期刊文献+
共找到1,039篇文章
< 1 2 52 >
每页显示 20 50 100
Learning compact binary code based on multiple heterogeneous features
1
作者 左欣 罗立民 +1 位作者 沈继锋 于化龙 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期372-378,共7页
A novel hashing method based on multiple heterogeneous features is proposed to improve the accuracy of the image retrieval system. First, it leverages the imbalanced distribution of the similar and dissimilar samples ... A novel hashing method based on multiple heterogeneous features is proposed to improve the accuracy of the image retrieval system. First, it leverages the imbalanced distribution of the similar and dissimilar samples in the feature space to boost the performance of each weak classifier in the asymmetric boosting framework. Then, the weak classifier based on a novel linear discriminate analysis (LDA) algorithm which is learned from the subspace of heterogeneous features is integrated into the framework. Finally, the proposed method deals with each bit of the code sequentially, which utilizes the samples misclassified in each round in order to learn compact and balanced code. The heterogeneous information from different modalities can be effectively complementary to each other, which leads to much higher performance. The experimental results based on the two public benchmarks demonstrate that this method is superior to many of the state- of-the-art methods. In conclusion, the performance of the retrieval system can be improved with the help of multiple heterogeneous features and the compact hash codes which can be learned by the imbalanced learning method. 展开更多
关键词 hashing code linear discriminate analysis asymmetric boosting heterogeneous feature
在线阅读 下载PDF
Augmented Deep Multi-Granularity Pose-Aware Feature Fusion Network for Visible-Infrared Person Re-Identification 被引量:3
2
作者 Zheng Shi Wanru Song +1 位作者 Junhao Shan Feng Liu 《Computers, Materials & Continua》 SCIE EI 2023年第12期3467-3488,共22页
Visible-infrared Cross-modality Person Re-identification(VI-ReID)is a critical technology in smart public facilities such as cities,campuses and libraries.It aims to match pedestrians in visible light and infrared ima... Visible-infrared Cross-modality Person Re-identification(VI-ReID)is a critical technology in smart public facilities such as cities,campuses and libraries.It aims to match pedestrians in visible light and infrared images for video surveillance,which poses a challenge in exploring cross-modal shared information accurately and efficiently.Therefore,multi-granularity feature learning methods have been applied in VI-ReID to extract potential multi-granularity semantic information related to pedestrian body structure attributes.However,existing research mainly uses traditional dual-stream fusion networks and overlooks the core of cross-modal learning networks,the fusion module.This paper introduces a novel network called the Augmented Deep Multi-Granularity Pose-Aware Feature Fusion Network(ADMPFF-Net),incorporating