期刊文献+
共找到1,885篇文章
< 1 2 95 >
每页显示 20 50 100
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
1
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 Graph neural networks convolutional neural network deep learning dynamic multi-graph SPATIO-TEMPORAL
在线阅读 下载PDF
Interpreting the vulnerability of power systems in cascading failures using multi-graph convolutional networks
2
作者 Supaporn LONAPALAWONG Changsheng CHEN +1 位作者 Can WANG Wei CHEN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2022年第12期1848-1861,共14页
Analyzing the vulnerability of power systems in cascading failures is generally regarded as a challenging problem.Although existing studies can extract some critical rules,they fail to capture the complex subtleties u... Analyzing the vulnerability of power systems in cascading failures is generally regarded as a challenging problem.Although existing studies can extract some critical rules,they fail to capture the complex subtleties under different operational conditions.In recent years,several deep learning methods have been applied to address this issue.However,most of the existing deep learning methods consider only the grid topology of a power system in terms of topological connections,but do not encompass a power system’s spatial information such as the electrical distance to increase the accuracy in the process of graph convolution.In this paper,we construct a novel power-weighted line graph that uses power system topology and spatial information to optimize the edge weight assignment of the line graph.Then we propose a multi-graph convolutional network(MGCN)based on a graph classification task,which preserves a power system’s spatial correlations and captures the relationships among physical components.Our model can better handle the problem with power systems that have parallel lines,where our method can maintain desirable accuracy in modeling systems with these extra topology features.To increase the interpretability of the model,we present the MGCN using layer-wise relevance propagation and quantify the contributing factors of model classification. 展开更多
