A novel hashing method based on multiple heterogeneous features is proposed to improve the accuracy of the image retrieval system. First, it leverages the imbalanced distribution of the similar and dissimilar samples ...A novel hashing method based on multiple heterogeneous features is proposed to improve the accuracy of the image retrieval system. First, it leverages the imbalanced distribution of the similar and dissimilar samples in the feature space to boost the performance of each weak classifier in the asymmetric boosting framework. Then, the weak classifier based on a novel linear discriminate analysis (LDA) algorithm which is learned from the subspace of heterogeneous features is integrated into the framework. Finally, the proposed method deals with each bit of the code sequentially, which utilizes the samples misclassified in each round in order to learn compact and balanced code. The heterogeneous information from different modalities can be effectively complementary to each other, which leads to much higher performance. The experimental results based on the two public benchmarks demonstrate that this method is superior to many of the state- of-the-art methods. In conclusion, the performance of the retrieval system can be improved with the help of multiple heterogeneous features and the compact hash codes which can be learned by the imbalanced learning method.展开更多
Visible-infrared Cross-modality Person Re-identification(VI-ReID)is a critical technology in smart public facilities such as cities,campuses and libraries.It aims to match pedestrians in visible light and infrared ima...Visible-infrared Cross-modality Person Re-identification(VI-ReID)is a critical technology in smart public facilities such as cities,campuses and libraries.It aims to match pedestrians in visible light and infrared images for video surveillance,which poses a challenge in exploring cross-modal shared information accurately and efficiently.Therefore,multi-granularity feature learning methods have been applied in VI-ReID to extract potential multi-granularity semantic information related to pedestrian body structure attributes.However,existing research mainly uses traditional dual-stream fusion networks and overlooks the core of cross-modal learning networks,the fusion module.This paper introduces a novel network called the Augmented Deep Multi-Granularity Pose-Aware Feature Fusion Network(ADMPFF-Net),incorporating the Multi-Granularity Pose-Aware Feature Fusion(MPFF)module to generate discriminative representations.MPFF efficiently explores and learns global and local features with multi-level semantic information by inserting disentangling and duplicating blocks into the fusion module of the backbone network.ADMPFF-Net also provides a new perspective for designing multi-granularity learning networks.By incorporating the multi-granularity feature disentanglement(mGFD)and posture information segmentation(pIS)strategies,it extracts more representative features concerning body structure information.The Local Information Enhancement(LIE)module augments high-performance features in VI-ReID,and the multi-granularity joint loss supervises model training for objective feature learning.Experimental results on two public datasets show that ADMPFF-Net efficiently constructs pedestrian feature representations and enhances the accuracy of VI-ReID.展开更多
In recent years, the accuracy of speech recognition (SR) has been one of the most active areas of research. Despite that SR systems are working reasonably well in quiet conditions, they still suffer severe performance...In recent years, the accuracy of speech recognition (SR) has been one of the most active areas of research. Despite that SR systems are working reasonably well in quiet conditions, they still suffer severe performance degradation in noisy conditions or distorted channels. It is necessary to search for more robust feature extraction methods to gain better performance in adverse conditions. This paper investigates the performance of conventional and new hybrid speech feature extraction algorithms of Mel Frequency Cepstrum Coefficient (MFCC), Linear Prediction Coding Coefficient (LPCC), perceptual linear production (PLP), and RASTA-PLP in noisy conditions through using multivariate Hidden Markov Model (HMM) classifier. The behavior of the proposal system is evaluated using TIDIGIT human voice dataset corpora, recorded from 208 different adult speakers in both training and testing process. The theoretical basis for speech processing and classifier procedures were presented, and the recognition results were obtained based on word recognition rate.展开更多
To solve the problems of the AMR-WB+(Extended Adaptive Multi-Rate-WideBand) semi-open-loop coding mode selection algorithm,features for ACELP(Algebraic Code Excited Linear Prediction) and TCX(Transform Coded eXcitatio...To solve the problems of the AMR-WB+(Extended Adaptive Multi-Rate-WideBand) semi-open-loop coding mode selection algorithm,features for ACELP(Algebraic Code Excited Linear Prediction) and TCX(Transform Coded eXcitation) classification are investigated.11 classifying features in the AMR-WB+ codec are selected and 2 novel classifying features,i.e.,EFM(Energy Flatness Measurement) and stdEFM(standard deviation of EFM),are proposed.Consequently,a novel semi-open-loop mode selection algorithm based on EFM and selected AMR-WB+ features is proposed.The results of classifying test and listening test show that the performance of the novel algorithm is much better than that of the AMR-WB+ semi-open-loop coding mode selection algorithm.展开更多
