Recently,much interest has been given tomulti-granulation rough sets (MGRS), and various types ofMGRSmodelshave been developed from different viewpoints. In this paper, we introduce two techniques for the classificati...Recently,much interest has been given tomulti-granulation rough sets (MGRS), and various types ofMGRSmodelshave been developed from different viewpoints. In this paper, we introduce two techniques for the classificationof MGRS. Firstly, we generate multi-topologies from multi-relations defined in the universe. Hence, a novelapproximation space is established by leveraging the underlying topological structure. The characteristics of thenewly proposed approximation space are discussed.We introduce an algorithmfor the reduction ofmulti-relations.Secondly, a new approach for the classification ofMGRS based on neighborhood concepts is introduced. Finally, areal-life application from medical records is introduced via our approach to the classification of MGRS.展开更多
The preference analysis is a class of important issues in multi-criteria ordinal decision making.The rough set is an effective approach to handle preference analysis.In order to solve the multi-criteria preference ana...The preference analysis is a class of important issues in multi-criteria ordinal decision making.The rough set is an effective approach to handle preference analysis.In order to solve the multi-criteria preference analysis problems,this paper improves the preference relation rough set model and expands it to multi-granulation cases.Cost is also an important issue in the field of decision analysis.Taking the cost into consideration,we also expand the model to the cost sensitive multi-granulation preference relation rough set.Some theorems are represented,and the granule structure selection based on approximation quality is investigated.The experimental results show that the multi-granulation preference rough set approach with the consideration of cost has a better performance in granule structure selection than that without cost consideration.展开更多
Owing to process conditions such as uneven clearance of base metal assembly and welding deformation,it is difficult to obtain well-formed structural welds with robot constant specification parameters welding.Determini...Owing to process conditions such as uneven clearance of base metal assembly and welding deformation,it is difficult to obtain well-formed structural welds with robot constant specification parameters welding.Determining how to extract a structured,anti-interference,concise,and dynamic knowledge model from measurable data,and then adjust the welding parameters with corresponding control methods in real time is a central problem to be solved in welding formation control.Hence,this paper proposes a welding penetration control method based on a Neighborhood Rough Set-Adaptive Neuro-Fuzzy Inference System(NRS-ANFIS)to achieve effective penetration control for the GMAW welding process.In orthogonal experiments,the NRS algorithm,which is based on visual sensing to obtain the properties of the weld pool and gap changes,is used to reduce the established frontal weld pool feature information decision table,and the minimum feature set of the weld pool tail width WTand the tail area coefficient CTSis obtained.The minimum feature set of the effective frontal weld pool,real-time line laser distance change,and real-time current information are used as the input for the ANFIS control system.The experimental results for the two groups of time-varying gaps demonstrate that under the condition of no preheating of the base metal,the complete welding penetration rate of the adjusted welding process parameters output by the trained ANFIS model reaches 87%,and the backside melting width is uniform and consistent,which meets the welding specification requirements.展开更多
The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborho...The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborhood rough sets to two universes multi-granularity fuzzy rough sets, and discusses the two-universes multi-granularity neighborhood fuzzy rough set model. Firstly, the upper and lower approximation operators are defined in the two universes multi-granularity neighborhood fuzzy rough set model. Secondly, the properties of the upper and lower approximation operators are discussed. Finally, the properties of the two universes multi-granularity neighborhood fuzzy rough set model are verified through case studies.展开更多
As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and furth...As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and further extended for applications in image edge extraction. Firstly, a new clustering function, the pseudo-semi-overlap function, is introduced by eliminating the symmetry and right continuity present in the overlap function. The relaxed nature of this function enhances its applicability in image edge extraction. Secondly, the definitions of (I, PSO)-fuzzy rough sets are provided, using (I, PSO)-fuzzy rough sets, a pair of new fuzzy mathematical morphological operators (IPSOFMM operators) is proposed. Finally, by combining the fuzzy C-means algorithm and IPSOFMM operators, a novel image edge extraction algorithm (FCM-IPSO algorithm) is proposed and implemented. Compared to existing algorithms, the FCM-IPSO algorithm exhibits more image edges and a 73.81% decrease in the noise introduction rate. The outstanding performance of (I, PSO)-fuzzy rough sets in image edge extraction demonstrates their practical application value.展开更多
For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm u...For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm using discernment as the heuristic information was proposed.The reduction algorithm comprehensively considers the dependency degree and neighborhood granulation degree of attributes,allowing for a more accurate measurement of the importance degrees of attributes.Example analyses and experimental results demonstrate the feasibility and effectiveness of the algorithm.展开更多
A method with the fuzzy entropy for measuring fuzziness to fuzzy problem in rough sets is proposed. A new sort of the fuzzy entropy is given. The calculating formula and the equivalent expression method with the fuzzy...A method with the fuzzy entropy for measuring fuzziness to fuzzy problem in rough sets is proposed. A new sort of the fuzzy entropy is given. The calculating formula and the equivalent expression method with the fuzzy entropy in rough sets based on equivalence relation are provided, and the properties of the fuzzy entropy are proved. The fuzzy entropy based on equivalent relation is extended to generalize the fuzzy entropy based on general binary relation, and the calculating formula and the equivalent expression of the generalized fuzzy entropy are also given. Finally, an example illustrates the way for getting the fuzzy entropy. Results show that the fuzzy entropy can conveniently measure the fuzziness in rough sets.展开更多
文摘Recently,much interest has been given tomulti-granulation rough sets (MGRS), and various types ofMGRSmodelshave been developed from different viewpoints. In this paper, we introduce two techniques for the classificationof MGRS. Firstly, we generate multi-topologies from multi-relations defined in the universe. Hence, a novelapproximation space is established by leveraging the underlying topological structure. The characteristics of thenewly proposed approximation space are discussed.We introduce an algorithmfor the reduction ofmulti-relations.Secondly, a new approach for the classification ofMGRS based on neighborhood concepts is introduced. Finally, areal-life application from medical records is introduced via our approach to the classification of MGRS.