关键词 Power systems Vulnerability Cascading failures multi-graph convolutional networks Weighted line graph
原文传递
融合知识图谱和大模型的高校科研管理问答系统设计 被引量:5
3
作者 王永 秦嘉俊 +1 位作者 黄有锐 邓江洲 《计算机科学与探索》 北大核心 2025年第1期107-117,共11页
科研管理是高校管理中的重要组成部分,但现有的科研管理系统难以满足用户的个性化需求。以高校科研管理向智能化转型为需求导向,将知识图谱、传统模型和大语言模型相结合,共同构建新一代高校科研管理问答系统。采集科研知识用于构建科... 科研管理是高校管理中的重要组成部分,但现有的科研管理系统难以满足用户的个性化需求。以高校科研管理向智能化转型为需求导向,将知识图谱、传统模型和大语言模型相结合,共同构建新一代高校科研管理问答系统。采集科研知识用于构建科研知识图谱。利用同时进行意图分类和实体提取的多任务模型进行语义解析。借助解析结果来生成查询语句,并从知识图谱中检索信息来回复常规问题。将大语言模型与知识图谱相结合,以辅助处理开放性问题。在意图和实体具有关联的数据集上的实验结果表明,采用的多任务模型在意图分类和实体识别任务上的F1值分别为0.958和0.937,优于其他对比模型和单任务模型。Cypher生成测试表明了自定义Prompt在激发大语言模型涌现能力方面的成效,利用大语言模型实现文本生成Cypher的准确率达到85.8%,有效处理了基于知识图谱的开放性问题。采用知识图谱、传统模型和大语言模型搭建的问答系统的准确性为0.935,很好地满足了智能问答的需求。 展开更多
关键词 知识图谱 多任务模型 意图分类 命名实体识别 大语言模型
在线阅读 下载PDF
共享和特定表示的多视图属性图聚类 被引量:3
4
作者 曹付元 陈晓惠 《软件学报》 北大核心 2025年第3期1254-1267,共14页
现有的多视图属性图聚类方法通常是在融合多个视图的统一表示中学习一致信息与互补信息,然而先融合再学习的方法不仅会损失原始各个视图的特定信息,而且统一表示难以兼顾一致性与互补性.为了保留各个视图的原始信息,采用先学习再融合的... 现有的多视图属性图聚类方法通常是在融合多个视图的统一表示中学习一致信息与互补信息,然而先融合再学习的方法不仅会损失原始各个视图的特定信息,而且统一表示难以兼顾一致性与互补性.为了保留各个视图的原始信息,采用先学习再融合的方式,先分别学习每个视图的共享表示与特定表示再进行融合,更细粒度地学习多视图的一致信息和互补信息,构建一种基于共享和特定表示的多视图属性图聚类模型(multi-view attribute graph clustering based on shared and specific representation,MSAGC).具体来说,首先通过多视图编码器获得每个视图的初级表示,进而获得每个视图的共享信息和特定信息;然后对齐视图共享信息来学习多视图的一致信息,联合视图特定信息来利用多视图的互补信息,通过差异性约束来处理冗余信息;之后训练多视图解码器重构图的拓扑结构和属性特征矩阵;最后,附加自监督聚类模块使得图表示的学习和聚类任务趋向一致.MSAGC的有效性在真实的多视图属性图数据集上得到了很好地验证. 展开更多
关键词 多视图属性图 共享信息 特定信息 聚类
在线阅读 下载PDF
城市排水管网流量预测多视图时空图神经网络模型 被引量:2
5
作者 涂伟 池向沅 +3 位作者 赵天鸿 杨剑 朱世平 陈德莉 《测绘学报》 北大核心 2025年第2期334-344,共11页
城市排水管网的流量是其运行效率和安全的关键指标,准确的流量预测对排水管网运行风险预警、优化其运行效率及规划布局至关重要。水流量不仅受到其自身动力学特性的影响,还与管网的空间结构紧密相关,但传统水流量预测方法较少关注水流... 城市排水管网的流量是其运行效率和安全的关键指标,准确的流量预测对排水管网运行风险预警、优化其运行效率及规划布局至关重要。水流量不仅受到其自身动力学特性的影响,还与管网的空间结构紧密相关,但传统水流量预测方法较少关注水流在管道之间复杂多维的空间依赖关系。针对这一问题,本文提出了一种基于多视图的时空图网络模型,该模型综合考虑了排水管网的空间邻近性和节点间的属性相似性。分别构建最近邻拓扑视图与流量相似性属性视图,使用时空图卷积网络挖掘流量特征的内在时空依赖,利用注意力机制对多个视图的时空依赖特征进行融合以获得流量预测值。利用某市排水管网历史水流监测数据进行试验,结果表明本文提出的多视图时空图神经网络模型取得了较好的预测性能,多视图对比试验验证了不同视图在模型中起到的贡献。 展开更多
