期刊文献+
共找到545篇文章
< 1 2 28 >
每页显示 20 50 100
Dynamic Task Offloading Scheme for Edge Computing via Meta-Reinforcement Learning 被引量:1
1
作者 Jiajia Liu Peng Xie +2 位作者 Wei Li Bo Tang Jianhua Liu 《Computers, Materials & Continua》 2025年第2期2609-2635,共27页
As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the... As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments. 展开更多
关键词 Edge computing adaptive META task offloading joint optimization
在线阅读 下载PDF
Terminal Multitask Parallel Offloading Algorithm Based on Deep Reinforcement Learning
2
作者 Zhang Lincong Li Yang +2 位作者 Zhao Weinan Liu Xiangyu Guo Lei 《China Communications》 2025年第7期30-43,共14页
The advent of the internet-of-everything era has led to the increased use of mobile edge computing.The rise of artificial intelligence has provided many possibilities for the low-latency task-offloading demands of use... The advent of the internet-of-everything era has led to the increased use of mobile edge computing.The rise of artificial intelligence has provided many possibilities for the low-latency task-offloading demands of users,but existing technologies rigidly assume that there is only one task to be offloaded in each time slot at the terminal.In practical scenarios,there are often numerous computing tasks to be executed at the terminal,leading to a cumulative delay for subsequent task offloading.Therefore,the efficient processing of multiple computing tasks on the terminal has become highly challenging.To address the lowlatency offloading requirements for multiple computational tasks on terminal devices,we propose a terminal multitask parallel offloading algorithm based on deep reinforcement learning.Specifically,we first establish a mobile edge computing system model consisting of a single edge server and multiple terminal users.We then model the task offloading decision problem as a Markov decision process,and solve this problem using the Dueling Deep-Q Network algorithm to obtain the optimal offloading strategy.Experimental results demonstrate that,under the same constraints,our proposed algorithm reduces the average system latency. 展开更多
关键词 deep reinforcement learning mobile edge computing multitask parallel offloading task offloading
在线阅读 下载PDF
Reliable Task Offloading for 6G-Based IoT Applications
3
作者 Usman Mahmood Malik Muhammad Awais Javed +1 位作者 Ahmad Naseem Alvi Mohammed Alkhathami 《Computers, Materials & Continua》 2025年第2期2255-2274,共20页
Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G applications.Artificial Intelligence(AI)algorithms will ... Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G applications.Artificial Intelligence(AI)algorithms will be an integral part of 6G systems and efficient task offloading techniques using fog computing will improve their performance and reliability.In this paper,the focus is on the scenario of Partial Offloading of a Task to Multiple Helpers(POMH)in which larger tasks are divided into smaller subtasks and processed in parallel,hence expediting task completion.However,using POMH presents challenges such as breaking tasks into subtasks and scaling these subtasks based on many interdependent factors to ensure that all subtasks of a task finish simultaneously,preventing resource wastage.Additionally,applying matching theory to POMH scenarios results in dynamic preference profiles of helping devices due to changing subtask sizes,resulting in a difficult-to-solve,externalities problem.This paper introduces a novel many-to-one matching-based algorithm,designed to address the externalities problem and optimize resource allocation within POMH scenarios.Additionally,we propose a new time-efficient preference profiling technique that further enhances time optimization in POMH scenarios.The performance of the proposed technique is thoroughly evaluated in comparison to alternate baseline schemes,revealing many advantages of the proposed approach.The simulation findings indisputably show that the proposed matching-based offloading technique outperforms existing methodologies in the literature,yielding a remarkable 52 reduction in task latency,particularly under high workloads. 展开更多
关键词 6G IOT task offloading fog computing
在线阅读 下载PDF
Reinforcement learning-enabled swarm intelligence method for computation task offloading in Internet-of-Things blockchain
4
作者 Zhuo Chen Jiahuan Yi +1 位作者 Yang Zhou Wei Luo 《Digital Communications and Networks》 2025年第3期912-924,共13页