the Multi-Granularity Pose-Aware Feature Fusion(MPFF)module to generate discriminative representations.MPFF efficiently explores and learns global and local features with multi-level semantic information by inserting disentangling and duplicating blocks into the fusion module of the backbone network.ADMPFF-Net also provides a new perspective for designing multi-granularity learning networks.By incorporating the multi-granularity feature disentanglement(mGFD)and posture information segmentation(pIS)strategies,it extracts more representative features concerning body structure information.The Local Information Enhancement(LIE)module augments high-performance features in VI-ReID,and the multi-granularity joint loss supervises model training for objective feature learning.Experimental results on two public datasets show that ADMPFF-Net efficiently constructs pedestrian feature representations and enhances the accuracy of VI-ReID. 展开更多
关键词 Visible-infrared person re-identification multi-granularity feature learning modality
在线阅读 下载PDF
AMHF-TP:Multifunctional therapeutic peptides prediction based on multi-granularity hierarchical features
3
作者 Shouheng Tuo YanLing Zhu +1 位作者 Jiangkun Lin Jiewei Jiang 《Quantitative Biology》 2025年第1期127-141,共15页
Multifunctional therapeutic peptides(MFTP)hold immense potential in diverse therapeutic contexts,yet their prediction and identification remain challenging due to the limitations of traditional methodologies,such as e... Multifunctional therapeutic peptides(MFTP)hold immense potential in diverse therapeutic contexts,yet their prediction and identification remain challenging due to the limitations of traditional methodologies,such as extensive training durations,limited sample sizes,and inadequate generalization capabilities.To address these issues,we present AMHF-TP,an advanced method for MFTP recognition that utilizes attention mechanisms and multi-granularity hierarchical features to enhance performance.The AMHF-TP is composed of four key components:a migration learning module that leverages pretrained models to extract atomic compositional features of MFTP sequences;a convolutional neural network and selfattention module that refine feature extraction from amino acid sequences and their secondary structures;a hypergraph module that constructs a hypergraph for complex similarity representation between MFTP sequences;and a hierarchical feature extraction module that integrates multimodal peptide sequence features.Compared with leading methods,the proposed AMHF-TP demonstrates superior precision,accuracy,and coverage,underscoring its effectiveness and robustness in MFTP recognition.The comparative analysis of separate hierarchical models and the combined model,as well as with five contemporary models,reveals AMHFTP’s exceptional performance and stability in recognition tasks. 展开更多
关键词 deep learning hypergraph multifunctional therapeutic peptides multi-granularity hierarchical features