To solve the problem that using a single feature cannot play the role of multiple features of Android application in malicious code detection, an Android malicious code detection mechanism is proposed based on integra...To solve the problem that using a single feature cannot play the role of multiple features of Android application in malicious code detection, an Android malicious code detection mechanism is proposed based on integrated learning on the basis of dynamic and static detection. Considering three types of Android behavior characteristics, a three-layer hybrid algorithm was proposed. And it combined the malicious code detection based on digital signature to improve the detection efficiency. The digital signature of the known malicious code was extracted to form a malicious sample library. The authority that can reflect Android malicious behavior, API call and the running system call features were also extracted. An expandable hybrid discriminant algorithm was designed for the above three types of features. The algorithm was tested with machine learning method by constructing the optimal classifier suitable for the above features. Finally, the Android malicious code detection system was designed and implemented based on the multi-layer hybrid algorithm. The experimental results show that the system performs Android malicious code detection based on the combination of signature and dynamic and static features. Compared with other related work, the system has better performance in execution efficiency and detection rate.展开更多
Multifunctional therapeutic peptides(MFTP)hold immense potential in diverse therapeutic contexts,yet their prediction and identification remain challenging due to the limitations of traditional methodologies,such as e...Multifunctional therapeutic peptides(MFTP)hold immense potential in diverse therapeutic contexts,yet their prediction and identification remain challenging due to the limitations of traditional methodologies,such as extensive training durations,limited sample sizes,and inadequate generalization capabilities.To address these issues,we present AMHF-TP,an advanced method for MFTP recognition that utilizes attention mechanisms and multi-granularity hierarchical features to enhance performance.The AMHF-TP is composed of four key components:a migration learning module that leverages pretrained models to extract atomic compositional features of MFTP sequences;a convolutional neural network and selfattention module that refine feature extraction from amino acid sequences and their secondary structures;a hypergraph module that constructs a hypergraph for complex similarity representation between MFTP sequences;and a hierarchical feature extraction module that integrates multimodal peptide sequence features.Compared with leading methods,the proposed AMHF-TP demonstrates superior precision,accuracy,and coverage,underscoring its effectiveness and robustness in MFTP recognition.The comparative analysis of separate hierarchical models and the combined model,as well as with five contemporary models,reveals AMHFTP’s exceptional performance and stability in recognition tasks.展开更多
A new method for solving the tiling problem of surface reconstruction is proposed. The proposed method uses a snake algorithm to segment the original images, the contours are then transformed into strings by Freeman'...A new method for solving the tiling problem of surface reconstruction is proposed. The proposed method uses a snake algorithm to segment the original images, the contours are then transformed into strings by Freeman' s code. Symbolic string matching technique is applied to establish a correspondence between the two consecutive contours. The surface is composed of the pieces reconstructed from the correspondence points. Experimental results show that the proposed method exhibits a good behavior for the quality of surface reconstruction and its time complexity is proportional to mn where m and n are the numbers of vertices of the two consecutive slices, respectively.展开更多
Impulse components in vibration signals are important fault features of complex machines. Sparse coding (SC) algorithm has been introduced as an impulse feature extraction method, but it could not guarantee a satisf...Impulse components in vibration signals are important fault features of complex machines. Sparse coding (SC) algorithm has been introduced as an impulse feature extraction method, but it could not guarantee a satisfactory performance in processing vibration signals with heavy background noises. In this paper, a method based on fusion sparse coding (FSC) and online dictionary learning is proposed to extract impulses efficiently. Firstly, fusion scheme of different sparse coding algorithms is presented to ensure higher reconstruction accuracy. Then, an improved online dictionary learning method using FSC scheme is established to obtain redundant dictionary and it can capture specific features of training samples and reconstruct the sparse approximation of vibration signals. Simulation shows that this method has a good performance in solving sparse coefficients and training redundant dictionary compared with other methods. Lastly, the proposed method is further applied to processing aircraft engine rotor vibration signals. Compared with other feature extraction approaches, our method can extract impulse features accurately and efficiently from heavy noisy vibration signal, which has significant supports for machinery fault detection and diagnosis.展开更多
