期刊文献+
共找到386篇文章
< 1 2 20 >
每页显示 20 50 100
Visual feature inter-learning for sign language recognition in emergency medicine
1
作者 WEI Chao LI Yunpeng LIU Jingze 《Optoelectronics Letters》 2025年第10期619-625,共7页
Accessible communication based on sign language recognition(SLR)is the key to emergency medical assistance for the hearing-impaired community.Balancing the capture of both local and global information in SLR for emerg... Accessible communication based on sign language recognition(SLR)is the key to emergency medical assistance for the hearing-impaired community.Balancing the capture of both local and global information in SLR for emergency medicine poses a significant challenge.To address this,we propose a novel approach based on the inter-learning of visual features between global and local information.Specifically,our method enhances the perception capabilities of the visual feature extractor by strategically leveraging the strengths of convolutional neural network(CNN),which are adept at capturing local features,and visual transformers which perform well at perceiving global features.Furthermore,to mitigate the issue of overfitting caused by the limited availability of sign language data for emergency medical applications,we introduce an enhanced short temporal module for data augmentation through additional subsequences.Experimental results on three publicly available sign language datasets demonstrate the efficacy of the proposed approach. 展开更多
关键词 sign language recognition slr visual feature inter learning emergency medicine visual feature extractor capture both local global information enhances perception capabilities emergency medical assistance sign language recognition
原文传递
Augmented Deep Multi-Granularity Pose-Aware Feature Fusion Network for Visible-Infrared Person Re-Identification 被引量:3
2
作者 Zheng Shi Wanru Song +1 位作者 Junhao Shan Feng Liu 《Computers, Materials & Continua》 SCIE EI 2023年第12期3467-3488,共22页
Visible-infrared Cross-modality Person Re-identification(VI-ReID)is a critical technology in smart public facilities such as cities,campuses and libraries.It aims to match pedestrians in visible light and infrared ima... Visible-infrared Cross-modality Person Re-identification(VI-ReID)is a critical technology in smart public facilities such as cities,campuses and libraries.It aims to match pedestrians in visible light and infrared images for video surveillance,which poses a challenge in exploring cross-modal shared information accurately and efficiently.Therefore,multi-granularity feature learning methods have been applied in VI-ReID to extract potential