原文传递
Robust Speech Recognition System Using Conventional and Hybrid Features of MFCC,LPCC,PLP,RASTA-PLP and Hidden Markov Model Classifier in Noisy Conditions 被引量:7
4
作者 Veton Z.Kepuska Hussien A.Elharati 《Journal of Computer and Communications》 2015年第6期1-9,共9页
In recent years, the accuracy of speech recognition (SR) has been one of the most active areas of research. Despite that SR systems are working reasonably well in quiet conditions, they still suffer severe performance... In recent years, the accuracy of speech recognition (SR) has been one of the most active areas of research. Despite that SR systems are working reasonably well in quiet conditions, they still suffer severe performance degradation in noisy conditions or distorted channels. It is necessary to search for more robust feature extraction methods to gain better performance in adverse conditions. This paper investigates the performance of conventional and new hybrid speech feature extraction algorithms of Mel Frequency Cepstrum Coefficient (MFCC), Linear Prediction Coding Coefficient (LPCC), perceptual linear production (PLP), and RASTA-PLP in noisy conditions through using multivariate Hidden Markov Model (HMM) classifier. The behavior of the proposal system is evaluated using TIDIGIT human voice dataset corpora, recorded from 208 different adult speakers in both training and testing process. The theoretical basis for speech processing and classifier procedures were presented, and the recognition results were obtained based on word recognition rate. 展开更多
关键词 Speech Recognition Noisy Conditions feature Extraction Mel-Frequency Cepstral Coefficients Linear Predictive Coding Coefficients Perceptual Linear Production RASTA-PLP Isolated Speech Hidden Markov Model
在线阅读 下载PDF
A SEMI-OPEN-LOOP CODING MODE SELECTION ALGORITHM BASED ON EFM AND SELECTED AMR-WB+ FEATURES
5
作者 Hong Ying Zhao Shenghui Kuang Jingming 《Journal of Electronics(China)》 2009年第2期274-278,共5页
To solve the problems of the AMR-WB+(Extended Adaptive Multi-Rate-WideBand) semi-open-loop coding mode selection algorithm,features for ACELP(Algebraic Code Excited Linear Prediction) and TCX(Transform Coded eXcitatio... To solve the problems of the AMR-WB+(Extended Adaptive Multi-Rate-WideBand) semi-open-loop coding mode selection algorithm,features for ACELP(Algebraic Code Excited Linear Prediction) and TCX(Transform Coded eXcitation) classification are investigated.11 classifying features in the AMR-WB+ codec are selected and 2 novel classifying features,i.e.,EFM(Energy Flatness Measurement) and stdEFM(standard deviation of EFM),are proposed.Consequently,a novel semi-open-loop mode selection algorithm based on EFM and selected AMR-WB+ features is proposed.The results of classifying test and listening test show that the performance of the novel algorithm is much better than that of the AMR-WB+ semi-open-loop coding mode selection algorithm. 展开更多
关键词 Speech/Audio Semi-open-loop coding mode selection features selection Energy Flat-ness Measurement(EFM)