关键词 管网流量预测 多视图 时空图网络 图深度学习
在线阅读 下载PDF
大数据赋能的多任务旅游信息分析框架 被引量:1
6
作者 杨光辉 李源彬 杨红兵 《无线电通信技术》 北大核心 2025年第1期187-195,共9页
以旅游大数据为基础,考虑长时间范围内的滞后效应以及不同搜索强度指数(Search Intensity Index,SII)之间的多任务影响,提出一种基于大数据的多任务旅游信息分析(Multi-tasking Tourism Information Analysis Based on Big Data,MTIABD... 以旅游大数据为基础,考虑长时间范围内的滞后效应以及不同搜索强度指数(Search Intensity Index,SII)之间的多任务影响,提出一种基于大数据的多任务旅游信息分析(Multi-tasking Tourism Information Analysis Based on Big Data,MTIABD)框架。使用融合信息重排序技术预测旅游需求,具体根据图引导结构模拟历史变量对未来变量的滞后影响。每个变量通过时间维度上的卷积神经网络(Convolutional Neural Network,CNN)进行独立编码,利用二分图动态建模滞后效应,通过图聚合进行挖掘,实现对旅游需求的精准预测。基于上述技术,构建旅游需求预测系统,旅游者能够根据需求检索不同景点的信息。在真实数据集上进行大量实验,结果表明所提出的MTIABD框架在一步和多步预测方面均优于现有方法。在平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)指标下,相较于基于实例的多变量时间序列图预测框架(Instance-wise Graph-rased Framework for Multivariate Time Series Forecasting,IGMTF),MTIABD在HK-2021数据集上的性能提高了16.75%,在MO-2021数据集上的性能提高了19.79%。 展开更多
关键词 大数据 多任务 图神经网络 滞后效应
在线阅读 下载PDF
韧性电网下的时空多图卷积网络恐怖主义事件模型
7
作者 高红亮 陈宏山 +3 位作者 侯方迪 石侃 杨政权 何勇军 《哈尔滨理工大学学报》 北大核心 2025年第5期96-105,共10页
恐怖主义是当今文明面临的最主要威胁之一,恐怖主义不仅扰乱了社会秩序,而且影响了人们的生活质量。人工智能为反恐行动中的数据分析和模式识别提供了有力支持,在此基础上,结合韧性电网,提出了一种基于知识图谱和时空多图卷积神经网络... 恐怖主义是当今文明面临的最主要威胁之一,恐怖主义不仅扰乱了社会秩序,而且影响了人们的生活质量。人工智能为反恐行动中的数据分析和模式识别提供了有力支持,在此基础上,结合韧性电网,提出了一种基于知识图谱和时空多图卷积神经网络的电力恐怖主义事件预测方法,该方法可有效挖掘全球恐怖主义数据库(GTD)中的数据来构建知识图谱,知识图谱中包含对恐怖主义事件节点和关系的描述。然后,利用小波变换得到恐怖主义事件的趋势性和周期性,并采用时空多图卷积神经网络对恐怖主义事件时间序列数据的时空动态相关性进行建模。最后,通过训练好的模型预测恐怖事件的行为。实验结果表明,本文方法的准确率、精确率、召回率和F 1-score均超过90%,优于现有方法。 展开更多
关键词 恐怖主义 事件预测 知识图谱 时空多图卷积网络 韧性电网
在线阅读 下载PDF
面向民航飞机故障安全诊断的知识图谱构建方法 被引量:2
8
作者 朱江 谢涛 《中国安全生产科学技术》 北大核心 2025年第3期186-194,共9页
为更好地管理和利用民航飞机设备故障维修知识,提高飞机故障安全诊断的决策效率,提出融合数据增强和多尺度注意力机制的飞机设备故障知识图谱构建方法。首先,创建基于语义相似性的实体集构建模式,结合余弦相似度计算扩充数据样本。其次... 为更好地管理和利用民航飞机设备故障维修知识,提高飞机故障安全诊断的决策效率,提出融合数据增强和多尺度注意力机制的飞机设备故障知识图谱构建方法。首先,创建基于语义相似性的实体集构建模式,结合余弦相似度计算扩充数据样本。其次,采用多尺度注意力对BERT-BiLSTM-CRF模型进行优化改进,以提升知识抽取时局部和全局信息的关注度。最后,利用Neo4j图数据库搭建飞机设备故障知识图谱,并辅助开发智能问答系统用于决策推荐。研究结果表明:所提方法有效解决模型在小样本数据上的局限性,且故障文本知识抽取性能较基准模型显著提升,实体识别精确率、召回率和F 1分别达到92.59%,94.68%和93.62%,为搭建知识图谱提供可靠信息。研究结果可为实现飞机故障的高效诊断和预防飞机事故风险提供参考。 展开更多