Blockchain technology,based on decentralized data storage and distributed consensus design,has become a promising solution to address data security risks and provide privacy protection in the Internet-of-Things(IoT)du... Blockchain technology,based on decentralized data storage and distributed consensus design,has become a promising solution to address data security risks and provide privacy protection in the Internet-of-Things(IoT)due to its tamper-proof and non-repudiation features.Although blockchain typically does not require the endorsement of third-party trust organizations,it mostly needs to perform necessary mathematical calculations to prevent malicious attacks,which results in stricter requirements for computation resources on the participating devices.By offloading the computation tasks required to support blockchain consensus to edge service nodes or the cloud,while providing data privacy protection for IoT applications,it can effectively address the limitations of computation and energy resources in IoT devices.However,how to make reasonable offloading decisions for IoT devices remains an open issue.Due to the excellent self-learning ability of Reinforcement Learning(RL),this paper proposes a RL enabled Swarm Intelligence Optimization Algorithm(RLSIOA)that aims to improve the quality of initial solutions and achieve efficient optimization of computation task offloading decisions.The algorithm considers various factors that may affect the revenue obtained by IoT devices executing consensus algorithms(e.g.,Proof-of-Work),it optimizes the proportion of sub-tasks to be offloaded and the scale of computing resources to be rented from the edge and cloud to maximize the revenue of devices.Experimental results show that RLSIOA can obtain higher-quality offloading decision-making schemes at lower latency costs compared to representative benchmark algorithms. 展开更多
关键词 Blockchain task offloading Swarm intelligence Reinforcement learning
在线阅读 下载PDF
A pipelining task offloading strategy via delay-aware multi-agent reinforcement learning in Cybertwin-enabled 6G network
5
作者 Haiwen Niu Luhan Wang +3 位作者 Keliang Du Zhaoming Lu Xiangming Wen Yu Liu 《Digital Communications and Networks》 2025年第1期92-105,共14页
Cybertwin-enabled 6th Generation(6G)network is envisioned to support artificial intelligence-native management to meet changing demands of 6G applications.Multi-Agent Deep Reinforcement Learning(MADRL)technologies dri... Cybertwin-enabled 6th Generation(6G)network is envisioned to support artificial intelligence-native management to meet changing demands of 6G applications.Multi-Agent Deep Reinforcement Learning(MADRL)technologies driven by Cybertwins have been proposed for adaptive task offloading strategies.However,the existence of random transmission delay between Cybertwin-driven agents and underlying networks is not considered in related works,which destroys the standard Markov property and increases the decision reaction time to reduce the task offloading strategy performance.In order to address this problem,we propose a pipelining task offloading method to lower the decision reaction time and model it as a delay-aware Markov Decision Process(MDP).Then,we design a delay-aware MADRL algorithm to minimize the weighted sum of task execution latency and energy consumption.Firstly,the state space is augmented using the lastly-received state and historical actions to rebuild the Markov property.Secondly,Gate Transformer-XL is introduced to capture historical actions'importance and maintain the consistent input dimension dynamically changed due to random transmission delays.Thirdly,a sampling method and a new loss function with the difference between the current and target state value and the difference between real state-action value and augmented state-action value are designed to obtain state transition trajectories close to the real ones.Numerical results demonstrate that the proposed methods are effective in reducing reaction time and improving the task offloading performance in the random-delay Cybertwin-enabled 6G networks. 展开更多
关键词 Cybertwin Multi-Agent Deep Reinforcement Learning(MADRL) task offloading PIPELINING Delay-aware
在线阅读 下载PDF
A Task Offloading Method for Vehicular Edge Computing Based on Reputation Assessment
6
作者 Jun Li Yawei Dong +2 位作者 Liang Ni Guopeng Feng Fangfang Shan 《Computers, Materials & Continua》 2025年第5期3537-3552,共16页