在线阅读 下载PDF
Integrated Multi-featured Android Malicious Code Detection
6
作者 Qing Yu Hui Zhao 《国际计算机前沿大会会议论文集》 2019年第1期215-216,共2页
To solve the problem that using a single feature cannot play the role of multiple features of Android application in malicious code detection, an Android malicious code detection mechanism is proposed based on integra... To solve the problem that using a single feature cannot play the role of multiple features of Android application in malicious code detection, an Android malicious code detection mechanism is proposed based on integrated learning on the basis of dynamic and static detection. Considering three types of Android behavior characteristics, a three-layer hybrid algorithm was proposed. And it combined the malicious code detection based on digital signature to improve the detection efficiency. The digital signature of the known malicious code was extracted to form a malicious sample library. The authority that can reflect Android malicious behavior, API call and the running system call features were also extracted. An expandable hybrid discriminant algorithm was designed for the above three types of features. The algorithm was tested with machine learning method by constructing the optimal classifier suitable for the above features. Finally, the Android malicious code detection system was designed and implemented based on the multi-layer hybrid algorithm. The experimental results show that the system performs Android malicious code detection based on the combination of signature and dynamic and static features. Compared with other related work, the system has better performance in execution efficiency and detection rate. 展开更多
关键词 MALICIOUS code featurE Optimal algorithm
在线阅读 下载PDF
A GAN-EfficientNet-Based Traceability Method for Malicious Code Variant Families
7
作者 Li Li Qing Zhang Youran Kong 《Computers, Materials & Continua》 SCIE EI 2024年第7期801-818,共18页
Due to the diversity and unpredictability of changes in malicious code,studying the traceability of variant families remains challenging.In this paper,we propose a GAN-EfficientNetV2-based method for tracing families ... Due to the diversity and unpredictability of changes in malicious code,studying the traceability of variant families remains challenging.In this paper,we propose a GAN-EfficientNetV2-based method for tracing families of malicious code variants.This method leverages the similarity in layouts and textures between images of malicious code variants from the same source and their original family of malicious code images.The method includes a lightweight classifier and a simulator.The classifier utilizes the enhanced EfficientNetV2 to categorize malicious code images and can be easily deployed on mobile,embedded,and other devices.The simulator utilizes an enhanced generative adversarial network to simulate different variants of malicious code and generates datasets to validate