In expression recognition, feature representation is critical for successful recognition since it contains distinctive information of expressions. In this paper, a new approach for representing facial expression featu...In expression recognition, feature representation is critical for successful recognition since it contains distinctive information of expressions. In this paper, a new approach for representing facial expression features is proposed with its objective to describe features in an effective and efficient way in order to improve the recognition performance. The method combines the facial action coding system(FACS) and 'uniform' local binary patterns(LBP) to represent facial expression features from coarse to fine. The facial feature regions are extracted by active shape models(ASM) based on FACS to obtain the gray-level texture. Then, LBP is used to represent expression features for enhancing the discriminant. A facial expression recognition system is developed based on this feature extraction method by using K nearest neighborhood(K-NN) classifier to recognize facial expressions. Finally, experiments are carried out to evaluate this feature extraction method. The significance of removing the unrelated facial regions and enhancing the discrimination ability of expression features in the recognition process is indicated by the results, in addition to its convenience.展开更多
Two signature systems based on smart cards and fingerprint features are proposed. In one signature system, the cryptographic key is stored in the smart card and is only accessible when the signer's extracted fingerpr...Two signature systems based on smart cards and fingerprint features are proposed. In one signature system, the cryptographic key is stored in the smart card and is only accessible when the signer's extracted fingerprint features match his stored template. To resist being tampered on public channel, the user's message and the signed message are encrypted by the signer's public key and the user's public key, respectively. In the other signature system, the keys are generated by combining the signer's fingerprint features, check bits, and a rememberable key, and there are no matching process and keys stored on the smart card. Additionally, there is generally more than one public key in this system, that is, there exist some pseudo public keys except a real one.展开更多
Most solutions for detecting buffer overflow are based on source code. But the requirement tor source code is not always practical especially for business software. A new approach was presented to detect statically th...Most solutions for detecting buffer overflow are based on source code. But the requirement tor source code is not always practical especially for business software. A new approach was presented to detect statically the potential buffer overflow vulnerabilities in the binary code of software. The binary code was translated into assembly code without the lose of the information of string operation functions. The feature code abstract graph was constructed to generate more accurate constraint statements, and analyze the assembly code using the method of integer range constraint. After getting the elementary report on suspicious code where buffer overflows possibly happen, the control flow sensitive analysis using program dependence graph was done to decrease the rate of false positive. A prototype was implemented which demonstrates the feasibility and efficiency of the new approach.展开更多
Structured flowchart( SFC) and Automatic code generation based on SFC( CG-SFC) have been widely used in software requirements,design and testing phases. Some CG-SFC tools such as Rhapsody have the ability to build flo...Structured flowchart( SFC) and Automatic code generation based on SFC( CG-SFC) have been widely used in software requirements,design and testing phases. Some CG-SFC tools such as Rhapsody have the ability to build flowchart and generate code,but they do not check whether a given flowchart is correct or structural. For unstructured error ‘goto'statements will be generated randomly. We proposed three algorithms and some error recognition criteria to solve those problems. Structure recognition algorithm can recognize Selection,While/for and do-while structures. Error recognition algorithm incorporating criteria can check all the errors. At last,we develop a CG-SFC system,and compared with existing Rhapsody,it shows that the proposed algorithms are correct and effective.展开更多
To extract features of fabric defects effectively and reduce dimension of feature space,a feature extraction method of fabric defects based on complex contourlet transform (CCT) and principal component analysis (PC...To extract features of fabric defects effectively and reduce dimension of feature space,a feature extraction method of fabric defects based on complex contourlet transform (CCT) and principal component analysis (PCA) is proposed.Firstly,training samples of fabric defect images are decomposed by CCT.Secondly,PCA is applied in the obtained low-frequency component and part of highfrequency components to get a lower dimensional feature space.Finally,components of testing samples obtained by CCT are projected onto the feature space where different types of fabric defects are distinguished by the minimum Euclidean distance method.A large number of experimental results show that,compared with PCA,the method combining wavdet low-frequency component with PCA (WLPCA),the method combining contourlet transform with PCA (CPCA),and the method combining wavelet low-frequency and highfrequency components with PCA (WPCA),the proposed method can extract features of common fabric defect types effectively.The recognition rate is greatly improved while the dimension is reduced.展开更多