With the development of vehicle networks and the construction of roadside units,Vehicular Ad Hoc Networks(VANETs)are increasingly promoting cooperative computing patterns among vehicles.Vehicular edge computing(VEC)of... With the development of vehicle networks and the construction of roadside units,Vehicular Ad Hoc Networks(VANETs)are increasingly promoting cooperative computing patterns among vehicles.Vehicular edge computing(VEC)offers an effective solution to mitigate resource constraints by enabling task offloading to edge cloud infrastructure,thereby reducing the computational burden on connected vehicles.However,this sharing-based and distributed computing paradigm necessitates ensuring the credibility and reliability of various computation nodes.Existing vehicular edge computing platforms have not adequately considered themisbehavior of vehicles.We propose a practical task offloading algorithm based on reputation assessment to address the task offloading problem in vehicular edge computing under an unreliable environment.This approach integrates deep reinforcement learning and reputation management to address task offloading challenges.Simulation experiments conducted using Veins demonstrate the feasibility and effectiveness of the proposed method. 展开更多
关键词 Vehicular edge computing task offloading reputation assessment
在线阅读 下载PDF
Task offloading delay minimization in vehicular edge computing based on vehicle trajectory prediction
7
作者 Feng Zeng Zheng Zhang Jinsong Wu 《Digital Communications and Networks》 2025年第2期537-546,共10页
In task offloading,the movement of vehicles causes the switching of connected RSUs and servers,which may lead to task offloading failure or high service delay.In this paper,we analyze the impact of vehicle movements o... In task offloading,the movement of vehicles causes the switching of connected RSUs and servers,which may lead to task offloading failure or high service delay.In this paper,we analyze the impact of vehicle movements on task offloading and reveal that data preparation time for task execution can be minimized via forward-looking scheduling.Then,a Bi-LSTM-based model is proposed to predict the trajectories of vehicles.The service area is divided into several equal-sized grids.If the actual position of the vehicle and the predicted position by the model belong to the same grid,the prediction is considered correct,thereby reducing the difficulty of vehicle trajectory prediction.Moreover,we propose a scheduling strategy for delay optimization based on the vehicle trajectory prediction.Considering the inevitable prediction error,we take some edge servers around the predicted area as candidate execution servers and the data required for task execution are backed up to these candidate servers,thereby reducing the impact of prediction deviations on task offloading and converting the modest increase of resource overheads into delay reduction in task offloading.Simulation results show that,compared with other classical schemes,the proposed strategy has lower average task offloading delays. 展开更多
关键词 Vehicular edge computing task offloading Vehicle trajectory prediction Delay minimization Bi-LSTM model
在线阅读 下载PDF
Improved PPO-Based Task Offloading Strategies for Smart Grids
8
作者 Qian Wang Ya Zhou 《Computers, Materials & Continua》 2025年第8期3835-3856,共22页
Edge computing has transformed smart grids by lowering latency,reducing network congestion,and enabling real-time decision-making.Nevertheless,devising an optimal task-offloading strategy remains challenging,as it mus... Edge computing has transformed smart grids by lowering latency,reducing network congestion,and enabling real-time decision-making.Nevertheless,devising an optimal task-offloading strategy remains challenging,as it must jointly minimise energy consumption and response time under fluctuating workloads and volatile network conditions.We cast the offloading problem as aMarkov Decision Process(MDP)and solve it with Deep Reinforcement Learning(DRL).Specifically,we present a three-tier architecture—end devices,edge nodes,and a cloud server—and enhance Proximal Policy Optimization(PPO)to learn adaptive,energy-aware policies.A Convolutional Neural Network(CNN)extracts high-level features from system states,enabling the agent to respond continually to changing conditions.Extensive simulations show that the proposed method reduces task latency and energy consumption far more than several baseline algorithms,thereby improving overall system performance.These results demonstrate the effectiveness and robustness of the framework for real-time task offloading in dynamic smart-grid environments. 展开更多