the model’s performance.This process helps identify model vulnerabilities and security risks,facilitating model enhancement and development.The classifier achieves 98.61%and 97.59%accuracy on the MMCC dataset and Malevis dataset,respectively.The simulator’s generated image of malicious code variants has an FID value of 155.44 and an IS value of 1.72±0.42.The classifier’s accuracy for tracing the family of malicious code variants is as high as 90.29%,surpassing that of mainstream neural network models.This meets the current demand for high generalization and anti-obfuscation abilities in malicious code classification models due to the rapid evolution of malicious code. 展开更多
关键词 Malicious code variant traceability feature reuse lightweight neural networks code visualization attention mechanism
在线阅读 下载PDF
Lightweight Malicious Code Classification Method Based on Improved Squeeze Net
8
作者 Li Li Youran Kong Qing Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期551-567,共17页
With the growth of the Internet,more and more business is being done online,for example,online offices,online education and so on.While this makes people’s lives more convenient,it also increases the risk of the netw... With the growth of the Internet,more and more business is being done online,for example,online offices,online education and so on.While this makes people’s lives more convenient,it also increases the risk of the network being attacked by malicious code.Therefore,it is important to identify malicious codes on computer systems efficiently.However,most of the existing malicious code detection methods have two problems:(1)The ability of the model to extract features is weak,resulting in poor model performance.(2)The large scale of model data leads to difficulties deploying on devices with limited resources.Therefore,this paper proposes a lightweight malicious code identification model Lightweight Malicious Code Classification Method Based on Improved SqueezeNet(LCMISNet).In this paper,the MFire lightweight feature extraction module is constructed by proposing a feature slicing module and a multi-size depthwise separable convolution module.The feature slicing module reduces the number of parameters by grouping features.The multi-size depthwise separable convolution module reduces the number of parameters and enhances the feature extraction capability by replacing the standard convolution with depthwise separable convolution with different convolution kernel sizes.In addition,this paper also proposes a feature splicing module to connect the MFire lightweight feature extraction module based on the feature reuse and constructs the lightweight model LCMISNet.The malicious code recognition accuracy of LCMISNet on the BIG 2015 dataset and the Malimg dataset reaches 98.90% and 99.58%,respectively.It proves that LCMISNet has a powerful malicious code recognition performance.In addition,compared with other network models,LCMISNet has better performance,and a lower number of parameters and computations. 展开更多
