期刊文献+
共找到460篇文章
< 1 2 23 >
每页显示 20 50 100
Flexible Monolithic 3D-Integrated Self-Powered Tactile Sensing Array Based on Holey MXene Paste
1
作者 Mengjie Wang Chen Chen +9 位作者 Yuhang Zhang Yanan Ma Li Xu Dan‑Dan Wu Bowen Gao Aoyun Song Li Wen Yongfa Cheng Siliang Wang Yang Yue 《Nano-Micro Letters》 2026年第2期772-785,共14页
Flexible electronics face critical challenges in achieving monolithic three-dimensional(3D)integration,including material compatibility,structural stability,and scalable fabrication methods.Inspired by the tactile sen... Flexible electronics face critical challenges in achieving monolithic three-dimensional(3D)integration,including material compatibility,structural stability,and scalable fabrication methods.Inspired by the tactile sensing mechanism of the human skin,we have developed a flexible monolithic 3D-integrated tactile sensing system based on a holey MXene paste,where each vertical one-body unit simultaneously functions as a microsupercapacitor and pressure sensor.The in-plane mesopores of MXene significantly improve ion accessibility,mitigate the self-stacking of nanosheets,and allow the holey MXene to multifunctionally act as a sensing material,an active electrode,and a conductive interconnect,thus drastically reducing the interface mismatch and enhancing the mechanical robustness.Furthermore,we fabricate a large-scale device using a blade-coating and stamping method,which demonstrates excellent mechanical flexibility,low-power consumption,rapid response,and stable long-term operation.As a proof-of-concept application,we integrate our sensing array into a smart access control system,leveraging deep learning to accurately identify users based on their unique pressing behaviors.This study provides a promising approach for designing highly integrated,intelligent,and flexible electronic systems for advanced human-computer interactions and personalized electronics. 展开更多
关键词 Holey MXene Microsupercapacitor tactile sensor Monolithic 3D integration Deep learning algorithm
在线阅读 下载PDF
Bioinspired Passive Tactile Sensors Enabled by Reversible Polarization of Conjugated Polymers
2
作者 Feng He Sitong Chen +3 位作者 Ruili Zhou Hanyu Diao Yangyang Han Xiaodong Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期361-377,共17页
Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c... Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins. 展开更多
关键词 Passive tactile sensors Reversible polarization of conjugated polymers tactile perception Machine learning algorithm Object recognition
在线阅读 下载PDF
Manufacturing strategies for highly sensitive and self-powered piezoelectric and triboelectric tactile sensors
3
作者 Hyosik Park Gerald Selasie Gbadam +2 位作者 Simiao Niu Hanjun Ryu Ju-Hyuck Lee 《International Journal of Extreme Manufacturing》 2025年第1期151-172,共22页
Piezoelectric and triboelectric effects are of growing interest for facilitating high-sensitivity and self-powered tactile sensor applications.The working principles of piezoelectric and triboelectric nanogenerators p... Piezoelectric and triboelectric effects are of growing interest for facilitating high-sensitivity and self-powered tactile sensor applications.The working principles of piezoelectric and triboelectric nanogenerators provide strategies for enhancing output voltage signals to achieve high sensitivity.Increasing the piezoelectric constant and surface triboelectric charge density are key factors in this enhancement.Methods such as annealing processes,doping techniques,grain orientation controls,crystallinity controls,and composite structures can effectively enhance the piezoelectric constant.For increasing triboelectric output,surface plasma treatment,charge injection,microstructuring,control of dielectric constant,and structural modification are effective methods.The fabrication methods present significant opportunities in tactile sensor applications.This review article summarizes the overall piezoelectric and triboelectric fabrication processes from materials to device aspects.It highlights applications in pressure,touch,bending,texture,distance,and material recognition sensors.The conclusion section addresses challenges and research opportunities,such as limited flexibility,stretchability,decoupling from multi-stimuli,multifunctional sensors,and data processing. 展开更多
关键词 triboelectric PIEZOELECTRIC tactile sensor MANUFACTURING COMPOSITE
在线阅读 下载PDF
Vibro-tactile Sensor with Self-filtering and Self-amplifying:Bionic Pacinian Corpuscle Based on Gelatin-chitosan Hydrogel
4
作者 Si Chen Caoyan Qu +4 位作者 Qin Huang Weimin Ru Guanggui Cheng Lin Xu Shirong Ge 《Journal of Bionic Engineering》 2025年第4期1850-1862,共13页
