoretically.
基金the National Natural Science Foundation of China (90405011).
文摘An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The influence of unknown disturbances and uncertainties is reduced by RBFNN thanks to its approaching ability, and a robustifying itera is used to overcome the approximate error of RBFNN. The parameters adaptive adjusting laws are designed on the Lyapunov theory. The uniform ultimate boundedness of all signals of the composite closed-loop system is proved based on Lyapunov theory. Finally, the flight control system of an ASV is designed based on the proposed method. Simulation results demonstrate the effectiveness and robustness of the designed approach.
基金NSFC!( 1 9671 0 1 7) and NSF!( A970 1 2 ) of Fujian.
文摘In 1960s, Hartman and Grobman pointed out that if all eigenvalues of a matrix A have no zero real part and f(x) is small Lipchitzian, then x′=Ax+f(x) can be locally linearized on a neighborhood of the origin. Later, the above result was generalized to global under the condition that f(x) is a bounded function. In this paper, we delete the condition that f(x) is a bounded function, and prove that if f(x) has suitable structure, then x′=Ax+f(x) can be linearized.
基金the National Natural Science Foundation of China (90716028 and 90405011).
文摘A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertainty are estimated by the T-S fuzzy system, and a robust adaptive control law is designed by the Lyapunov theory. Irrespective of whether the dimensions of the system and the rules of the fuzzy system are large or small, there is only one parameter adjusting on line. Uniformly ultimately boundedness of all signals of the composite closed-loop system are proved by theory analysis. Finally, a numerical example is studied based on the proposed method. The simulation results demonstrate the effectiveness and robustness of the control scheme.
文摘This paper investigates the magnetohydrodynamic (MHD) boundary layer flow of an incompressible upper-convected Maxwell (UCM) fluid over a porous stretching surface. Similarity transformations are used to reduce the governing partial differential equations into a kind of nonlinear ordinary differential equations. The nonlinear prob- lem is solved by using the successive Taylor series linearization method (STSLM). The computations for velocity components are carried out for the emerging parameters. The numerical values of the skin friction coefficient are presented and analyzed for various parameters of interest in the problem.
基金Hie-Tch Research and Development Program of China (2002AA723011)
文摘The equilibrium manifold linearization model of nonlinear shock motion is of higher accuracy and lower complexity over other models such as the small perturbation model and the piecewise-linear model. This paper analyzes the physical significance of the equilibrium manifold linearization model, and the self-feedback mechanism of shock motion is revealed. This helps to describe the stability and dynamics of shock motion. Based on the model, the paper puts forwards a gain scheduling control method for nonlinear shock motion. Simulation has shown the validity of the control scheme.
文摘This paper presents a flight control design for an unmanned aerial vehicle (UAV) using a nonlinear autoregressive moving average (NARMA-L2) neural network based feedback linearization and output redefinition technique. The UAV investigated is non- minimum phase. The output redefinition technique is used in such a way that the resulting system to be inverted is a minimum phase system. The NARMA-L2 neural network is trained off-line for forward dynamics of the UAV model with redefined output and is then inverted to force the real output to approximately track a command input. Simulation results show that the proposed approaches have good performance.
文摘Controlling chaotic oscillations of viscoelastic plates are investigated in this paper. Based on the exact linearization method in nonlinear system control theory, a nonlinear feedback control law is presented for a class of non_affine control systems. The mathematical model describing motion of nonlinear viscoelastic plates is established, and it is simplified by the Galerkin method. The phase space portrait and the power spectrum are employed to demonstrate chaos in the system. The deflection is treated as an output, and is controlled to given periodic goals.
基金Supported by National Natural Science Foundation of China(Grant No.51005018)Beijing Municipal Clean Vehicle Key Laboratory Open Foundation of China(2013)
文摘Most references on hydropneumatic suspension analysis regard it as harden Duffing spring and take the white noise as the system input, which is quite different from real physical model. It will introduce considerable errors to the analytical result compared with the numerical simulation which makes it impossible to give a good depiction of the hydropneumatic suspension dynamics. In this paper, the dynamic response of the hydropneumatic suspension is worked out using statistical linearization based on 2 DOFs nonlinear suspension model. The damping of the suspension and the tire stiffness are both regarded as linear components and the real road roughness spectrum is used to work out the system input. The explicit analytical equivalent stiffness, dynamic mean value offset from statistic equilibrium position and the sprung acceleration varied with parameters of hydropneumatic spring, road roughness and vehicle velocity are worked out by substituting the nonlinear stiffness of hydropneumatic spring with its first three terms Tyler series at the static equilibrium position using James formula. The comparison of the numerical simulation and analytical result both on statistical parameters and distribution shows the validity of the analysis. The explicit form provides a concise and valid method on hydropneumatic suspension design and optimization.
文摘In the mid-nineteenth century, Donders had proposed that for every human head rotating away from the primary pointing direction, the rotational vectors in the direction of the corresponding axes of rotation, is restricted to lie on a surface. Donders' intuition was that under such a restriction, the head orientation would be a function of its pointing direction. In this paper, we revisit Donders' Law and show that indeed the proposed intuition is true for a restricted class of head-orientations satisfying a class of quadratic Donders' surfaces, if the head points to a suitable neighborhood of the frontal pointing direction. Moreover, on a suitably chosen subspace of the 3D rotation group SO(3), we describe a head movement dynamical system with input control signals that are the three external torques on the head provided by muscles. Three output signals are also suitably chosen as follows. Two of the output signals are coordinates of the frontal pointing direction. The third signal measures deviation of the state vector from the Donders' surface. We claim that the square system is locally feedback linearizable on the subspace chosen, and the linear dynamics is decomposed into parts, transverse and tangential to the Donders' surface. We demonstrate our approach by synthesizing a tracking and path-following controller. Additionally, for different choices of the Donders' surface parameters, head gaits are visualized by simulating different movement patterns of the head-top vector, as the head-pointing vector rotates around a circle.
文摘The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but with small strains. A singularity-free parametrization of the rotation field is adopted. The constitutive equations, derived with respect to laminate curvilinear coordinates, are applicable to shell elements with an arbitrary number of orthotropic layers and where the material principal axes can vary from layer to layer. A careful consideration of the consistent linearization procedure pertinent to the proposed parametrization of finite rotations leads to symmetric tangent stiffness matrices. The matrix formulation adopted here makes it possible to implement the present formulation within the framework of the finite element method as a straightforward task.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61204121)the National Hi-Tech Research and Development Program of China(Grant No.2013AA041107)
文摘In this paper,a fifth-order fully differential interface circuit( IC) is presented to improve the noise performance for micromechanical sigma-delta( Σ-Δ) accelerometer. A lead compensator is adopted to ensure the stability of the closed-loop high-order system. A low noise capacitance detection circuit is described with a correlated-double-sampling( CDS) technique to decrease 1 /f noise and offset of the operational amplifier. This paper also proposes a self-test technique for the interface circuit to test the harmonic distortion. An electrostatic force feedback linearization circuit is presented to reduce the harmonic distortion resulting in larger dynamic range( DR). The layout of the IC is implemented in a standard 0. 6 μm CMOS technology and operates at a sampling frequency of 250 kHz. The interface consumes 20 mW from a 5 V supply. The post-simulation results indicate that the noise floor of the digital accelerometer is about- 140 dBV /Hz1 /2at low frequency. The sensitivity is 2. 5 V /g and the nonlinearity is 0. 11%. The self-test function is achieved with 98. 2 dB thirdorder harmonic distortion detection based on the electrostatic force feedback linearization.