In recent years,with the massive growth of image data,how to match the image required by users quickly and efficiently becomes a challenge.Compared with single-view feature,multi-view feature is more accurate to descr...In recent years,with the massive growth of image data,how to match the image required by users quickly and efficiently becomes a challenge.Compared with single-view feature,multi-view feature is more accurate to describe image information.The advantages of hash method in reducing data storage and improving efficiency also make us study how to effectively apply to large-scale image retrieval.In this paper,a hash algorithm of multi-index image retrieval based on multi-view feature coding is proposed.By learning the data correlation between different views,this algorithm uses multi-view data with deeper level image semantics to achieve better retrieval results.This algorithm uses a quantitative hash method to generate binary sequences,and uses the hash code generated by the association features to construct database inverted index files,so as to reduce the memory burden and promote the efficient matching.In order to reduce the matching error of hash code and ensure the retrieval accuracy,this algorithm uses inverted multi-index structure instead of single-index structure.Compared with other advanced image retrieval method,this method has better retrieval performance.展开更多
Due to the diversity and unpredictability of changes in malicious code,studying the traceability of variant families remains challenging.In this paper,we propose a GAN-EfficientNetV2-based method for tracing families ...Due to the diversity and unpredictability of changes in malicious code,studying the traceability of variant families remains challenging.In this paper,we propose a GAN-EfficientNetV2-based method for tracing families of malicious code variants.This method leverages the similarity in layouts and textures between images of malicious code variants from the same source and their original family of malicious code images.The method includes a lightweight classifier and a simulator.The classifier utilizes the enhanced EfficientNetV2 to categorize malicious code images and can be easily deployed on mobile,embedded,and other devices.The simulator utilizes an enhanced generative adversarial network to simulate different variants of malicious code and generates datasets to validate the model’s performance.This process helps identify model vulnerabilities and security risks,facilitating model enhancement and development.The classifier achieves 98.61%and 97.59%accuracy on the MMCC dataset and Malevis dataset,respectively.The simulator’s generated image of malicious code variants has an FID value of 155.44 and an IS value of 1.72±0.42.The classifier’s accuracy for tracing the family of malicious code variants is as high as 90.29%,surpassing that of mainstream neural network models.This meets the current demand for high generalization and anti-obfuscation abilities in malicious code classification models due to the rapid evolution of malicious code.展开更多
Stance detection is the task of attitude identification toward a standpoint.Previous work of stance detection has focused on feature extraction but ignored the fact that irrelevant features exist as noise during highe...Stance detection is the task of attitude identification toward a standpoint.Previous work of stance detection has focused on feature extraction but ignored the fact that irrelevant features exist as noise during higher-level abstracting.Moreover,because the target is not always mentioned in the text,most methods have ignored target information.In order to solve these problems,we propose a neural network ensemble method that combines the timing dependence bases on long short-term memory(LSTM)and the excellent extracting performance of convolutional neural networks(CNNs).The method can obtain multi-level features that consider both local and global features.We also introduce attention mechanisms to magnify target information-related features.Furthermore,we employ sparse coding to remove noise to obtain characteristic features.Performance was improved by using sparse coding on the basis of attention employment and feature extraction.We evaluate our approach on the SemEval-2016Task 6-A public dataset,achieving a performance that exceeds the benchmark and those of participating teams.展开更多
基金The National Natural Science Foundation of China(No.61305058)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.12KJB520003)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20130471)the Scientific Research Foundation for Advanced Talents by Jiangsu University(No.13JDG093)
文摘A novel hashing method based on multiple heterogeneous features is proposed to improve the accuracy of the image retrieval system. First, it leverages the imbalanced distribution of the similar and dissimilar samples in the feature space to boost the performance of each weak classifier in the asymmetric boosting framework. Then, the weak classifier based on a novel linear discriminate analysis (LDA) algorithm which is learned from the subspace of heterogeneous features is integrated into the framework. Finally, the proposed method deals with each bit of the code sequentially, which utilizes the samples misclassified in each round in order to learn compact and balanced code. The heterogeneous information from different modalities can be effectively complementary to each other, which leads to much higher performance. The experimental results based on the two public benchmarks demonstrate that this method is superior to many of the state- of-the-art methods. In conclusion, the performance of the retrieval system can be improved with the help of multiple heterogeneous features and the compact hash codes which can be learned by the imbalanced learning method.