Pacinian Corpuscle(PC)is the largest tactile vibration receptor in mammalian skin,with a layered structure that enables signal amplification and high-pass filtering functions.Modern robots feature vibro-tactile sensor... Pacinian Corpuscle(PC)is the largest tactile vibration receptor in mammalian skin,with a layered structure that enables signal amplification and high-pass filtering functions.Modern robots feature vibro-tactile sensors with excellent mechanical properties and fine resolution,but these sensors are prone to low-frequency noise interference when detecting high-frequency vibrations.In this study,a bionic PC with a longitudinally decreasing dynamic fractal structure is proposed.By creating a lumped parameter model of the PC’s layered structure,the bionic PC made of gelatin-chitosan based hydrogel can achieve high-pass filtering and specific frequency band signal amplification without requiring back-end circuits.The experimental results demonstrate that the bionic PC retains the structural characteristics of a natural PC,and the influence of structural factors,such as the number of layers in its shell,on filtration characteristics is explored.Additionally,a vibration source positioning experiment was conducted to simulate the earthquake sensing abilities of elephants.This natural structural design simplifies the filter circuit,is low-cost,cost-effective,stable in performance,and reduces redundancy in the robot’s signal circuit.Integrating this technology with robots can enhance their environmental perception,thereby improving the safety of interactions. 展开更多
关键词 Pacinian corpuscle BIOsensor VIBRATION tactile sensor BIONIC HYDROGEL
在线阅读 下载PDF
Corrigendum to“Multi-functional photonic spin Hall effect sensor controlled by phase transition”
5
作者 Jie Cheng Rui-Zhao Li +3 位作者 Cheng Cheng Ya-Lin Zhang Sheng-Li Liu Peng Dong 《Chinese Physics B》 2025年第9期671-671,共1页
Figure 6(a)in the paper[Chin.Phys.B 33074203(2024)]was incorrect due to editorial oversight.The correct figure is provided.This modification does not affect the result presented in the paper.
关键词 CORRIGENDUM photonic spin Hall effect multi-functional sensors phase transition sensing performance
原文传递
MATERIAL SURFACE THERMAL PROPERTY IDENTIFICATION USING HEAT FLUX TACTILE SENSOR
6
作者 吴剑锋 毛志鹏 +2 位作者 李建清 周连杰 蔡凤 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期84-89,共6页
Eased on the mechanism of temperature tactile sensing of human finger,a heat flux tactile sensor com- posed of a thermostat module and a heat flux sensor is designed to identify material thermal properties. The ther- ... Eased on the mechanism of temperature tactile sensing of human finger,a heat flux tactile sensor com- posed of a thermostat module and a heat flux sensor is designed to identify material thermal properties. The ther- mostat module maintains the sensor temperature invariable, and the heat flux sensor(Peltier device) detects the heat flux temperature difference between the thermostat module and the object surface. Two different modes of the heat flux tactile sensor are proposed, and they are simulated and experimented for different material objects. The results indicate that the heat flux tactile sensor can effectively identify different thermal properties. 展开更多
关键词 heat flux tactile sensor heat flux material identification Peltier device ANSYS finite element method(FEM) simulation
在线阅读 下载PDF
Flexible Tactile Electronic Skin Sensor with 3D Force Detection Based on Porous CNTs/PDMS Nanocomposites 被引量:24
7
作者 Xuguang Sun Jianhai Sun +9 位作者 Tong Li Shuaikang Zheng Chunkai Wang Wenshuo Tan Jingong Zhang Chang Liu Tianjun Ma Zhimei Qi Chunxiu Liu Ning Xue 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期35-48,共14页
Flexible tactile sensors have broad applications in human physiological monitoring,robotic operation and human-machine interaction.However,the research of wearable and flexible tactile sensors with high sensitivity,wi... Flexible tactile sensors have broad applications in human physiological monitoring,robotic operation and human-machine interaction.However,the research of wearable and flexible tactile sensors with high sensitivity,wide sensing range and ability to detect three-dimensional(3D)force is still very challenging.Herein,a flexible tactile electronic skin sensor based on carbon nanotubes(CNTs)/polydimethylsiloxane(PDMS)nanocomposites is presented for 3D contact force detection.The 3D forces were acquired from combination of four specially designed cells in a sensing element.Contributed from the double-sided rough porous structure and specific surface morphology of nanocomposites,the piezoresistive sensor possesses high sensitivity of 12.1 kPa?1 within the range of 600 Pa and 0.68 kPa?1 in the regime exceeding 1 kPa for normal pressure,as well as 59.9 N?1 in the scope of<0.05 N and>2.3 N?1 in the region of<0.6 N for tangential force with ultra-low response time of 3.1 ms.In addition,multi-functional detection in human body monitoring was employed with single sensing cell and the sensor array was integrated into a robotic arm for objects grasping control,indicating the capacities in intelligent robot applications. 展开更多
关键词 Flexible tactile sensorS Electronic SKIN Piezoresistive sensorS CNTs/PDMS NANOCOMPOSITES 3D force detection