关键词 Lightweight neural network malicious code classification feature slicing feature splicing multi-size depthwise separable convolution
在线阅读 下载PDF
基于细粒度代码表示和特征融合的即时软件缺陷预测方法 被引量:1
9
作者 朱晓燕 王文格 +1 位作者 王嘉寅 张选平 《计算机科学》 北大核心 2025年第1期242-249,共8页
即时软件缺陷预测指在软件更改初次提交之际预测该更改引入缺陷的倾向。此类预测针对单一程序变更,而非在粗粒度上进行。由于其即时性和可追溯性,该技术已在持续测试等领域得到广泛应用。目前的研究中,提取变更代码表示的方法粒度较粗,... 即时软件缺陷预测指在软件更改初次提交之际预测该更改引入缺陷的倾向。此类预测针对单一程序变更,而非在粗粒度上进行。由于其即时性和可追溯性,该技术已在持续测试等领域得到广泛应用。目前的研究中,提取变更代码表示的方法粒度较粗,仅标出了变更行,而没有进行细粒度的标记。此外,现有的使用提交内容进行缺陷预测的方法,仅仅是把提交消息与变更代码的特征进行简单拼接,缺失了在特征空间上的深度对齐,这使得在提交消息质量参差不齐的情况下,会出现预测结果易受噪声干扰的情形,并且现有方法也未将领域专家设计的人工特征以及变更内容中的语义语法信息综合起来进行预测。为了解决上述问题,提出了一种基于细粒度代码表征和特征融合的即时软件缺陷预测方法。通过引入新的变更嵌入计算方法来在细粒度上表示变更代码。同时,引入特征对齐模块,降低提交消息中噪声对方法性能的影响。此外,使用神经网络从人工设计的特征中学习专业知识,充分利用现有特征进行预测。实验结果表明,相较于现有方法,该方法在3个性能指标上均有显著提升。 展开更多
关键词 即时软件缺陷预测 特征融合 软件工程 深度学习 代码表示
在线阅读 下载PDF
基于生成对抗网络的恶意代码变体家族溯源方法
10
作者 李莉 张晴 +2 位作者 孔悠然 苏仁嘉 赵鑫 《计算机工程与科学》 北大核心 2025年第7期1215-1225,共11页
针对恶意代码变更速度快、溯源困难的问题,提出了一种通过创建恶意代码变体数据集,增强模型家族溯源能力的分类方法。该方法将恶意代码可视化,使用改进的生成对抗网络对恶意代码进行分类,使用Ghost模块与Dropout层调节生成器与判别器的... 针对恶意代码变更速度快、溯源困难的问题,提出了一种通过创建恶意代码变体数据集,增强模型家族溯源能力的分类方法。该方法将恶意代码可视化,使用改进的生成对抗网络对恶意代码进行分类,使用Ghost模块与Dropout层调节生成器与判别器的对抗能力,引入高效通道注意力机制帮助模型聚焦重要特征,使用卷积与上采样结合的结构避免生成图像棋盘格化。测试阶段使用恶意代码变体数据集与不同类别特征数据集,验证模型恶意代码变体的家族溯源能力。使用所提方法构建的模型具有更强的特征提取能力、更少的资源消耗以及更快的推理速度,满足当今恶意代码变更迅速对恶意代码分类模型提出的强抗混淆能力、高泛化能力的要求,且便于部署在移动、嵌入式等设备中,提供对恶意代码的实时检测。 展开更多
关键词 恶意代码变体溯源 生成对抗网络 注意力机制 代码可视化 特征纹理
在线阅读 下载PDF
基于跨模态特征交互和多尺度重建的红外与可见光图像融合
11
作者 姚睿 王凯 +2 位作者 郭浩帆 胡文涛 田祥瑞 《红外与激光工程》 北大核心 2025年第8期259-270,共12页
针对弱光环境下红外与可见光图像融合存在的纹理细节丢失、视觉效果和实时性差等问题,提出了一种基于跨模态特征交互和多尺度重建(Cross-modal Feature Interaction and Multi-scale Reconstruction,CFIMR)的红外与可见光图像融合算法CF... 针对弱光环境下红外与可见光图像融合存在的纹理细节丢失、视觉效果和实时性差等问题,提出了一种基于跨模态特征交互和多尺度重建(Cross-modal Feature Interaction and Multi-scale Reconstruction,CFIMR)的红外与可见光图像融合算法CFIMRFusion。该算法构建了包括卷积注意力增强模块、编码器网络、跨模态特征交互融合模块和基于多尺度重建的解码器网络的四阶段融合框架。首先,设计卷积注意力增强模块提升弱可见光图像的对比度和纹理可见性,并利用编码器网络从红外图像和增强后的可见光图像中提取深层多尺度特征。然后,提出基于通道-空间注意力的跨模态特征交互融合模块,对红外显著特征和可见光细节特征进行互补融合。最后,为解决使用普通解码器重建图像时出现特征消失等问题,将融合得到的多尺度特征以跳跃连接的方式输入到解码器各级,重建高保真的融合图像。实验结果表明,CFIMRFusion融合图像的细节特征和整体视觉效果优于对比算法;且与最优对比算法相比,融合图像在TNO数据集中平均梯度、边缘强度分别提升了15.8%、18.2%,在LLVIP数据集中互信息、标准差分别提升了11.5%、9.5%,在MSRS数据集中边缘强度提升了10.1%;三个数据集上的融合速度分别为最快对比算法的24.1%、23.86%和25.2%。 展开更多
关键词 图像融合 图像增强 注意力机制 自编码网络 跨模态特征交互
原文传递
基于异构图表征的源代码漏洞检测方法
12
作者 张学军 梁书滨 +4 位作者 白万荣 张奉鹤 黄海燕 郭梅凤 陈卓 《浙江大学学报(工学版)》 北大核心 2025年第8期1644-1652,共9页
针对现有的源代码漏洞检测模型对异构特征和底层信息提取不足导致的检测准确率不高的问题,提出基于异构图表征的源代码漏洞检测方法.从中间代码表示(IR)中提取8种指令级特征作为程序依赖图的节点嵌入,解决底层信息提取不足的问题.在节... 针对现有的源代码漏洞检测模型对异构特征和底层信息提取不足导致的检测准确率不高的问题,提出基于异构图表征的源代码漏洞检测方法.从中间代码表示(IR)中提取8种指令级特征作为程序依赖图的节点嵌入,解决底层信息提取不足的问题.在节点层和依赖层分别构建基于注意力机制的聚合模块来提取图表征数据中的异构性特征,通过调整注意力系数捕获关键节点信息.对图数据的聚合结果进行分类,预测是否存在漏洞.在合成数据集和2个真实项目数据集上的实验表明,相比于现有方法,本文方法具有更强的异构特征提取能力和更高的漏洞检测综合性能. 展开更多
关键词 漏洞检测 图表征 注意力机制 异构特征 中间代码表示
在线阅读 下载PDF
帧内编码相同编码参数的VVC双压缩检测算法
13
作者 李强 彭依浪 宋衍昭 《重庆邮电大学学报(自然科学版)》 北大核心 2025年第3期346-356,共11页