基金supported in part by the National Natural Science Foundation of China under Grant 62177029,62307025in part by the Startup Foundation for Introducing Talent of Nanjing University of Posts and Communications under Grant NY221041in part by the General Project of The Natural Science Foundation of Jiangsu Higher Education Institution of China 22KJB520025,23KJD580.
文摘Visible-infrared Cross-modality Person Re-identification(VI-ReID)is a critical technology in smart public facilities such as cities,campuses and libraries.It aims to match pedestrians in visible light and infrared images for video surveillance,which poses a challenge in exploring cross-modal shared information accurately and efficiently.Therefore,multi-granularity feature learning methods have been applied in VI-ReID to extract potential multi-granularity semantic information related to pedestrian body structure attributes.However,existing research mainly uses traditional dual-stream fusion networks and overlooks the core of cross-modal learning networks,the fusion module.This paper introduces a novel network called the Augmented Deep Multi-Granularity Pose-Aware Feature Fusion Network(ADMPFF-Net),incorporating the Multi-Granularity Pose-Aware Feature Fusion(MPFF)module to generate discriminative representations.MPFF efficiently explores and learns global and local features with multi-level semantic information by inserting disentangling and duplicating blocks into the fusion module of the backbone network.ADMPFF-Net also provides a new perspective for designing multi-granularity learning networks.By incorporating the multi-granularity feature disentanglement(mGFD)and posture information segmentation(pIS)strategies,it extracts more representative features concerning body structure information.The Local Information Enhancement(LIE)module augments high-performance features in VI-ReID,and the multi-granularity joint loss supervises model training for objective feature learning.Experimental results on two public datasets show that ADMPFF-Net efficiently constructs pedestrian feature representations and enhances the accuracy of VI-ReID.
文摘In recent years, the accuracy of speech recognition (SR) has been one of the most active areas of research. Despite that SR systems are working reasonably well in quiet conditions, they still suffer severe performance degradation in noisy conditions or distorted channels. It is necessary to search for more robust feature extraction methods to gain better performance in adverse conditions. This paper investigates the performance of conventional and new hybrid speech feature extraction algorithms of Mel Frequency Cepstrum Coefficient (MFCC), Linear Prediction Coding Coefficient (LPCC), perceptual linear production (PLP), and RASTA-PLP in noisy conditions through using multivariate Hidden Markov Model (HMM) classifier. The behavior of the proposal system is evaluated using TIDIGIT human voice dataset corpora, recorded from 208 different adult speakers in both training and testing process. The theoretical basis for speech processing and classifier procedures were presented, and the recognition results were obtained based on word recognition rate.
文摘To solve the problems of the AMR-WB+(Extended Adaptive Multi-Rate-WideBand) semi-open-loop coding mode selection algorithm,features for ACELP(Algebraic Code Excited Linear Prediction) and TCX(Transform Coded eXcitation) classification are investigated.11 classifying features in the AMR-WB+ codec are selected and 2 novel classifying features,i.e.,EFM(Energy Flatness Measurement) and stdEFM(standard deviation of EFM),are proposed.Consequently,a novel semi-open-loop mode selection algorithm based on EFM and selected AMR-WB+ features is proposed.The results of classifying test and listening test show that the performance of the novel algorithm is much better than that of the AMR-WB+ semi-open-loop coding mode selection algorithm.