multi-granularity semantic information related to pedestrian body structure attributes.However,existing research mainly uses traditional dual-stream fusion networks and overlooks the core of cross-modal learning networks,the fusion module.This paper introduces a novel network called the Augmented Deep Multi-Granularity Pose-Aware Feature Fusion Network(ADMPFF-Net),incorporating the Multi-Granularity Pose-Aware Feature Fusion(MPFF)module to generate discriminative representations.MPFF efficiently explores and learns global and local features with multi-level semantic information by inserting disentangling and duplicating blocks into the fusion module of the backbone network.ADMPFF-Net also provides a new perspective for designing multi-granularity learning networks.By incorporating the multi-granularity feature disentanglement(mGFD)and posture information segmentation(pIS)strategies,it extracts more representative features concerning body structure information.The Local Information Enhancement(LIE)module augments high-performance features in VI-ReID,and the multi-granularity joint loss supervises model training for objective feature learning.Experimental results on two public datasets show that ADMPFF-Net efficiently constructs pedestrian feature representations and enhances the accuracy of VI-ReID. 展开更多
关键词 Visible-infrared person re-identification multi-granularity feature learning modality
在线阅读 下载PDF
Adaptive Multi-Feature Fusion for Vehicle Micro-Motor Noise Recognition Considering Auditory Perception 被引量:1
3
作者 Ting Zhao Weiping Ding +1 位作者 Haibo Huang Yudong Wu 《Sound & Vibration》 EI 2023年第1期133-153,共21页
The deployment of vehicle micro-motors has witnessed an expansion owing to the progression in electrification and intelligent technologies.However,some micro-motors may exhibit design deficiencies,component wear,assem... The deployment of vehicle micro-motors has witnessed an expansion owing to the progression in electrification and intelligent technologies.However,some micro-motors may exhibit design deficiencies,component wear,assembly errors,and other imperfections that may arise during the design or manufacturing phases.Conse-quently,these micro-motors might generate anomalous noises during their operation,consequently exerting a substantial adverse influence on the overall comfort of drivers and passengers.Automobile micro-motors exhibit a diverse array of structural variations,consequently leading to the manifestation of a multitude of distinctive auditory irregularities.To address the identification of diverse forms of abnormal noise,this research presents