为了解决多功能视频编码(versatile video coding,VVC)标准下具有相同编码参数的视频双压缩检测方法准确率不高的问题,提出了一种基于编码单元(coding unit,CU)尺寸、划分模式和预测模式的检测方法。对待检测的视频进行多次编解码,分析... 为了解决多功能视频编码(versatile video coding,VVC)标准下具有相同编码参数的视频双压缩检测方法准确率不高的问题,提出了一种基于编码单元(coding unit,CU)尺寸、划分模式和预测模式的检测方法。对待检测的视频进行多次编解码,分析并确定VVC流中与压缩编码次数密切相关的基础码流特征;以CU尺寸、划分模式和预测模式构建高级码流特征输入支持向量机完成视频的双压缩检测。实验结果表明,与对比文献的方法相比,所提方法的视频双压缩检测准确率有较大提升,平均准确率达到了95.82%。 展开更多
关键词 多功能视频编码 双压缩检测 高级码流特征 支持向量机
在线阅读 下载PDF
结直肠癌组织lncRNA-UCA1表达与临床病理特征、化疗敏感性的关系
14
作者 张亚利 高晓会 郭艳珍 《胃肠病学和肝病学杂志》 2025年第1期64-69,共6页
目的检测结直肠癌组织长链非编码核糖核酸-尿路上皮癌胚抗原1(long non-coding RNA-urothelial carcinoma associated 1,lncRNA-UCA1)表达,并分析其与临床病理特征、化疗敏感性的关系。方法选取2021年4月至2023年4月于河南科技大学第一... 目的检测结直肠癌组织长链非编码核糖核酸-尿路上皮癌胚抗原1(long non-coding RNA-urothelial carcinoma associated 1,lncRNA-UCA1)表达,并分析其与临床病理特征、化疗敏感性的关系。方法选取2021年4月至2023年4月于河南科技大学第一附属医院行手术治疗的结直肠癌患者111例,并取其癌旁组织作为对照。比较癌组织、癌旁组织中lncRNA-UCA1的表达;比较不同临床病理特征患者癌组织lncRNA-UCA1表达;术后化疗3个周期后随访3个月,根据化疗敏感性将患者分为抵抗组、敏感组;比较抵抗组、敏感组一般资料及癌组织lncRNA-UCA1表达;用Logistic回归模型分析化疗敏感性的影响因素;绘制Kaplan-Meier曲线分析癌组织lncRNA-UCA1表达与结直肠癌生存情况的关系。结果与癌旁组织比较,癌组织lncRNA-UCA1表达升高(P<0.05);与TNMⅡ期、中/高分化、浸润深度T 1/T 2的患者比较,TNMⅢ/Ⅳ期、未/低分化、浸润深度T 3/T 4患者癌组织lncRNA-UCA1表达升高(P<0.05);患者化疗抵抗率为46.85%;Logistic回归模型分析显示,男性(OR=3.237,95%CI:1.258~8.325)、TNMⅢ/Ⅳ期(OR=4.277,95%CI:1.615~11.325)、血红蛋白(hemoglobin,Hb)(OR=0.961,95%CI:0.940~0.983)、癌组织lncRNA-UCA1表达(OR=8.939,95%CI:1.926~41.497)是结直肠癌化疗敏感性的影响因素(P<0.05)。随访3~26个月,中位随访时间14个月。lncRNA-UCA1高表达组、低表达组生存率分别为62.50%、85.11%,Log-rank检验显示,lncRNA-UCA1高表达组的生存率低于lncRNA-UCA1低表达组(χ2=4.432,P=0.035)。结论结直肠癌组织lncRNA-UCA1表达高于癌旁组织,与TNM分期、分化程度、浸润深度相关,且是化疗敏感性的影响因素,并与患者生存情况有关。 展开更多
关键词 结直肠癌 长链非编码核糖核酸-尿路上皮癌胚抗原1 病理特征 敏感性
暂未订购
血清miR-138-5p和LncRNA NEAT1表达与结直肠癌临床病理特征及预后的关系
15
作者 郝兰香 叶宇涵 苏端玉 《中国现代普通外科进展》 2025年第8期612-617,共6页
目的:探讨血清微小RNA(miR)-138-5p和长链非编码RNA(LncRNA)NEAT1表达水平与结直肠癌(CRC)临床病理特征和预后的关系。方法:选取2019年5月至2021年8月我院收治的163例CRC患者为CRC组,根据3年预后分为生存组(n=104)和死亡组(n=47);另选同... 目的:探讨血清微小RNA(miR)-138-5p和长链非编码RNA(LncRNA)NEAT1表达水平与结直肠癌(CRC)临床病理特征和预后的关系。方法:选取2019年5月至2021年8月我院收治的163例CRC患者为CRC组,根据3年预后分为生存组(n=104)和死亡组(n=47);另选同期175例结直肠良性病变患者作为对照组。实时荧光定量PCR检测血清miR-138-5p和LncRNA NEAT1。采用Kaplan-M eier曲线分析血清miR-138-5p和LncRNA NEAT1表达与CRC预后的关系;采用多因素Cox回归分析CRC预后的影响因素;采用ROC分析血清miR-138-5p和LncRNA NEAT1对CRC预后的预测价值。结果:相较对照组,CRC组血清miR-138-5p水平较低(t=12.802,P<0.05),LncRNA NEAT1水平较高(t=13.752,P<0.05)。血清miR-138-5p表达水平与CRC分化程度、T分期和N分期有关(χ^(2)=4.780、6.557、8499,P<0.05);血清LncRNA NEAT1水平与CRC的T分期和N分期有关(χ^(2)=8.352、9.642,P<0.05)。生存组和死亡组在T分期和N分期上存在显著差异(χ^(2)=6.801、7.580,P<0.05),且生存组血清miR-138-5p水平较死亡组低(t=8.290,P<0.05)、而血清LncRNA NEAT1水平较死亡组高(t=10.008,P<0.05)。Kaplan-Meier曲线显示,miR-138-5p高表达患者3年生存率高于miR-138-5p低表达者(Log Rankχ^(2)=6.661,P=0.010);LncRNA NEAT1高表达患者3年生存率低于LncRNA NEAT1低表达者(Log Rankχ^(2)=10.620,P=0.001)。多因素Cox回归分析结果显示,T分期(HR=3.516)、N分期(HR=2.983)、血清miR-138-5p(HR=0.927)和LncRNA NEAT1水平(HR=1.659)均为CRC预后的影响因素(P<0.05)。ROC结果显示,血清miR-138-5p和LncRNA NEAT1联合预测CRC预后不良的AUC为0.716,显著高于miR-138-5p(Z=3.173,P=0.002)和LncRNA NEAT1(Z=3.253,P=0.001)单独预测。结论:CRC患者血清miR-138-5p水平较低、LncRNA NEAT1水平较高,且二者水平与患者临床病理特征和预后密切相关。 展开更多