关键词 Smart grid task offloading deep reinforcement learning improved PPO algorithm edge computing
在线阅读 下载PDF
Joint Cooperative Task Offloading and Computing Resource Allocation for Low Earth Orbit Satellites
9
作者 Zhang Yuexia Zhang Siyu Zheng Hui 《China Communications》 2025年第10期88-100,共13页
Multispectral low earth orbit(LEO)satel-lites are characterized by a large volume of captured data and high spatial resolution,which can provide rich image information and data support for a vari-ety of fields,but it ... Multispectral low earth orbit(LEO)satel-lites are characterized by a large volume of captured data and high spatial resolution,which can provide rich image information and data support for a vari-ety of fields,but it is difficult for them to satisfy low-delay and low-energy consumed task processing re-quirements due to their limited computing resources.To address the above problems,this paper presents the LEO satellites cooperative task offloading and computing resource allocation(LEOC-TC)algorithm.Firstly,a LEO satellites cooperative task offloading system was designed so that the multispectral LEO satellites in the system could leave their tasks locally or offload them to other LEO satellites with servers for processing,thus providing high-quality information-processing services for multispectral LEO satellites.Secondly,an optimization problem with the objective of minimizing the weighted sum of the total task pro-cessing delay and total energy consumed for multi-spectral LEO satellite is established,and the optimiza-tion problem is split into an offloading ratio subprob-lem and a computing resource subproblem.Finally,Bernoulli mapping tuna swarm optimization algorithm is used to solve the above two sub-problems separately in order to satisfy the demand of low delay and low energy consumed by the system.Simulation results show that the total task processing cost of the LEOCTC algorithm can be reduced by 63.32%,66.67%,and 80.72%compared to the random offloading ratio algorithm,the average resource offloading algorithm,and the local computing algorithm,respectively. 展开更多
关键词 computing resource allocation interstellar collaboration low earth orbit satellites task offloading
在线阅读 下载PDF
Dynamic Task Offloading and Resource Allocation for Air-Ground Integrated Networks Based on MADDPG
10
作者 Jianbin Xue Peipei Mao +2 位作者 Luyao Wang Qingda Yu Changwang Fan 《Journal of Beijing Institute of Technology》 2025年第3期243-267,共25页
With the rapid growth of connected devices,traditional edge-cloud systems are under overload pressure.Using mobile edge computing(MEC)to assist unmanned aerial vehicles(UAVs)as low altitude platform stations(LAPS)for ... With the rapid growth of connected devices,traditional edge-cloud systems are under overload pressure.Using mobile edge computing(MEC)to assist unmanned aerial vehicles(UAVs)as low altitude platform stations(LAPS)for communication and computation to build air-ground integrated networks(AGINs)offers a promising solution for seamless network coverage of remote internet of things(IoT)devices in the future.To address the performance demands of future mobile devices(MDs),we proposed an MEC-assisted AGIN system.The goal is to minimize the long-term computational overhead of MDs by jointly optimizing transmission power,flight trajecto-ries,resource allocation,and offloading ratios,while utilizing non-orthogonal multiple access(NOMA)to improve device connectivity of large-scale MDs and spectral efficiency.We first designed an adaptive clustering scheme based on K-Means to cluster MDs and established commu-nication links,improving efficiency and load balancing.Then,considering system dynamics,we introduced a partial computation offloading algorithm based on multi-agent deep deterministic pol-icy gradient(MADDPG),modeling the multi-UAV computation offloading problem as a Markov decision process(MDP).This algorithm optimizes resource allocation through centralized training and distributed execution,reducing computational overhead.Simulation results show that the pro-posed algorithm not only converges stably but also outperforms other benchmark algorithms in han-dling complex scenarios with multiple devices. 展开更多
关键词 air-ground integrated network(AGIN) resource allocation dynamic task offloading multi-agent deep deterministic policy gradient(MADDPG) non-orthogonal multiple access(NOMA)