a novel approach rooted in the utilization of vibro-acoustic fusion-convolutional neural network(VAF-CNN).This method entails the deployment of distinct network branches,each serving to capture disparate features from the multi-sensor data,all the while considering the auditory perception traits inherent in the human auditory sys-tem.The intermediary layer integrates the concept of adaptive weighting of multi-sensor features,thus affording a calibration mechanism for the features hailing from multiple sensors,thereby enabling a further refinement of features within the branch network.For optimal model efficacy,a feature fusion mechanism is implemented in the concluding layer.To substantiate the efficacy of the proposed approach,this paper initially employs an augmented data methodology inspired by modified SpecAugment,applied to the dataset of abnormal noise sam-ples,encompassing scenarios both with and without in-vehicle interior noise.This serves to mitigate the issue of limited sample availability.Subsequent comparative evaluations are executed,contrasting the performance of the model founded upon single-sensor data against other feature fusion models reliant on multi-sensor data.The experimental results substantiate that the suggested methodology yields heightened recognition accuracy and greater resilience against interference.Moreover,it holds notable practical significance in the engineering domain,as it furnishes valuable support for the targeted management of noise emanating from vehicle micro-motors. 展开更多
关键词 Auditory perception MULTI-SENSOR feature adaptive fusion abnormal noise recognition vehicle interior noise
在线阅读 下载PDF
AMHF-TP:Multifunctional therapeutic peptides prediction based on multi-granularity hierarchical features
4
作者 Shouheng Tuo YanLing Zhu +1 位作者 Jiangkun Lin Jiewei Jiang 《Quantitative Biology》 2025年第1期127-141,共15页
Multifunctional therapeutic peptides(MFTP)hold immense potential in diverse therapeutic contexts,yet their prediction and identification remain challenging due to the limitations of traditional methodologies,such as e... Multifunctional therapeutic peptides(MFTP)hold immense potential in diverse therapeutic contexts,yet their prediction and identification remain challenging due to the limitations of traditional methodologies,such as extensive training durations,limited sample sizes,and inadequate generalization capabilities.To address these issues,we present AMHF-TP,an advanced method for MFTP recognition that utilizes attention mechanisms and multi-granularity hierarchical features to enhance performance.The AMHF-TP is composed of