文摘To solve the problem that using a single feature cannot play the role of multiple features of Android application in malicious code detection, an Android malicious code detection mechanism is proposed based on integrated learning on the basis of dynamic and static detection. Considering three types of Android behavior characteristics, a three-layer hybrid algorithm was proposed. And it combined the malicious code detection based on digital signature to improve the detection efficiency. The digital signature of the known malicious code was extracted to form a malicious sample library. The authority that can reflect Android malicious behavior, API call and the running system call features were also extracted. An expandable hybrid discriminant algorithm was designed for the above three types of features. The algorithm was tested with machine learning method by constructing the optimal classifier suitable for the above features. Finally, the Android malicious code detection system was designed and implemented based on the multi-layer hybrid algorithm. The experimental results show that the system performs Android malicious code detection based on the combination of signature and dynamic and static features. Compared with other related work, the system has better performance in execution efficiency and detection rate.
基金National Natural Science Foundation of China,Grant/Award Number:62276210Natural Science Basic Research Program of Shaanxi,Grant/Award Number:2022JM-380。
文摘Multifunctional therapeutic peptides(MFTP)hold immense potential in diverse therapeutic contexts,yet their prediction and identification remain challenging due to the limitations of traditional methodologies,such as extensive training durations,limited sample sizes,and inadequate generalization capabilities.To address these issues,we present AMHF-TP,an advanced method for MFTP recognition that utilizes attention mechanisms and multi-granularity hierarchical features to enhance performance.The AMHF-TP is composed of four key components:a migration learning module that leverages pretrained models to extract atomic compositional features of MFTP sequences;a convolutional neural network and selfattention module that refine feature extraction from amino acid sequences and their secondary structures;a hypergraph module that constructs a hypergraph for complex similarity representation between MFTP sequences;and a hierarchical feature extraction module that integrates multimodal peptide sequence features.Compared with leading methods,the proposed AMHF-TP demonstrates superior precision,accuracy,and coverage,underscoring its effectiveness and robustness in MFTP recognition.The comparative analysis of separate hierarchical models and the combined model,as well as with five contemporary models,reveals AMHFTP’s exceptional performance and stability in recognition tasks.
文摘A new method for solving the tiling problem of surface reconstruction is proposed. The proposed method uses a snake algorithm to segment the original images, the contours are then transformed into strings by Freeman' s code. Symbolic string matching technique is applied to establish a correspondence between the two consecutive contours. The surface is composed of the pieces reconstructed from the correspondence points. Experimental results show that the proposed method exhibits a good behavior for the quality of surface reconstruction and its time complexity is proportional to mn where m and n are the numbers of vertices of the two consecutive slices, respectively.
基金supported by the National Natural Science Foundation of China (No. 51201182)
文摘Impulse components in vibration signals are important fault features of complex machines. Sparse coding (SC) algorithm has been introduced as an impulse feature extraction method, but it could not guarantee a satisfactory performance in processing vibration signals with heavy background noises. In this paper, a method based on fusion sparse coding (FSC) and online dictionary learning is proposed to extract impulses efficiently. Firstly, fusion scheme of different sparse coding algorithms is presented to ensure higher reconstruction accuracy. Then, an improved online dictionary learning method using FSC scheme is established to obtain redundant dictionary and it can capture specific features of training samples and reconstruct the sparse approximation of vibration signals. Simulation shows that this method has a good performance in solving sparse coefficients and training redundant dictionary compared with other methods. Lastly, the proposed method is further applied to processing aircraft engine rotor vibration signals. Compared with other feature extraction approaches, our method can extract impulse features accurately and efficiently from heavy noisy vibration signal, which has significant supports for machinery fault detection and diagnosis.