暂未订购
Secure task offloading strategy optimization of UAV-aided outdoor mobile high-definition live streaming
11
作者 Ming YAN Yuxuan ZHANG +2 位作者 Chien Aun CHAN André F.GYGAX Chunguo LI 《Chinese Journal of Aeronautics》 2025年第10期201-215,共15页
Unmanned aerial vehicles(UAVs)bring more innovation and attraction to outdoor mobile high-definition(HD)live streaming with its unique perspective.Due to the heavy computational requirements of HD live broadcast tasks... Unmanned aerial vehicles(UAVs)bring more innovation and attraction to outdoor mobile high-definition(HD)live streaming with its unique perspective.Due to the heavy computational requirements of HD live broadcast tasks and the limited hardware performance of UAV equipment,how to reduce the system response delay and improve the energy efficiency of terminal equipment directly affects the secure broadcast of the system.Secure task offloading in this scenario is considered a promising solution and has received academic attention.In this paper,we simulate the UAV-aided outdoor mobile HD live streaming scenarios and optimize the relevant task offloading strategies.First,we design the total cost function of task offloading that jointly optimizes secure time latency and energy consumption.Additionally,we propose a collaborative computing model for multi-UAV task offloading.This model combines the idea of simulated annealing(SA)and introduces the compression factor to enhance the particle swarm optimization(PSO)to realize secure task offloading.The simulation results show that the proposed strategy has better performance in balancing network latency and energy consumption.Compared with the discrete teaching–learning-based optimization(DTLBO)and quantum PSO(QPSO)task offloading strategies,the fitness value of the proposed strategy is decreased by an average of 26.73%and 16.42%,respectively. 展开更多
关键词 Unmanned aerial vehicle(UAV) High-definition(HD)live streaming Secure task offloading Network energy consumption Particle swarm optimization(PSO)
原文传递
Efficient Task Completion for Parallel Offloading in Vehicular Fog Computing 被引量:7
12
作者 Jindou Xie Yunjian Jia +2 位作者 Zhengchuan Chen Zhaojun Nan Liang Liang 《China Communications》 SCIE CSCD 2019年第11期42-55,共14页
In this paper,we investigate vehicular fog computing system and develop an effective parallel offloading scheme.The service time,that addresses task offloading delay,task decomposition and handover cost,is adopted as ... In this paper,we investigate vehicular fog computing system and develop an effective parallel offloading scheme.The service time,that addresses task offloading delay,task decomposition and handover cost,is adopted as the metric of offloading performance.We propose an available resource-aware based parallel offloading scheme,which decides target fog nodes by RSU for computation offloading jointly considering effect of vehicles mobility and time-varying computation capability.Based on Hidden Markov model and Markov chain theories,proposed scheme effectively handles the imperfect system state information for fog nodes selection by jointly achieving mobility awareness and computation perception.Simulation results are presented to corroborate the theoretical analysis and validate the effectiveness of the proposed algorithm. 展开更多
关键词 PARALLEL offloading vehicular FOG COMPUTING task offloading HMM
在线阅读 下载PDF
Intelligent Task Offloading and Collaborative Computation over D2D Communication 被引量:6
13
作者 Cuili Jiang Tengfei Cao Jianfeng Guan 《China Communications》 SCIE CSCD 2021年第3期251-263,共13页
In this paper,the problem of computation offloading in the edge server is studied in a mobile edge computation(MEC)-enabled cell networks that consists of a base station(BS)integrating edge servers,several terminal de... In this paper,the problem of computation offloading in the edge server is studied in a mobile edge computation(MEC)-enabled cell networks that consists of a base station(BS)integrating edge servers,several terminal devices and collaborators.In the considered networks,we develop an intelligent task offloading and collaborative computation scheme to achieve the optimal computation offloading.First,a distance-based collaborator screening method is proposed to get collaborators within the distance threshold and with high power.Second,based on the Lyapunov stochastic optimization theory,the system stability problem is transformed into a queue stability issue,and the optimal computation offloading is obtained by solving these three sub-problems:task allocation control,task execution control and queue update,respectively.Moreover,rigorous experimental simulation shows that our proposed computation offloading algorithm can achieve the joint optimization among the system efficiency,energy consumption and time delay compared to the mobility-aware and migration-enabled approach,Full BS and Full local. 展开更多