four key components:a migration learning module that leverages pretrained models to extract atomic compositional features of MFTP sequences;a convolutional neural network and selfattention module that refine feature extraction from amino acid sequences and their secondary structures;a hypergraph module that constructs a hypergraph for complex similarity representation between MFTP sequences;and a hierarchical feature extraction module that integrates multimodal peptide sequence features.Compared with leading methods,the proposed AMHF-TP demonstrates superior precision,accuracy,and coverage,underscoring its effectiveness and robustness in MFTP recognition.The comparative analysis of separate hierarchical models and the combined model,as well as with five contemporary models,reveals AMHFTP’s exceptional performance and stability in recognition tasks. 展开更多
关键词 deep learning hypergraph multifunctional therapeutic peptides multi-granularity hierarchical features
原文传递
ST-SIGMA:Spatio-temporal semantics and interaction graph aggregation for multi-agent perception and trajectory forecasting 被引量:5
5
作者 Yang Fang Bei Luo +3 位作者 Ting Zhao Dong He Bingbing Jiang Qilie Liu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第4期744-757,共14页
Scene perception and trajectory forecasting are two fundamental challenges that are crucial to a safe and reliable autonomous driving(AD)system.However,most proposed methods aim at addressing one of the two challenges... Scene perception and trajectory forecasting are two fundamental challenges that are crucial to a safe and reliable autonomous driving(AD)system.However,most proposed methods aim at addressing one of the two challenges mentioned above with a single model.To tackle this dilemma,this paper proposes spatio-temporal semantics and interaction graph aggregation for multi-agent perception and trajectory forecasting(STSIGMA),an efficient end-to-end method to jointly and accurately perceive the AD environment and forecast the trajectories of the surrounding traffic agents within a unified framework.ST-SIGMA adopts a trident encoder-decoder architecture to learn scene semantics and agent interaction information on bird’s-eye view(BEV)maps simultaneously.Specifically,an iterative aggregation network is first employed as the scene semantic encoder(SSE)to learn diverse scene information.To preserve dynamic interactions of traffic agents,ST-SIGMA further exploits a spatio-temporal graph network as the graph interaction encoder.Meanwhile,a simple yet efficient feature fusion method to fuse semantic and interaction features into a unified feature