关键词 飞机设备 故障诊断 数据增强 多尺度注意力 知识图谱 智能问答
在线阅读 下载PDF
基于开源科技项目数据的多模态知识图谱构建研究 被引量:3
9
作者 窦永香 解哲辉 汤晓芳 《情报理论与实践》 北大核心 2025年第3期32-40,共9页
[目的/意义]在全球科技竞争日益激烈的背景下,开源情报作为研究和预测世界科技发展趋势的重要工具,对于科技情报工作的重要性愈发凸显。科技项目数据作为科技情报的重要数据来源和分析对象,呈现出多源、多模态的特性,对其进行深度分析... [目的/意义]在全球科技竞争日益激烈的背景下,开源情报作为研究和预测世界科技发展趋势的重要工具,对于科技情报工作的重要性愈发凸显。科技项目数据作为科技情报的重要数据来源和分析对象,呈现出多源、多模态的特性,对其进行深度分析和挖掘,并服务于管理与决策活动,是新时期科技资源高效利用的重要途径。[方法/过程]文章将情报工作流程与多模态知识图谱构建流程相融合,提出了基于开源科技项目数据的多模态知识图谱构建框架,包含需求分析、开源情报采集、多模态科技项目知识图谱构建以及知识图谱服务4个关键环节,并详细讨论了每个环节中的核心内容。[结果/结论]以美国情报高级研究计划局(IARPA)公开项目的多模态数据为例,遵循上述框架构建了包含项目、机构、人员、技术、文档、图像、视频7类实体及多种关系的多模态知识图谱。未来,可将多模态知识图谱与问答系统、推荐系统相结合,为科技管理决策提供更加智能化的情报服务。 展开更多
关键词 开源情报 科技项目 多模态知识图谱 科技情报 数据挖掘 科技管理
原文传递
基于知识图谱的药物推荐方法研究综述
10
作者 彭琳 汪宇 +2 位作者 叶青 程春雷 贺佳 《计算机应用研究》 北大核心 2025年第11期3225-3235,共11页
药物推荐通过分析个体健康状况、病史、遗传信息以及生活方式等因素,为患者提供个性化的药物治疗方案,但该技术在实际应用中仍面临数据稀疏性、冷启动和可解释性等问题。知识图谱因其丰富的结构化语义知识,作为推荐系统的辅助信息,可有... 药物推荐通过分析个体健康状况、病史、遗传信息以及生活方式等因素,为患者提供个性化的药物治疗方案,但该技术在实际应用中仍面临数据稀疏性、冷启动和可解释性等问题。知识图谱因其丰富的结构化语义知识,作为推荐系统的辅助信息,可有效解决这些问题并提升系统性能。为此,综述了基于知识图谱的药物推荐方法的发展现状及其在各种问题中的应用。首先系统梳理了相关背景知识,指出了药物推荐中存在的共性问题和领域问题;从问题和技术两个角度详细讨论了基于知识图谱的药物推荐方法的优势和局限性,包括传统的知识图谱推荐方法、融合多模态知识图谱的推荐方法和融合大语言模型的知识图谱推荐方法。最后对该领域的未来发展前景提出了展望。 展开更多
关键词 知识图谱 推荐系统 药物推荐 多模态知识图谱 大语言模型
在线阅读 下载PDF
融合多层图与分类信息的双意图会话推荐 被引量:1
11
作者 刘超 王中迪 +1 位作者 余岩化 朱军 《计算机应用研究》 北大核心 2025年第4期1058-1064,共7页
针对现有会话推荐系统存在的会话间信息挖掘不够充分、会话间聚合信息冗余和辅助信息未与会话特征相结合的问题,提出融合多层图与分类信息的双意图会话推荐模型(SRIMC)。首先,根据会话序列,构建局部会话图、会话关系图和全局项目图,通... 针对现有会话推荐系统存在的会话间信息挖掘不够充分、会话间聚合信息冗余和辅助信息未与会话特征相结合的问题,提出融合多层图与分类信息的双意图会话推荐模型(SRIMC)。首先,根据会话序列,构建局部会话图、会话关系图和全局项目图,通过图神经网络(GNN)学习得到局部会话特征、会话关系特征和全局项目会话特征,并将上述特征结合获得α意图;其次,基于替换先验分布为β分布的贝叶斯分布整合分类信息与会话长度信息,获得β意图;最后,将α和β意图融合进行预测。在五个公开数据集上的实验结果表明,SRIMC的P@20提升了1.23%~51.78%,MRR@20提升了2.87%~80.87%,证明了模型利用多层会话信息与分类信息捕获用户意图的有效性。 展开更多