关键词 utility maximization lyapunov optimization task offloading mobile edge computing
在线阅读 下载PDF
Task offloading mechanism based on federated reinforcement learning in mobile edge computing 被引量:4
14
作者 Jie Li Zhiping Yang +2 位作者 Xingwei Wang Yichao Xia Shijian Ni 《Digital Communications and Networks》 SCIE CSCD 2023年第2期492-504,共13页
With the arrival of 5G,latency-sensitive applications are becoming increasingly diverse.Mobile Edge Computing(MEC)technology has the characteristics of high bandwidth,low latency and low energy consumption,and has att... With the arrival of 5G,latency-sensitive applications are becoming increasingly diverse.Mobile Edge Computing(MEC)technology has the characteristics of high bandwidth,low latency and low energy consumption,and has attracted much attention among researchers.To improve the Quality of Service(QoS),this study focuses on computation offloading in MEC.We consider the QoS from the perspective of computational cost,dimensional disaster,user privacy and catastrophic forgetting of new users.The QoS model is established based on the delay and energy consumption and is based on DDQN and a Federated Learning(FL)adaptive task offloading algorithm in MEC.The proposed algorithm combines the QoS model and deep reinforcement learning algorithm to obtain an optimal offloading policy according to the local link and node state information in the channel coherence time to address the problem of time-varying transmission channels and reduce the computing energy consumption and task processing delay.To solve the problems of privacy and catastrophic forgetting,we use FL to make distributed use of multiple users’data to obtain the decision model,protect data privacy and improve the model universality.In the process of FL iteration,the communication delay of individual devices is too large,which affects the overall delay cost.Therefore,we adopt a communication delay optimization algorithm based on the unary outlier detection mechanism to reduce the communication delay of FL.The simulation results indicate that compared with existing schemes,the proposed method significantly reduces the computation cost on a device and improves the QoS when handling complex tasks. 展开更多
关键词 Mobile edge computing task offloading QoS Deep reinforcement learning Federated learning
在线阅读 下载PDF
Multi-objective optimization for task offloading based on network calculus in fog environments 被引量:3
15
作者 Qian Ren Kui Liu Lianming Zhang 《Digital Communications and Networks》 SCIE CSCD 2022年第5期825-833,共9页
With the widespread application of wireless communication technology and continuous improvements to Internet of Things(IoT)technology,fog computing architecture composed of edge,fog,and cloud layers have become a rese... With the widespread application of wireless communication technology and continuous improvements to Internet of Things(IoT)technology,fog computing architecture composed of edge,fog,and cloud layers have become a research hotspot.This architecture uses Fog Nodes(FNs)close to users to implement certain cloud functions while compensating for cloud disadvantages.However,because of the limited computing and storage capabilities of a single FN,it is necessary to offload tasks to multiple cooperating FNs for task completion.To effectively and quickly realize task offloading,we use network calculus theory to establish an overall performance model for task offloading in a fog computing environment and propose a Globally Optimal Multi-objective Optimization algorithm for Task Offloading(GOMOTO)based on the performance model.The results show that the proposed model and algorithm can effectively reduce the total delay and total energy consumption of the system and improve the network Quality of Service(QoS). 展开更多
关键词 Fog computing task offloading Multi-objective optimization Network calculus
在线阅读 下载PDF
Service Caching and Task Offloading for Mobile Edge Computing-Enabled Intelligent Connected Vehicles 被引量:4
16
作者 HUANG Mengting YI Yuhan ZHANG Guanglin 《Journal of Shanghai Jiaotong university(Science)》 EI 2021年第5期670-679,共10页