space as the input to a novel hierarchical aggregation decoder for downstream prediction tasks is designed.Extensive experiments on the nuScenes data set have demonstrated that the proposed ST-SIGMA achieves significant improvements compared to the state-of-theart(SOTA)methods in terms of scene perception and trajectory forecasting,respectively.Therefore,the proposed approach outperforms SOTA in terms of model generalisation and robustness and is therefore more feasible for deployment in realworld AD scenarios. 展开更多
关键词 feature fusion graph interaction hierarchical aggregation scene perception scene semantics trajectory forecasting
在线阅读 下载PDF
时空特征强化与感知的视觉目标跟踪方法 被引量:1
6
作者 郭虎升 刘正琪 +1 位作者 刘艳杰 王文剑 《陕西师范大学学报(自然科学版)》 北大核心 2025年第1期60-70,共11页
多数基于Transformer的目标跟踪模型提取的目标局部空间特征信息有限且时间特征利用不足,显著影响了目标跟踪模型在处理目标遮挡、形变或尺度变化等复杂场景下的性能。为此,提出一种时空特征强化与感知的视觉目标跟踪方法(visual object... 多数基于Transformer的目标跟踪模型提取的目标局部空间特征信息有限且时间特征利用不足,显著影响了目标跟踪模型在处理目标遮挡、形变或尺度变化等复杂场景下的性能。为此,提出一种时空特征强化与感知的视觉目标跟踪方法(visual object tracking method with spatial-temporal feature enhancement and perception,STFEP)。一方面,该方法使用Transformer进行搜索区域与时间上下文特征的提取与融合,以得到全局特征信息,通过设计的局部卷积神经网络,提取目标的局部特征信息,并与目标的全局特征信息相关联,进一步强化目标的特征表示。另一方面,提出了时空特征感知机制,对不同时刻的特征信息进行可靠性和必要性分析,构建动态模板以感知更丰富的时空信息,使模型适应目标及场景的复杂变化。在TrackingNet、GOT-10k、LaSOT、UAV123多个数据集上的实验结果表明,研究所提方法能够准确鲁棒的对目标进行跟踪,并在GOT-10k数据集上取得了最优的结果,AO、SR 0.5以及SR 0.75分别达到了73.7%、83.8%、70.6%。 展开更多
关键词 视觉目标跟踪 时空特征强化 全局-局部信息关联 时空特征感知 动态模板
在线阅读 下载PDF
融合多尺度交叉注意力和边缘感知的伪装目标检测 被引量:1
7
作者 郝子强 张庆宝 +2 位作者 赵世豪 王焯豪 詹伟达 《计算机工程与应用》 北大核心 2025年第10期228-237,共10页
针对当前伪装目标检测算法无法准确、完整地检测出目标对象和其边缘的问题,提出了一种融合多尺度交叉注意力和边缘感知的伪装目标检测网络(multi-scale cross attention and edge perception network,MAEP-Net)。利用Res2Net-50提取图... 针对当前伪装目标检测算法无法准确、完整地检测出目标对象和其边缘的问题,提出了一种融合多尺度交叉注意力和边缘感知的伪装目标检测网络(multi-scale cross attention and edge perception network,MAEP-Net)。利用Res2Net-50提取图像的原始特征,并采用融合了多尺度交叉注意力的特征金字塔结构从通道、空间两个维度挖掘目标位置信息和凸显伪装目标区域特征;使用定位模块对目标的大致位置进行准确定位;边缘感知模块抑制低级特征中背景的噪声,融合边缘特征以获取更多的边缘细节信息;细化模块通过注意力机制分别从前景和背景两个方向关注目标线索,利用边缘先验、语义先验、领域先验、区域先验知识进一步细化目标结构和边缘轮廓。在3个公开数据集上的实验表明,所提算法相较于12种主流算法在4个客观评价指标上均取得了最优表现,尤其是在COD10K数据集上所提算法的加权平均值F-measure和平均绝对误差(mean absolute error,MAE)分别达到0.797和0.031。由此可见,所提算法在COD任务上具有较好的检测效果。 展开更多
关键词 多尺度交叉注意力 边缘感知 伪装目标检测 特征金字塔结构
在线阅读 下载PDF
多粒度文本感知分层特征交互的视觉定位方法
8
作者 才华 冉越 +3 位作者 付强 李军龑 张晨洁 孙俊喜 《电子与信息学报》 北大核心 2025年第11期4594-4605,共12页
现有视觉定位方法在文本引导目标定位和特征融合方面存在显著不足,主要表现为未能充分利用文本信息,并且整体性能过于依赖特征提取后的融合过程。针对这一问题,该文提出一种多粒度文本感知分层特征交互的视觉定位方法。该方法在图像分... 现有视觉定位方法在文本引导目标定位和特征融合方面存在显著不足,主要表现为未能充分利用文本信息,并且整体性能过于依赖特征提取后的融合过程。针对这一问题,该文提出一种多粒度文本感知分层特征交互的视觉定位方法。该方法在图像分支中引入分层特征交互模块,利用文本信息增强与文本相关的图像特征;多粒度文本感知模块深入挖掘文本语义内容,生成具有空间和语义增强的加权文本。在此基础上,采用基于哈达玛积的初步融合策略融合加权文本和图像,为跨模态特征融合提供更为精细的图像表示。利用Transformer编码器进行跨模态特征融合,通过多层感知机回归定位坐标。实验结果表明,该文方法在5个经典视觉定位数据集上均取得了显著的精度提升,成功解决了传统方法过度依赖特征融合模块而导致的性能瓶颈问题。 展开更多