基金supported by National Natural Science Foundation of China(No.61273339)
文摘In expression recognition, feature representation is critical for successful recognition since it contains distinctive information of expressions. In this paper, a new approach for representing facial expression features is proposed with its objective to describe features in an effective and efficient way in order to improve the recognition performance. The method combines the facial action coding system(FACS) and 'uniform' local binary patterns(LBP) to represent facial expression features from coarse to fine. The facial feature regions are extracted by active shape models(ASM) based on FACS to obtain the gray-level texture. Then, LBP is used to represent expression features for enhancing the discriminant. A facial expression recognition system is developed based on this feature extraction method by using K nearest neighborhood(K-NN) classifier to recognize facial expressions. Finally, experiments are carried out to evaluate this feature extraction method. The significance of removing the unrelated facial regions and enhancing the discrimination ability of expression features in the recognition process is indicated by the results, in addition to its convenience.
基金This project was supported by the National Science Foundation of China (60763009)China Postdoctoral Science Foundation (2005038041)Hainan Natural Science Foundation (80528).
文摘Two signature systems based on smart cards and fingerprint features are proposed. In one signature system, the cryptographic key is stored in the smart card and is only accessible when the signer's extracted fingerprint features match his stored template. To resist being tampered on public channel, the user's message and the signed message are encrypted by the signer's public key and the user's public key, respectively. In the other signature system, the keys are generated by combining the signer's fingerprint features, check bits, and a rememberable key, and there are no matching process and keys stored on the smart card. Additionally, there is generally more than one public key in this system, that is, there exist some pseudo public keys except a real one.
文摘Most solutions for detecting buffer overflow are based on source code. But the requirement tor source code is not always practical especially for business software. A new approach was presented to detect statically the potential buffer overflow vulnerabilities in the binary code of software. The binary code was translated into assembly code without the lose of the information of string operation functions. The feature code abstract graph was constructed to generate more accurate constraint statements, and analyze the assembly code using the method of integer range constraint. After getting the elementary report on suspicious code where buffer overflows possibly happen, the control flow sensitive analysis using program dependence graph was done to decrease the rate of false positive. A prototype was implemented which demonstrates the feasibility and efficiency of the new approach.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61402131)the China Postdoctoral Science Foundation(Grant No.2014M551245,2016T90293)+1 种基金the Heilongjiang Postdoctoral Science Foundation(Grant No.LBH-Z13105)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201651)
文摘Structured flowchart( SFC) and Automatic code generation based on SFC( CG-SFC) have been widely used in software requirements,design and testing phases. Some CG-SFC tools such as Rhapsody have the ability to build flowchart and generate code,but they do not check whether a given flowchart is correct or structural. For unstructured error ‘goto'statements will be generated randomly. We proposed three algorithms and some error recognition criteria to solve those problems. Structure recognition algorithm can recognize Selection,While/for and do-while structures. Error recognition algorithm incorporating criteria can check all the errors. At last,we develop a CG-SFC system,and compared with existing Rhapsody,it shows that the proposed algorithms are correct and effective.
基金National Natural Science Foundation of China(No.60872065)the Key Laboratory of Textile Science&Technology,Ministry of Education,China(No.P1111)+1 种基金the Key Laboratory of Advanced Textile Materials and Manufacturing Technology,Ministry of Education,China(No.2010001)the Priority Academic Program Development of Jiangsu Higher Education Institution,China
文摘To extract features of fabric defects effectively and reduce dimension of feature space,a feature extraction method of fabric defects based on complex contourlet transform (CCT) and principal component analysis (PCA) is proposed.Firstly,training samples of fabric defect images are decomposed by CCT.Secondly,PCA is applied in the obtained low-frequency component and part of highfrequency components to get a lower dimensional feature space.Finally,components of testing samples obtained by CCT are projected onto the feature space where different types of fabric defects are distinguished by the minimum Euclidean distance method.A large number of experimental results show that,compared with PCA,the method combining wavdet low-frequency component with PCA (WLPCA),the method combining contourlet transform with PCA (CPCA),and the method combining wavelet low-frequency and highfrequency components with PCA (WPCA),the proposed method can extract features of common fabric defect types effectively.The recognition rate is greatly improved while the dimension is reduced.