The development of intelligent connected vehicles(ICVs)has tremendously inspired the emergence of a new computing paradigm called mobile edge computing(MEC),which meets the demands of delay-sensitive on-vehicle applic... The development of intelligent connected vehicles(ICVs)has tremendously inspired the emergence of a new computing paradigm called mobile edge computing(MEC),which meets the demands of delay-sensitive on-vehicle applications.Most existing studies focusing on the issue of task offloading in ICVs assume that the MEC server can directly complete computation tasks without considering the necessity of service caching.However,this is unrealistic in practice because a large number of tasks require the use of corresponding third-party libraries and databases,that is,service caching.Therefore,we investigate the delay optimization in an MEC-enabled ICVs system with multiple mobile vehicles,resource-limited base stations(BSs),and one cloud server.We aim to determine the optimal service caching and task offloading decisions to minimize the overall system delay using mixed-integer nonlinear programming.To address this problem,we first convert it into a quadratically constrained quadratic program and then propose an efficient semidefinite relaxation-based joint service caching and task offloading(JSCTO)algorithm to obtain the service caching and task offloading decisions.In the simulations,we validate the efficiency of our proposed method by setting different numbers of vehicles and the storage capacity of BSs.The results show that our proposed JSCTO algorithm can significantly decrease the total delay of all offloaded tasks compared with the cloud processing only scheme. 展开更多
关键词 intelligent connected vehicle(ICV) mobile edge computing(MEC) service caching task offloading delay cost
原文传递
Task Offloading Decision in Fog Computing System 被引量:6
17
作者 Qiliang Zhu Baojiang Si +1 位作者 Feifan Yang You Ma 《China Communications》 SCIE CSCD 2017年第11期59-68,共10页
Fog computing is an emerging paradigm of cloud computing which to meet the growing computation demand of mobile application. It can help mobile devices to overcome resource constraints by offloading the computationall... Fog computing is an emerging paradigm of cloud computing which to meet the growing computation demand of mobile application. It can help mobile devices to overcome resource constraints by offloading the computationally intensive tasks to cloud servers. The challenge of the cloud is to minimize the time of data transfer and task execution to the user, whose location changes owing to mobility, and the energy consumption for the mobile device. To provide satisfactory computation performance is particularly challenging in the fog computing environment. In this paper, we propose a novel fog computing model and offloading policy which can effectively bring the fog computing power closer to the mobile user. The fog computing model consist of remote cloud nodes and local cloud nodes, which is attached to wireless access infrastructure. And we give task offloading policy taking into account executi+on, energy consumption and other expenses. We finally evaluate the performance of our method through experimental simulations. The experimental results show that this method has a significant effect on reducing the execution time of tasks and energy consumption of mobile devices. 展开更多
关键词 fog computing task offioading energy consumption execution time
在线阅读 下载PDF
An intelligent task offloading algorithm(iTOA)for UAV edge computing network 被引量:8
18
作者 Jienan Chen Siyu Chen +3 位作者 Siyu Luo Qi Wang Bin Cao Xiaoqian Li 《Digital Communications and Networks》 SCIE 2020年第4期433-443,共11页
Unmanned Aerial Vehicle(UAV)has emerged as a promising technology for the support of human activities,such as target tracking,disaster rescue,and surveillance.However,these tasks require a large computation load of im... Unmanned Aerial Vehicle(UAV)has emerged as a promising technology for the support of human activities,such as target tracking,disaster rescue,and surveillance.However,these tasks require a large computation load of image or video processing,which imposes enormous pressure on the UAV computation platform.To solve this issue,in this work,we propose an intelligent Task Offloading Algorithm(iTOA)for UAV edge computing network.Compared with existing methods,iTOA is able to perceive the network’s environment intelligently to decide the offloading action based on deep Monte Calor Tree Search(MCTS),the core algorithm of Alpha Go.MCTS will simulate the offloading decision trajectories to acquire the best decision by maximizing the reward,such as lowest latency or power consumption.To accelerate the search convergence of MCTS,we also proposed a splitting Deep Neural Network(sDNN)to supply the prior probability for MCTS.The sDNN is trained by a self-supervised learning manager.Here,the training data set is obtained from iTOA itself as its own teacher.Compared with game theory and greedy search-based methods,the proposed iTOA improves service latency performance by 33%and 60%,respectively. 展开更多