关键词 视觉定位 多粒度 文本感知 分层特征交互 自适应文本加权 哈达玛积
在线阅读 下载PDF
基于自然语言语义感知的舆情分析算法设计
9
作者 刘云花 黎泉 《现代电子技术》 北大核心 2025年第22期133-137,共5页
针对自然语言语义感知中的舆情情感分析问题,文中提出一种基于Transformer预处理和通道注意力机制的综合舆情分析算法。该算法采用两层Transformer结构对样本输入信息进行预处理,提取出舆情关键词。对于经过Transformer处理后的输入样... 针对自然语言语义感知中的舆情情感分析问题,文中提出一种基于Transformer预处理和通道注意力机制的综合舆情分析算法。该算法采用两层Transformer结构对样本输入信息进行预处理,提取出舆情关键词。对于经过Transformer处理后的输入样本数据,在每一个时间步长中,采用选取当前输入和上一步长的隐藏状态共同输入处理的方法进行初始判断,用以决定前一隐藏状态是否有益于后续网络处理。在此基础上,进一步对不同特征通道的特征权重进行学习,分别进行全局最大池化和全局平均池化操作,实现动态调整通道特征对于整体结果的影响,筛选出有益于最终结果的特征通道并删除无效特征通道,最终经过Softmax层输出算法网络的预测分析结果。实验结果表明,所提算法相较于优化前原始算法的准确率提升了约8.79%,比主流经典算法的综合准确率高出约3.99%。 展开更多
关键词 自然语言 语义感知 舆情分析 TRANSFORMER 通道注意力机制 特征提取
在线阅读 下载PDF
基于多粒度特征感知的FoveaBox绿色苹果抗遮挡检测模型
10
作者 任晶晶 张小勇 贾伟宽 《中国农机化学报》 北大核心 2025年第3期182-187,共6页
目标果实检测精度直接影响果园智能作业的效率,当前以卷积神经网络为代表的特征提取网络仅从局部感受野中提取特征用于目标检测,果实受枝叶遮挡或果实间重叠时存在一定的局限性,导致检测精度偏低。为提升被遮挡目标果实的检测精度,提出... 目标果实检测精度直接影响果园智能作业的效率,当前以卷积神经网络为代表的特征提取网络仅从局部感受野中提取特征用于目标检测,果实受枝叶遮挡或果实间重叠时存在一定的局限性,导致检测精度偏低。为提升被遮挡目标果实的检测精度,提出抗遮挡的FoveaBox果实检测优化模型。首先,新模型引入Swin Transformer作为骨干网络,通过计算块间的相似度,打破传统卷积仅从局部区域提取特征的限制,从而增强特征映射的表征能力;其次,采用特征金字塔网络,通过横向连接和自顶向下结构聚合浅层高分辨率特征与高层语义信息,输出金字塔型特征映射;然后,将金字塔型特征映射输入Fovea头部网络中,利用分类子网络与边界框子网络进行检测目标;最后,通过焦点损失函数Focal Loss与Smooth L1对模型进行迭代寻优,直至模型收敛。验证表明,优化模型在IoU为0.5阈值下的平均精确度可达86.3%,优于FCOS、TOOD与LAD等先进模型。提出的抗遮挡的FoveaBox可在一定程度上提升被遮挡目标的检测精确度。 展开更多
关键词 被遮挡苹果检测 多粒度特征感知 FoveaBox Swin Transformer 区域相似度计算
在线阅读 下载PDF
BDD-DETR:高效感知小目标的锂电池表面缺陷检测
11
作者 邢远秀 刘颛玮 +1 位作者 邢玉峰 王文波 《储能科学与技术》 北大核心 2025年第1期370-379,共10页
针对锂电池外壳端面缺陷尺度和形状差异大而导致小目标缺陷识别困难等问题,提出BDD-DETR(battery defects detection-detection transformer)的锂电池表面缺陷检测算法。BDD-DETR架构在通用的特征提取模块和检测头模块间融入全新的模块... 针对锂电池外壳端面缺陷尺度和形状差异大而导致小目标缺陷识别困难等问题,提出BDD-DETR(battery defects detection-detection transformer)的锂电池表面缺陷检测算法。BDD-DETR架构在通用的特征提取模块和检测头模块间融入全新的模块特征感知与融合网络,通过自适应特征感知模块和特征融合路径从多个方向融合网络的深层与浅层特征,增强关键特征信息响应并抑制冗余特征,进一步提升模型多尺度特征融合能力和小目标感知能力;此外,为了减小缺陷边界框回归时的距离偏差和形状偏差,采用Shape IoU(shape intersection over union)损失函数训练网络模型。实验结果表明,在构建的锂电池端面缺陷数据集上,与CoDETR(collaborative-detection transformer)比较,BDD-DETR平均精度提升了3.7%,小尺度目标检测精度提升了8.9%,平均召回率提升了1.1%,在锂电池的小目标缺陷检测性能上优于目前一些先进的目标检测方法。 展开更多
关键词 锂离子电池 缺陷检测 Co-DETR 特征感知与融合网络 Shape IoU损失
在线阅读 下载PDF
基于自适应邻域特征融合的多阶段点云补全网络
12
作者 李维刚 曹文杰 李金灵 《计算机应用》 北大核心 2025年第10期3294-3301,共8页