关键词 会话推荐 多层信息 图神经网络 分类信息 双意图
在线阅读 下载PDF
一种基于概率分布分层图聚类网络的社区检测模型
12
作者 徐森 刘轩绮 +5 位作者 陈朝峰 郭乃瑄 卞学胜 马芙蓉 花小朋 周天 《控制与决策》 北大核心 2025年第6期1969-1974,共6页
为了捕捉网络的隐藏结构,减少社区检测模型对初始参数选择的依赖性,提出一种基于概率分布分层图聚类网络(HGCPD)的社区检测模型.首先,利用图卷积网络学习和缓存图中节点的特征表示;然后,引入一种基于节点对相似度概率的分层聚类方法,在... 为了捕捉网络的隐藏结构,减少社区检测模型对初始参数选择的依赖性,提出一种基于概率分布分层图聚类网络(HGCPD)的社区检测模型.首先,利用图卷积网络学习和缓存图中节点的特征表示;然后,引入一种基于节点对相似度概率的分层聚类方法,在不同层次上递归地构建社区结构;最后,探究模型超参数优化问题,设计贝叶斯优化方法自动调整参数,从而提升模型效率.在多个不同规模的网络数据集上的实验表明,HGCPD模型在社区检测的准确性、有效性均优于主流方法,并通过可视化验证了所提出模型的可解释性. 展开更多
关键词 概率分布 多尺度结构 图卷积网络 贝叶斯优化
原文传递
基于图优化的智能车辆多传感器融合定位方法 被引量:1
13
作者 张伟 李旭东 +1 位作者 曹伟 赵奉奎 《软件工程》 2025年第4期53-56,72,共5页
为了提升车辆定位系统的精度和鲁棒性,针对单一传感器存在的局限性,提出了一种基于图优化的LIDAR(Light Detection and Ranging,LIDAR)、IMU(Inertial Measurement Unit)和GNSS-RTK(Global Navigation Satellite System-Real-Time Kinem... 为了提升车辆定位系统的精度和鲁棒性,针对单一传感器存在的局限性,提出了一种基于图优化的LIDAR(Light Detection and Ranging,LIDAR)、IMU(Inertial Measurement Unit)和GNSS-RTK(Global Navigation Satellite System-Real-Time Kinematic)的多传感器车辆定位方法。首先,使用IMU预积分模型,通过滑动窗口和扫描匹配的方法构建LIDAR里程计因子,加入GNSS-RTK绝对测量值以修正系统的长期漂移;其次,使用因子图优化框架将LIDAR、IMU和GNSS-RTK的测量数据进行融合,并加入回环检测因子,通过求解最大后验估计以获取最佳的定位结果。实验结果显示,所提出方法的相对平移误差低至0.34 m,具有较高的准确性和鲁棒性,弥补了单传感器的不足,提高了车辆定位系统的定位精度。 展开更多
关键词 图优化 多传感器融合 智能车辆 定位 回环检测
在线阅读 下载PDF
融合多视图对比学习和知识图谱的推荐算法 被引量:3
14
作者 王光 姜皓 《计算机系统应用》 2025年第6期118-127,共10页
当前多数图对比学习驱动的推荐系统模型倾向于依赖单一视图进行训练,这种做法不可避免地限制了模型对复杂数据特征的全面捕捉能力.为此,提出一种融合多视图对比学习和知识图谱的推荐算法MKCLR(multi-view knowledge contrastive learnin... 当前多数图对比学习驱动的推荐系统模型倾向于依赖单一视图进行训练,这种做法不可避免地限制了模型对复杂数据特征的全面捕捉能力.为此,提出一种融合多视图对比学习和知识图谱的推荐算法MKCLR(multi-view knowledge contrastive learning recommendation).首先,使用了3种视图增强方法,分别是随机边丢弃,添加均匀噪声扰动和随机游走算法,为知识图谱和用户-物品图构建3个对比视图;其次,通过LightGCN进行编码,并为之构建多组对比学习任务,来最大化地提取和利用多视图数据中的丰富信息;最后,将主推荐任务与对比学习结合起来进行联合训练,在MIND、Last-FM和Alibaba-iFashion这3个基准数据集上进行实验,结果表明,MKCLR在Recall和NDCG这两个评价指标上分别平均提升5.78%和8.68%,证明了所提方法的有效性. 展开更多
关键词 图神经网络 多视图增强 对比学习 知识图谱 推荐算法
在线阅读 下载PDF
结合自适应局部图卷积与多尺度时间建模的骨架行为识别
15
作者 田青 虞静静 张正 《计算机应用研究》 北大核心 2025年第7期2199-2205,共7页