关键词 Unmanned aerial vehicles(UAVs) Mobile edge computing(MEC) Intelligent task offloading algorithm(iTOA) Monte Carlo tree search(MCTS) Deep reinforcement learning Splitting deep neural network(sDNN)
在线阅读 下载PDF
Mobility-Aware and Energy-Efficient Task Offloading Strategy for Mobile Edge Workflows 被引量:1
19
作者 QIN Zhiwei LI Juan +1 位作者 LIU Wei YU Xiao 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2022年第6期476-488,共13页
With the rapid growth of the Industrial Internet of Things(IIoT), the Mobile Edge Computing(MEC) has coming widely used in many emerging scenarios. In MEC, each workflow task can be executed locally or offloaded to ed... With the rapid growth of the Industrial Internet of Things(IIoT), the Mobile Edge Computing(MEC) has coming widely used in many emerging scenarios. In MEC, each workflow task can be executed locally or offloaded to edge to help improve Quality of Service(QoS) and reduce energy consumption. However, most of the existing offloading strategies focus on independent applications, which cannot be applied efficiently to workflow applications with a series of dependent tasks. To address the issue,this paper proposes an energy-efficient task offloading strategy for large-scale workflow applications in MEC. First, we formulate the task offloading problem into an optimization problem with the goal of minimizing the utility cost, which is the trade-off between energy consumption and the total execution time. Then, a novel heuristic algorithm named Green DVFS-GA is proposed, which includes a task offloading step based on the genetic algorithm and a further step to reduce the energy consumption using Dynamic Voltage and Frequency Scaling(DVFS) technique. Experimental results show that our proposed strategy can significantly reduce the energy consumption and achieve the best trade-off compared with other strategies. 展开更多
关键词 workflow application task offloading energy saving heuristic algorithm mobile edge computing
原文传递
Efficient Multi-User for Task Offloading and Server Allocation in Mobile Edge Computing Systems 被引量:1
20
作者 Qiuming Liu Jing Li +3 位作者 Jianming Wei Ruoxuan Zhou Zheng Chai Shumin Liu 《China Communications》 SCIE CSCD 2022年第7期226-238,共13页
Mobile edge computing has emerged as a new paradigm to enhance computing capabilities by offloading complicated tasks to nearby cloud server.To conserve energy as well as maintain quality of service,low time complexit... Mobile edge computing has emerged as a new paradigm to enhance computing capabilities by offloading complicated tasks to nearby cloud server.To conserve energy as well as maintain quality of service,low time complexity algorithm is proposed to complete task offloading and server allocation.In this paper,a multi-user with multiple tasks and single server scenario is considered for small network,taking full account of factors including data size,bandwidth,channel state information.Furthermore,we consider a multi-server scenario for bigger network,where the influence of task priority is taken into consideration.To jointly minimize delay and energy cost,we propose a distributed unsupervised learning-based offloading framework for task offloading and server allocation.We exploit a memory pool to store input data and corresponding decisions as key-value pairs for model to learn to solve optimization problems.To further reduce time cost and achieve near-optimal performance,we use convolutional neural networks to process mass data based on fully connected networks.Numerical results show that the proposed algorithm performs better than other offloading schemes,which can generate near-optimal offloading decision timely. 展开更多
关键词 distributed unsupervised learning energy efficiency mobile edge computing task offloading
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部