点云补全指利用不完整的点云数据重建高质量的完整点云。然而,现有的大多数点云补全网络在捕捉局部特征和重建细节方面存在不足,导致生成的点云在局部细节和补全精度上表现不佳。为解决上述问题,提出一种基于自适应邻域特征融合的多阶... 点云补全指利用不完整的点云数据重建高质量的完整点云。然而,现有的大多数点云补全网络在捕捉局部特征和重建细节方面存在不足,导致生成的点云在局部细节和补全精度上表现不佳。为解决上述问题,提出一种基于自适应邻域特征融合的多阶段点云补全网络(ANFF-Net)。首先,特征提取器通过自适应调整关键点的邻域选择适应不同形状的点云,有效捕捉不同语义点之间的空间关系,减少局部细节信息的丢失;其次,特征拓展器利用局部感知Transformer进一步扩展邻近点的局部特征信息,提升网络的细节恢复能力;最后,点云生成器采用交叉注意力机制选择性传递不完整点云的局部特征信息,并使用折叠模块逐步细化点云的局部区域,显著增强补全后点云的细节保留,生成更一致的几何细节。实验结果表明,ANFF-Net在ShapeNet55数据集上的平均补全精度相较于ProxyFormer提升了9.68%,并在PCN和KITTI数据集上取得了较好的补全效果。可视化结果显示,ANFF-Net生成的点云具有更高的细粒度,形状更接近真实值。 展开更多
关键词 点云补全 局部特征 自适应邻域 局部感知 交叉注意力
在线阅读 下载PDF
基于双分支融合的图像实时语义分割方法
13
作者 宋玉琴 娄辉 +1 位作者 张琪 商纯良 《空军工程大学学报》 北大核心 2025年第2期62-70,共9页
针对现有实时语义分割网络分割多尺度目标时存在类别错分和分割不完整的问题,提出了一种基于双分支融合的图像实时语义分割方法。提出尺度注意融合模块,融合细节分支和语义分支提取到的目标空间特征和语义信息,以提高网络对多尺度目标... 针对现有实时语义分割网络分割多尺度目标时存在类别错分和分割不完整的问题,提出了一种基于双分支融合的图像实时语义分割方法。提出尺度注意融合模块,融合细节分支和语义分支提取到的目标空间特征和语义信息,以提高网络对多尺度目标识别的准确率。使用边缘损失函数引导细节分支学习目标边缘轮廓,增强网络对目标边缘细节的分割性能。最后,构建全局感知模块提高网络的全局上下文感知能力。实验结果表明:文中方法在CityScapes和CamVid数据集上平均交并比(mIoU)分别为78.1%和76.2%,平均像素准确率(mPA)分别为87.6%和85.4%,对于小尺度目标边缘实现了更精准的分割,且在一个GTX 1080Ti GPU上推理达到实时要求,帧速率(FPS)分别达到59.8和43.5。 展开更多
关键词 深度学习 实时语义分割 尺度注意 特征融合 全局感知
在线阅读 下载PDF
基于OR B图像特征提取算法的数字化纸张信息识别
14
作者 刘娜 王姝 《造纸科学与技术》 2025年第8期114-117,共4页
针对纸张图像在复杂纹理背景下识别难度大、特征稳定性差的问题,提出一种基于ORB(Oriented FAST and Rotated BRIEF)算法的数字化纸张信息识别方法。该方法利用高效的关键点提取与描述技术,提升了纸张表面批次标识、水印结构、印刷编码... 针对纸张图像在复杂纹理背景下识别难度大、特征稳定性差的问题,提出一种基于ORB(Oriented FAST and Rotated BRIEF)算法的数字化纸张信息识别方法。该方法利用高效的关键点提取与描述技术,提升了纸张表面批次标识、水印结构、印刷编码等视觉信息的识别精度与实时性。在典型纸张图像样本上进行实验,结果显示,该方法具有识别速度快、抗干扰能力强、匹配准确率高等优势。研究结果对推动纸品追溯管理和智能检测系统建设具有重要的工程价值与实际意义。 展开更多
关键词 ORB算法 图像识别 纸张信息 特征提取 数字化感知
原文传递
动态感知与特征增强的轨道异物检测方法
15
作者 沈瑜 李博昊 《铁道科学与工程学报》 北大核心 2025年第9期4204-4217,共14页
轨道异物侵限问题是现代高速铁路运输系统面临的核心安全挑战。随着交通基础设施的高速发展和智能化转型,高速铁路运行对检测技术提出了前所未有的严苛要求。然而,现有异物侵限检测方法往往难以在检测精度和检测速度之间实现良好的平衡... 轨道异物侵限问题是现代高速铁路运输系统面临的核心安全挑战。随着交通基础设施的高速发展和智能化转型,高速铁路运行对检测技术提出了前所未有的严苛要求。然而,现有异物侵限检测方法往往难以在检测精度和检测速度之间实现良好的平衡,导致在实际应用中难以满足轨道场景的检测需求。针对以上问题,本文提出一种基于动态感知与特征增强的轨道异物检测方法(railway foreign intelligent boost,RF-IB)。首先,使用固定掩码的方式对ROI区域(region of interest)进行划分,聚焦于轨道及其周边的关键区域;其次,构建反向瓶颈模块(spilt reverse bottleneck,S-Bneck)并结合多分支处理策略,克服了信息传递过程中的梯度衰减问题;同时利用特征重用模块(feature reuse module,FRM)对不同尺度的特征图进行层级递归连接,进一步增强语义信息与细节信息的重用性;此外,设计自适应上采样模块(adaptive upsampling module,AUM),采用更为高效的内容感知机制恢复细节特征,并减少模型的计算开销;最后,引入无锚框检测网络,提高模型检测的实时性。实验结果表明,本文方法在自制轨道异物数据集和公开COCO数据集上的平均检测精度达到57.0%、47.3%,模型大小为35.2 MB,能以89.8帧/s的速度对轨道异物实时检测,充分满足轨道场景下对异物检测精度和实时性的要求。 展开更多
关键词 轨道异物检测 动态感知 特征增强 反向瓶颈 无锚框检测网络
在线阅读 下载PDF
通信延迟下车辆协同感知的3D目标检测方法
16
作者 卢敏 胡振宇 《计算机工程与应用》 北大核心 2025年第7期278-287,共10页
针对车辆协同感知3D目标检测在通信延迟条件下精度较低的问题,提出一种通信延迟下车辆协同感知的3D目标检测方法。设计时空预测模块,提取通信延迟车辆历史感知特征序列中的时空特征,以预测当前时刻的感知特征,基于预测特征构建感知融合... 针对车辆协同感知3D目标检测在通信延迟条件下精度较低的问题,提出一种通信延迟下车辆协同感知的3D目标检测方法。设计时空预测模块,提取通信延迟车辆历史感知特征序列中的时空特征,以预测当前时刻的感知特征,基于预测特征构建感知融合模块,利用注意力机制动态融合感知特征,以降低预测误差影响,提高检测精度。该方法在OPV2V、V2XSet和V2V4Real数据集上进行实验,与Where2Comm、V2VNet等主流协同感知方法相比。实验结果表明,在所对比的方法中,Where2Comm在不同延迟下的3D目标检测平均精度最优,该方法相比Where2Comm在400 ms下的平均精度分别提高了5.9、3.9和1.5个百分点。 展开更多