鉴于人体骨架的固有拓扑结构特性,采用图卷积网络进行骨架数据建模成为行为识别的一种有效手段。然而,在骨架行为识别方法中存在固定拓扑图结构与固定内核大小的时间卷积难以适应多变的动作类型、姿态及行为时长,导致建模误差,影响识别... 鉴于人体骨架的固有拓扑结构特性,采用图卷积网络进行骨架数据建模成为行为识别的一种有效手段。然而,在骨架行为识别方法中存在固定拓扑图结构与固定内核大小的时间卷积难以适应多变的动作类型、姿态及行为时长,导致建模误差,影响识别精度的问题。为此,提出了一种结合自适应局部图卷积与多尺度时间建模的骨架行为识别方法。该方法通过自适应局部图卷积模块,实现人体骨骼结构的独立动态表征;设计多尺度时间建模模块,实现对不同持续时间的行为进行建模,并降低了参数量和计算复杂度;引入时空DropGraph结构,动态调整图拓扑结构,提升模型的泛化能力并防止过拟合。实验表明,在NTU RGB+D 60数据集的跨对象C-Sub和跨视角C-View基准下分别取得了93.39%和97.18%的准确率,在NTU RGB+D 120数据集的跨对象C-Sub和跨设置C-Set基准下分别取得了90.48%和91.95%的准确率,高于现有的行为识别方法,证明了该方法的优越性。 展开更多
关键词 局部图卷积 自适应图 多尺度时间建模 行为识别
在线阅读 下载PDF
VIG-SLAM:基于自适应多传感器融合的SLAM算法
16
作者 黄超 黄予昕 +1 位作者 杨泽彬 张毅 《电子测量与仪器学报》 北大核心 2025年第5期67-74,共8页
在缺乏全球定位系统(GPS)信号的环境中,仅依赖视觉惯性里程计的同步定位与建图(SLAM)算法虽能实现局部精确定位,但长距离移动时累积误差显著,导致定位精度下降。同时,尽管GPS能够提供全局位置信息,但在城市峡谷、隧道等复杂环境中,信号... 在缺乏全球定位系统(GPS)信号的环境中,仅依赖视觉惯性里程计的同步定位与建图(SLAM)算法虽能实现局部精确定位,但长距离移动时累积误差显著,导致定位精度下降。同时,尽管GPS能够提供全局位置信息,但在城市峡谷、隧道等复杂环境中,信号容易受到遮挡和干扰,导致定位性能不稳定,限制了其在复杂环境中的应用。为了解决上述问题,提出了VIG-SLAM算法,将视觉/惯导/轮速计紧耦合定位系统(VIW)与GPS数据进行自适应融合。首先,构建了GPS精度因子模型与异常检测机制,以评估并动态选择适合融合的高质量GPS数据。其次,提出了一种改进的自适应时间差补偿策略,解决GPS与VIW系统时间戳不匹配的问题,同时,在时间差补偿中动态调整GPS信号的权重,提升在复杂环境下的定位精度与鲁棒性。最后,构建了包含GPS约束的全局位姿图优化模型,将GPS全局定位信息作为全局约束,与VIW局部定位信息进行互补,实现大场景下的鲁棒定位。在公开数据集上以及真实实验场景中验证了所提方法的有效性,实验结果表明,相比当前主流视觉SLAM算法,提出的的VIG-SLAM算法平均定位精度至少提高15%,具有较强的鲁棒性和精度优势。 展开更多
关键词 SLAM GPS 位姿图优化 多传感器融合
原文传递
基于级联残差图卷积网络的多行为推荐
17
作者 党伟超 宋楚君 +1 位作者 高改梅 刘春霞 《计算机应用》 北大核心 2025年第4期1223-1231,共9页
针对多行为推荐研究中存在的数据稀疏和忽视多行为之间复杂联系的问题,提出一种基于级联残差图卷积网络的多行为推荐(CRMBR)模型。首先,从由所有行为的相互作用构建的统一同构图中学习用户和项目的全局嵌入,并将这些嵌入用作初始化嵌入... 针对多行为推荐研究中存在的数据稀疏和忽视多行为之间复杂联系的问题,提出一种基于级联残差图卷积网络的多行为推荐(CRMBR)模型。首先,从由所有行为的相互作用构建的统一同构图中学习用户和项目的全局嵌入,并将这些嵌入用作初始化嵌入;其次,通过级联残差块捕获不同行为之间的联系,以不断细化不同类型行为的嵌入,从而完善用户偏好;最后,通过2种不同的聚合策略分别聚合用户和项目嵌入,并采用多任务学习(MTL)优化这些嵌入。在多个真实数据集上的实验结果表明,CRMBR模型的推荐性能优于目前的主流模型。与先进的基准模型——多行为分层图卷积网络(MB-HGCN)相比,在Tmall数据集上,所提模型的命中率(HR@20)和归一化折损累积增益(NDCG@20)分别提升了3.1%和3.9%;在Beibei数据集上,则分别提升了15.8%和16.9%;在Jdata数据集上,则分别提升了1.0%和3.3%,验证了所提模型的有效性。 展开更多
关键词 多行为推荐 级联残差 图卷积网络 聚合策略 多任务学习
在线阅读 下载PDF
基于多标签关系图和局部动态重构学习的多标签分类模型