基金supported in part by Natural Science Foundation of Education Department of Sichuan Province under Grant No.12ZA178Key Technology Support Program of Sichuan Province under Grant No.2015GZ0102+1 种基金Science and Technology Project of Chongqing Municipal Education Commission under Grant No.KJ1400407Chongqing Science and Technology Commission Project under Grant No.cstc2014jcyj A10051
文摘The preference analysis is a class of important issues in multi-criteria ordinal decision making.The rough set is an effective approach to handle preference analysis.In order to solve the multi-criteria preference analysis problems,this paper improves the preference relation rough set model and expands it to multi-granulation cases.Cost is also an important issue in the field of decision analysis.Taking the cost into consideration,we also expand the model to the cost sensitive multi-granulation preference relation rough set.Some theorems are represented,and the granule structure selection based on approximation quality is investigated.The experimental results show that the multi-granulation preference rough set approach with the consideration of cost has a better performance in granule structure selection than that without cost consideration.
基金Supported by National Natural Science Foundation of China(Grant Nos.52261044,51969001)the Guangxi Provincial Science and Technology Major Project(Grant No.Guike AA23062037)Research Foundation Ability Enhancement Project for Young and Middle Aged Teachers in Guangxi Universities of China(Grant No.2024KY0441)。
文摘Owing to process conditions such as uneven clearance of base metal assembly and welding deformation,it is difficult to obtain well-formed structural welds with robot constant specification parameters welding.Determining how to extract a structured,anti-interference,concise,and dynamic knowledge model from measurable data,and then adjust the welding parameters with corresponding control methods in real time is a central problem to be solved in welding formation control.Hence,this paper proposes a welding penetration control method based on a Neighborhood Rough Set-Adaptive Neuro-Fuzzy Inference System(NRS-ANFIS)to achieve effective penetration control for the GMAW welding process.In orthogonal experiments,the NRS algorithm,which is based on visual sensing to obtain the properties of the weld pool and gap changes,is used to reduce the established frontal weld pool feature information decision table,and the minimum feature set of the weld pool tail width WTand the tail area coefficient CTSis obtained.The minimum feature set of the effective frontal weld pool,real-time line laser distance change,and real-time current information are used as the input for the ANFIS control system.The experimental results for the two groups of time-varying gaps demonstrate that under the condition of no preheating of the base metal,the complete welding penetration rate of the adjusted welding process parameters output by the trained ANFIS model reaches 87%,and the backside melting width is uniform and consistent,which meets the welding specification requirements.
文摘The two universes multi-granularity fuzzy rough set model is an effective tool for handling uncertainty problems between two domains with the help of binary fuzzy relations. This article applies the idea of neighborhood rough sets to two universes multi-granularity fuzzy rough sets, and discusses the two-universes multi-granularity neighborhood fuzzy rough set model. Firstly, the upper and lower approximation operators are defined in the two universes multi-granularity neighborhood fuzzy rough set model. Secondly, the properties of the upper and lower approximation operators are discussed. Finally, the properties of the two universes multi-granularity neighborhood fuzzy rough set model are verified through case studies.
文摘As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and further extended for applications in image edge extraction. Firstly, a new clustering function, the pseudo-semi-overlap function, is introduced by eliminating the symmetry and right continuity present in the overlap function. The relaxed nature of this function enhances its applicability in image edge extraction. Secondly, the definitions of (I, PSO)-fuzzy rough sets are provided, using (I, PSO)-fuzzy rough sets, a pair of new fuzzy mathematical morphological operators (IPSOFMM operators) is proposed. Finally, by combining the fuzzy C-means algorithm and IPSOFMM operators, a novel image edge extraction algorithm (FCM-IPSO algorithm) is proposed and implemented. Compared to existing algorithms, the FCM-IPSO algorithm exhibits more image edges and a 73.81% decrease in the noise introduction rate. The outstanding performance of (I, PSO)-fuzzy rough sets in image edge extraction demonstrates their practical application value.
基金Anhui Provincial University Research Project(Project Number:2023AH051659)Tongling University Talent Research Initiation Fund Project(Project Number:2022tlxyrc31)+1 种基金Tongling University School-Level Scientific Research Project(Project Number:2021tlxytwh05)Tongling University Horizontal Project(Project Number:2023tlxyxdz237)。
文摘For neighborhood rough set attribute reduction algorithms based on dependency degree,a neighborhood computation method incorporating attribute weight values and a neighborhood rough set attribute reduction algorithm using discernment as the heuristic information was proposed.The reduction algorithm comprehensively considers the dependency degree and neighborhood granulation degree of attributes,allowing for a more accurate measurement of the importance degrees of attributes.Example analyses and experimental results demonstrate the feasibility and effectiveness of the algorithm.
文摘A method with the fuzzy entropy for measuring fuzziness to fuzzy problem in rough sets is proposed. A new sort of the fuzzy entropy is given. The calculating formula and the equivalent expression method with the fuzzy entropy in rough sets based on equivalence relation are provided, and the properties of the fuzzy entropy are proved. The fuzzy entropy based on equivalent relation is extended to generalize the fuzzy entropy based on general binary relation, and the calculating formula and the equivalent expression of the generalized fuzzy entropy are also given. Finally, an example illustrates the way for getting the fuzzy entropy. Results show that the fuzzy entropy can conveniently measure the fuzziness in rough sets.