关键词 协同感知 3D目标检测 通信延迟 时空序列预测 注意力机制 特征融合
在线阅读 下载PDF
一种特征感知与引导的无监督立体匹配算法
17
作者 魏东 郑博闻 王思雨 《计算机技术与发展》 2025年第6期158-165,共8页
针对立体匹配算法在处理物体边缘、视差不连续等细节时面临的挑战,以及有监督算法对数据标注的高度依赖性,提出了一种特征感知与引导的无监督立体匹配算法。该算法在生成器的编码器部分嵌入特征感知模块。该模块结合残差网络的稳健性,... 针对立体匹配算法在处理物体边缘、视差不连续等细节时面临的挑战,以及有监督算法对数据标注的高度依赖性,提出了一种特征感知与引导的无监督立体匹配算法。该算法在生成器的编码器部分嵌入特征感知模块。该模块结合残差网络的稳健性,确保了特征提取的稳定性,还结合空洞金字塔卷积网络的广感受野特性,有效地扩大了特征捕捉的范围,此外,还辅以软池化技术,以增强特征的层次性和丰富性,使算法能够更好地应对图像中的细节变化。为进一步提升特征的表征能力,引入了特征引导模块,通过结合通道注意力和空间注意力机制,动态调整不同通道和空间位置的权重来有效聚焦于关键特征区域。此外,在判别器中加入Dropout层,以随机丢弃部分神经元连接的方式促使模型训练更加稳定,避免过拟合情况发生。为了验证算法的有效性,实验采用了KITTI 2015数据集进行评估。结果表明,与其他经典算法相比,该算法在细节及区域的效果、精度方面均有提升。 展开更多
关键词 立体匹配 无监督 特征感知 特征引导 DROPOUT
在线阅读 下载PDF
基于PSPNet-ADE20K模型的江南运河乡村景观特征及感知偏好研究——以湖州荻港村为例
18
作者 张琳 王丹妮 谢伟民 《住宅科技》 2025年第2期47-56,共10页
江南运河乡村景观是乡村居民在与大运河共生发展的过程中形成的地方性景观,对江南运河乡村景观的研究有助于保护和利用大运河文化遗产。文章以湖州荻港村为例,利用深度学习算法对村落街景图片进行语义分割,识别并总结运河乡村自然景观... 江南运河乡村景观是乡村居民在与大运河共生发展的过程中形成的地方性景观,对江南运河乡村景观的研究有助于保护和利用大运河文化遗产。文章以湖州荻港村为例,利用深度学习算法对村落街景图片进行语义分割,识别并总结运河乡村自然景观、生产活动景观、人文景观的空间特征;并进一步结合ArcGIS技术分析运河乡村景观感知偏好,探究景观要素对公众感知偏好的影响机制。结果表明:荻港村的景观空间呈现出“以水为骨、依水而筑、因水成街”的运河水系主导特征,形成延续运河村落历史文化脉络的空间格局和地方性特征;游客在景观感知上明显偏好与运河具有关联特征的自然和人文景观要素,而生产活动景观虽然具有辨识度,但其农业遗产价值未能充分展现,因而游客的感知偏低。 展开更多
关键词 江南运河 运河乡村 景观特征 感知偏好 PSPNet-ADE20K模型 深度学习
在线阅读 下载PDF
多尺度感知的单文本条件图像风格迁移
19
作者 贵向泉 李琪 +2 位作者 李立 张继续 张斌轩 《计算机技术与发展》 2025年第9期46-54,共9页
针对现有图像风格迁移方法生成图像质量不均匀、风格化效果不平衡等问题,提出一种基于CLIP的多尺度感知单文本条件融合的图像风格迁移模型─CLIP-TextFusion。该模型充分利用CLIP的文本─图像对齐能力,无需依赖目标风格图像,仅通过文本... 针对现有图像风格迁移方法生成图像质量不均匀、风格化效果不平衡等问题,提出一种基于CLIP的多尺度感知单文本条件融合的图像风格迁移模型─CLIP-TextFusion。该模型充分利用CLIP的文本─图像对齐能力,无需依赖目标风格图像,仅通过文本描述即可生成与目标风格匹配的图像。模型设计了特征提取与增强网络FENet,结合编码器、多尺度感知解码器以及通道注意力和空间注意力机制,动态调整特征权重和多尺度特征融合,实现内容图像细节的高效保留与风格纹理的精准传递。为进一步优化风格迁移效果,模型引入定向CLIP损失、多尺度感知损失、风格特征提取损失及对抗性损失,分别约束生成图像与文本描述的全局风格一致性、局部细节匹配度以及视觉真实性。实验结果表明,CLIP-TextFusion生成的图像风格鲜明、纹理细腻,在视觉效果和风格一致性上优于现有方法,能够广泛应用于艺术创作和个性化图像生成等领域。 展开更多
关键词 文本引导 图像风格迁移 CLIP模型 多尺度感知 特征提取与增强
在线阅读 下载PDF
历史街区风貌保护的跨群体认同研究——基于VR眼动跟踪的场景感知
20
作者 张若曦 张乐敏 《新建筑》 2025年第4期120-125,共6页
历史街区风貌保护需协调不同群体感知以增进其对街区的文化认同。基于场景理论视角,运用虚拟现实和眼动追踪技术,对厦门中山路历史街区微更新前后本地居民与外地游客的风貌感知差异进行实证研究。结果显示,两类群体在关注尺度、感知侧... 历史街区风貌保护需协调不同群体感知以增进其对街区的文化认同。基于场景理论视角,运用虚拟现实和眼动追踪技术,对厦门中山路历史街区微更新前后本地居民与外地游客的风貌感知差异进行实证研究。结果显示,两类群体在关注尺度、感知侧重、评价取向、情感表达等方面存在显著差异,反映了社会属性和空间体验对风貌感知的影响。群体感知差异体现风貌价值认知差异,进而影响文化认同程度。研究建议微更新应融合多元感知,优化场景,增进风貌价值共识,重塑文化认同,推动街区活力再现。研究为历史街区保护提供了新视角,对协调社会感知、传承城市文脉具启示意义。 展开更多
关键词 历史街区 风貌感知 虚拟现实 眼动追踪 场景理论 跨群体 厦门中山路
在线阅读 下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部