18
作者 胡婕 郑启扬 +1 位作者 孙军 张龑 《计算机应用》 北大核心 2025年第4期1104-1112,共9页
在多标签分类任务中,现有模型对依赖关系的构建主要考虑标签在训练集中是否共现,而忽视了标签之间各种不同类型的关系以及在不同样本中的动态交互关系。因此,结合多标签关系图和局部动态重构图学习更完整的标签依赖关系。首先,根据标签... 在多标签分类任务中,现有模型对依赖关系的构建主要考虑标签在训练集中是否共现,而忽视了标签之间各种不同类型的关系以及在不同样本中的动态交互关系。因此,结合多标签关系图和局部动态重构图学习更完整的标签依赖关系。首先,根据标签的全局共现关系,采用数据驱动的方式构建多标签关系图,学习标签之间不同类型的依赖关系;其次,通过标签注意力机制探索文本信息和标签语义的关联性;最后,对标签图进行动态重构学习,以捕获标签之间的局部特定关系。在3个公开数据集BibTeX、Delicious和Reuters-21578上的实验结果表明,所提模型的宏平均F1(maF1)值相较于MrMP(Multi-relation Message Passing)分别提高了1.6、1.0和2.2个百分点,综合性能得到提升。 展开更多
关键词 多标签分类 多标签关系图 标签依赖关系 局部动态重构图 标签注意力机制
在线阅读 下载PDF
融合变分图自编码器与局部-全局图网络的认知负荷脑电识别模型 被引量:1
19
作者 周天彤 郑妍琪 +2 位作者 魏韬 戴亚康 邹凌 《计算机应用》 北大核心 2025年第6期1849-1857,共9页
针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学... 针对认知负荷识别模型存在过于依赖手动特征提取、忽视脑电图(EEG)信号的空间信息和无法有效学习图结构数据的问题,提出一种融合变分图自编码器(VGAE)与局部-全局图网络(VLGGNet)的认知负荷EEG识别模型。该模型由时间学习模块和图形学习模块这2个部分组成。首先,使用时间学习模块通过多尺度时间卷积捕捉EEG信号的动态频率表示,并通过空间与通道重建卷积(SCConv)和1×1卷积核级联模块融合多尺度卷积提取的特征;其次,使用图形学习模块将EEG数据定义为局部-全局图,其中,局部图特征提取层将节点属性聚合到一个低维向量,全局图特征提取层通过VGAE重构图结构;最后,对全局图和节点特征向量执行轻量化图卷积操作,由全连接层输出预测结果。通过嵌套交叉验证,实验结果表明,在心算任务(MAT)数据集上,相较于次优的局部-全局图网络(LGGNet),VLGGNet的平均准确率(mAcc)和平均F1分数(mF1)分别提升了4.07和3.86个百分点;在同时任务EEG工作量(STEW)数据集上,相较于表现最好的多尺度时空卷积神经网络(TSception),VLGGNet的mAcc与TSception相同,mF1仅降低了0.01个百分点。可见VLGGNet提高了认知负荷分类的性能,也验证了前额叶和额叶区域与认知负荷状态密切相关。 展开更多
关键词 认知负荷 脑电信号 多尺度时间卷积 变分图自编码器 局部-全局图网络
在线阅读 下载PDF
基于双向多视角关系图卷积网络的论辩对抽取方法
20
作者 张虎 吴增泰 王宇杰 《自动化学报》 北大核心 2025年第6期1290-1304,共15页
论辩对抽取是论辩挖掘领域中的一项重要研究任务,旨在从对话文档的两个段落中抽取互动论辩对.现有研究通常将其分为序列标记和关系分类两个子任务,通过预测段落间的句子级关系来抽取论辩对.然而,这些研究在整体论点级语义及句子内部细... 论辩对抽取是论辩挖掘领域中的一项重要研究任务,旨在从对话文档的两个段落中抽取互动论辩对.现有研究通常将其分为序列标记和关系分类两个子任务,通过预测段落间的句子级关系来抽取论辩对.然而,这些研究在整体论点级语义及句子内部细粒度语义逻辑信息的显式建模上仍存在不足,且未充分考虑两个段落间复杂的上下文感知交互关系.基于此,提出一种双向多视角关系图卷积网络.首先,从段落内、依存语法和段落间视角分别构建论点关系图,利用图结构表示文本的逻辑结构和语义交互关系,为模型提供丰富的上下文语义信息.然后,通过引入多视角关系图卷积和图匹配模块,在两个段落之间进行双向交互,充分利用不同层次的论点间互动关系,增强模型对跨段落论点间语义联系的捕捉能力和论点关系的识别精度.实验结果表明,相较于基线模型,该方法在性能上有了显著提升. 展开更多
关键词 论辩对抽取 图卷积网络 论辩挖掘 多视角关系图
在线阅读 下载PDF
上一页 1 2 95 下一页 到第
使用帮助 返回顶部