关键词 结直肠癌 微小RNA-138-5p 长链非编码RNA NEAT1 临床病理特征 预后
暂未订购
长链非编码RNA小核仁RNA宿主基因16在鼻咽癌中的表达及与临床特征和预后的关系
16
作者 周明辉 宋瑞彪 《癌症进展》 2025年第2期146-149,共4页
目的探究长链非编码RNA(lncRNA)小核仁RNA宿主基因16(SNHG16)在鼻咽癌中的表达及与临床特征和预后的关系。方法选取100例鼻咽癌患者作为观察组,46例健康体检者作为对照组,采用实时荧光定量聚合酶链反应(PCR)法检测lncRNA SNHG16表达水平... 目的探究长链非编码RNA(lncRNA)小核仁RNA宿主基因16(SNHG16)在鼻咽癌中的表达及与临床特征和预后的关系。方法选取100例鼻咽癌患者作为观察组,46例健康体检者作为对照组,采用实时荧光定量聚合酶链反应(PCR)法检测lncRNA SNHG16表达水平,并比较两组受试者lncRNA SNHG16表达水平。以2^(-△△Ct)≤2为lncRNA SNHG16低表达,2^(-△△Ct)﹥2为lncRNA SNHG16高表达,比较不同临床特征鼻咽癌患者lncRNA SNHG16的表达情况。对所有患者随访1年,比较lncRNA SNHG16高表达和低表达鼻咽癌患者的1年生存率,并采用Cox回归模型分析鼻咽癌患者预后的影响因素。结果观察组患者lncRNA SNHG16表达水平为(2.02±0.46),明显高于对照组受试者的(0.54±0.22),差异有统计学意义(P﹤0.01)。100例鼻咽癌患者中,lncRNA SNHG16高表达79例,lncRNA SNHG16低表达21例。有淋巴结转移、TNM分期为Ⅲ~Ⅳ期、肿瘤直径≥5 cm鼻咽癌患者lncRNA SNHG16高表达率均高于无淋巴结转移、TNM分期为Ⅰ~Ⅱ期、肿瘤直径﹤5 cm患者,差异均有统计学意义(P﹤0.05)。lncRNA SNHG16低表达鼻咽癌患者的1年生存率为80.12%,高于lncRNA SNHG16高表达患者的62.21%,差异有统计学意义(P﹤0.05)。Cox回归分析结果显示,有淋巴结转移、TNM分期为Ⅲ~Ⅳ期、lncRNA SNHG16高表达是鼻咽癌患者预后不良的独立危险因素(P﹤0.05)。结论lncRNA SNHG16在鼻咽癌患者中呈高表达,且其表达水平与淋巴结转移、TNM分期、肿瘤直径有关,可作为鼻咽癌患者预后预测标志物。 展开更多
关键词 鼻咽癌 长链非编码RNA 小核仁RNA宿主基因16 临床特征 预后
暂未订购
基于改进RT-DETR的航拍图像小目标检测算法 被引量:1
17
作者 宣岁寒 罗印升 宋伟 《电光与控制》 北大核心 2025年第4期44-51,共8页
实时、准确地定位与识别航拍图像中飞机、轮船和车辆等目标是进一步决策的根本基础,针对航拍图像中小目标检测存在的效率和精度低等问题,提出了一种基于改进RT-DETR的航拍图像小目标检测算法。首先,通过构建高效的CCFM-P2ASF尺度序列特... 实时、准确地定位与识别航拍图像中飞机、轮船和车辆等目标是进一步决策的根本基础,针对航拍图像中小目标检测存在的效率和精度低等问题,提出了一种基于改进RT-DETR的航拍图像小目标检测算法。首先,通过构建高效的CCFM-P2ASF尺度序列特征融合模块,获得更丰富的语义信息,同时提高对小目标的敏感度;其次,集成灵活性更强的可学习的位置编码,提供更清晰的位置界定;然后,设计更高效的边界框损失函数,减小对目标位置预测的偏差,提供更准确的边界框信息;最后,构建EMA重参数响应模块,从而更有效地提取输入图像特征。实验结果表明:改进后的RT-DETR模型较原始模型参数量减少38.3%,精确率、mAP50和mAP50∶95指标分别提升5.1、5.0和2.2个百分点。对比其他同类主流算法模型,在航拍小目标检测任务中具有更好的检测效果。 展开更多
关键词 小目标检测 RT-DETR算法 特征融合 定位损失 位置编码
在线阅读 下载PDF
基于卷积神经网络和长短期记忆的死代码检测方法 被引量:1
18
作者 孙义康 高建华 《计算机工程》 北大核心 2025年第2期223-237,共15页
死代码是一种不良代码异味,会导致软件质量逐渐衰退。传统的死代码检测方法主要依赖于静态分析技术、代码结构的度量以及启发式规则,这些方法在开发者之间存在高度差异,且对源代码文本信息关注较少,忽略代码在实际执行过程中的情况,存... 死代码是一种不良代码异味,会导致软件质量逐渐衰退。传统的死代码检测方法主要依赖于静态分析技术、代码结构的度量以及启发式规则,这些方法在开发者之间存在高度差异,且对源代码文本信息关注较少,忽略代码在实际执行过程中的情况,存在较大的局限性。针对以上问题,设计一种新型死代码检测方法,并采用基于卷积神经网络和长短期记忆相结合的技术,其主要思路是将代码文本信息和代码度量信息相结合,提高死代码检测的准确性。首先使用DUM-Tool等工具并结合人工以确定应用程序中的死代码实例进行死代码标记,以深度优先遍历抽象语法树获取源代码的文本信息,将标签值与文本信息相匹配,再使用CK代码度量提取工具获取源代码的代码度量信息。然后通过Word2Vec将文本信息转化为词向量,使用卷积神经网络提取代码度量信息的特征,将两者拼接得到死代码检测的数据集。最后使用长短期记忆网络对数据集进行训练,再通过Sigmoid函数进行分类。实验结果表明,将代码文本信息和度量信息相结合可以有效实现死代码的检测,与传统的检测方法相比,平均F1值最高提升12.58百分点。 展开更多
关键词 死代码 深度学习 文本信息 代码度量 特征提取
在线阅读 下载PDF
基于时空Transformer的视觉目标跟踪算法 被引量:1
19
作者 武晓军 陈怡丹 +2 位作者 冯丽萍 宋长伟 何德清 《传感器与微系统》 北大核心 2025年第3期152-155,共4页
视觉目标跟踪中,由于目标移动速度不同,连续帧对时空邻域的贡献程度也不同。为学习视频帧对邻域信息的贡献,结合自注意力机制学习不同帧的权重大小,提出了一种基于时空Transformer的视觉目标跟踪方法。该算法主要通过关联多帧特征,并在... 视觉目标跟踪中,由于目标移动速度不同,连续帧对时空邻域的贡献程度也不同。为学习视频帧对邻域信息的贡献,结合自注意力机制学习不同帧的权重大小,提出了一种基于时空Transformer的视觉目标跟踪方法。该算法主要通过关联多帧特征,并在时域上进行信息聚合。首先,将图像通过空间Transformer编码器(STE)对空间特征进行编码。然后,通过时空Transformer解码器(STD)模块在时间维度上聚合帧间信息,以捕获时间和空间的全局上下文信息。最后,在LaSOT、GOT—10k等主流数据集进行测评。实验结果表明:算法在精度、成功率及其他评价指标上取得了一定程度的提升。 展开更多
关键词 视觉跟踪 TRANSFORMER 时空特征 自注意力 特征编码
在线阅读 下载PDF
上一页 1 2 52 下一页 到第
使用帮助 返回顶部