基金supported in part by the National Natural Science Foundation of China under Grant 61772561,author J.Q,http://www.nsfc.gov.cn/in part by the Key Research and Development Plan of Hunan Province under Grant 2018NK2012,author J.Q,http://kjt.hunan.gov.cn/+7 种基金in part by the Key Research and Development Plan of Hunan Province under Grant 2019SK2022,author Y.T,http://kjt.hunan.gov.cn/in part by the Science Research Projects of Hunan Provincial Education Department under Grant 18A174,author X.X,http://kxjsc.gov.hnedu.cn/in part by the Science Research Projects of Hunan Provincial Education Department under Grant 19B584,author Y.T,http://kxjsc.gov.hnedu.cn/in part by the Degree&Postgraduate Education Reform Project of Hunan Province under Grant 2019JGYB154,author J.Q,http://xwb.gov.hnedu.cn/in part by the Postgraduate Excellent teaching team Project of Hunan Province under Grant[2019]370-133,author J.Q,http://xwb.gov.hnedu.cn/in part by the Postgraduate Education and Teaching Reform Project of Central South University of Forestry&Technology under Grant 2019JG013,author X.X,http://jwc.csuft.edu.cn/in part by the Natural Science Foundation of Hunan Province(No.2020JJ4140),author Y.T,http://kjt.hunan.gov.cn/in part by the Natural Science Foundation of Hunan Province(No.2020JJ4141),author X.X,http://kjt.hunan.gov.cn/.
文摘In recent years,with the massive growth of image data,how to match the image required by users quickly and efficiently becomes a challenge.Compared with single-view feature,multi-view feature is more accurate to describe image information.The advantages of hash method in reducing data storage and improving efficiency also make us study how to effectively apply to large-scale image retrieval.In this paper,a hash algorithm of multi-index image retrieval based on multi-view feature coding is proposed.By learning the data correlation between different views,this algorithm uses multi-view data with deeper level image semantics to achieve better retrieval results.This algorithm uses a quantitative hash method to generate binary sequences,and uses the hash code generated by the association features to construct database inverted index files,so as to reduce the memory burden and promote the efficient matching.In order to reduce the matching error of hash code and ensure the retrieval accuracy,this algorithm uses inverted multi-index structure instead of single-index structure.Compared with other advanced image retrieval method,this method has better retrieval performance.
基金support this work is the Key Research and Development Program of Heilongjiang Province,specifically Grant Number 2023ZX02C10.
文摘Due to the diversity and unpredictability of changes in malicious code,studying the traceability of variant families remains challenging.In this paper,we propose a GAN-EfficientNetV2-based method for tracing families of malicious code variants.This method leverages the similarity in layouts and textures between images of malicious code variants from the same source and their original family of malicious code images.The method includes a lightweight classifier and a simulator.The classifier utilizes the enhanced EfficientNetV2 to categorize malicious code images and can be easily deployed on mobile,embedded,and other devices.The simulator utilizes an enhanced generative adversarial network to simulate different variants of malicious code and generates datasets to validate the model’s performance.This process helps identify model vulnerabilities and security risks,facilitating model enhancement and development.The classifier achieves 98.61%and 97.59%accuracy on the MMCC dataset and Malevis dataset,respectively.The simulator’s generated image of malicious code variants has an FID value of 155.44 and an IS value of 1.72±0.42.The classifier’s accuracy for tracing the family of malicious code variants is as high as 90.29%,surpassing that of mainstream neural network models.This meets the current demand for high generalization and anti-obfuscation abilities in malicious code classification models due to the rapid evolution of malicious code.
基金This work is supported by the Fundamental Research Funds for the Central Universities(Grant No.2572019BH03).
文摘Stance detection is the task of attitude identification toward a standpoint.Previous work of stance detection has focused on feature extraction but ignored the fact that irrelevant features exist as noise during higher-level abstracting.Moreover,because the target is not always mentioned in the text,most methods have ignored target information.In order to solve these problems,we propose a neural network ensemble method that combines the timing dependence bases on long short-term memory(LSTM)and the excellent extracting performance of convolutional neural networks(CNNs).The method can obtain multi-level features that consider both local and global features.We also introduce attention mechanisms to magnify target information-related features.Furthermore,we employ sparse coding to remove noise to obtain characteristic features.Performance was improved by using sparse coding on the basis of attention employment and feature extraction.We evaluate our approach on the SemEval-2016Task 6-A public dataset,achieving a performance that exceeds the benchmark and those of participating teams.