在线阅读 下载PDF
Graphene Nanostructure-Based Tactile Sensors for Electronic Skin Applications 被引量:11
8
作者 Pei Miao Jian Wang +3 位作者 Congcong Zhang Mingyuan Sun Shanshan Cheng Hong Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期239-275,共37页
Skin is the largest organ of the human body and can perceive and respond to complex environmental stimulations.Recently,the development of electronic skin(E-skin)for the mimicry of the human sensory system has drawn g... Skin is the largest organ of the human body and can perceive and respond to complex environmental stimulations.Recently,the development of electronic skin(E-skin)for the mimicry of the human sensory system has drawn great attention due to its potential applications in wearable human health monitoring and care systems,advanced robotics,artificial intelligence,and human-machine interfaces.Tactile sense is one of the most important senses of human skin that has attracted special attention.The ability to obtain unique functions using diverse assembly processible methods has rapidly advanced the use of graphene,the most celebrated two-dimensional material,in electronic tactile sensing devices.With a special emphasis on the works achieved since 2016,this review begins with the assembly and modification of graphene materials and then critically and comprehensively summarizes the most advanced material assembly methods,device construction technologies and signal characterization approaches in pressure and strain detection based on graphene and its derivative materials.This review emphasizes on:(1)the underlying working principles of these types of sensors and the unique roles and advantages of graphene materials;(2)state-of-the-art protocols recently developed for high-performance tactile sensing,including representative examples;and(3)perspectives and current challenges for graphene-based tactile sensors in E-skin applications.A summary of these cutting-edge developments intends to provide readers with a deep understanding of the future design of high-quality tactile sensing devices and paves a path for their future commercial applications in the field of E-skin. 展开更多
关键词 GRAPHENE DERIVATIVES tactile sensor ELECTRONIC SKIN Assembly
在线阅读 下载PDF
Intelligent Recognition Using Ultralight Multifunctional Nano‑Layered Carbon Aerogel Sensors with Human‑Like Tactile Perception 被引量:4
9
作者 Huiqi Zhao Yizheng Zhang +8 位作者 Lei Han Weiqi Qian Jiabin Wang Heting Wu Jingchen Li Yuan Dai Zhengyou Zhang Chris RBowen Ya Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期172-186,共15页
Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this uniq... Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence. 展开更多
关键词 Multifunctional sensor tactile perception Multimodal machine learning algorithms Universal tactile system Intelligent object recognition
在线阅读 下载PDF
MODELING CONTACTS OF IONIC POLYMER METAL COMPOSITES BASED TACTILE SENSORS 被引量:2
10
作者 Xiangting Jia Meie Li Jinxiong Zhou 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2014年第4期407-411,共5页
We report the first attempt to model the contacts of an ionic polymer metal composite(IPMC) based tactile sensor. The tactile sensor comprises an IPMC actuator, an IPMC sensor and the target to be detected. The syst... We report the first attempt to model the contacts of an ionic polymer metal composite(IPMC) based tactile sensor. The tactile sensor comprises an IPMC actuator, an IPMC sensor and the target to be detected. The system makes use of multiple contacts to work: the actuator comes into contact with the sensor and pushes the movement of sensor; the contact between the sensor and the object detects the existence and the stiffness of the target. We integrate modeling of various physical processes involved in IPMC devices to form a simulation scheme. An iteration and optimization strategy is also described to correlate the experimental and simulation results of an IPMC bending actuator to identify the two key parameters used in electromechanical transduction. Modeling the multiple contacts will aid the design and optimization of such IPMC based soft robotics. 展开更多
关键词 IPMC tactile sensor CONTACT finite element method
原文传递
Artificial Tactile Sense Technique for Predicting Beef Tenderness Based on FS Pressure Sensor 被引量:2
11
作者 Xiao-dan Wang~1,Yong-hai Sun~1,Ying Wang~2,Tie-jun Hu~3,Min-hua Chen~1,Bing He~31.School of Biological and Agricultural Engineering,Jilin University,Changchun 130022,P.R.China2.School of Food Science and Engineer,Qingdao Agricultural University,Qingdao 266109,P.R.China3.Jilin Province Changchun Haoyue Halal Meat Co.,Ltd,Changchun 130013,P.R.China 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第2期196-201,共6页
We present a rapid system for predicting beef tenderness by mimicking the human tactile sense. The detection system includes a FS pressure sensor, a power supply conversion circuit, a signal amplifier and a box in whi... We present a rapid system for predicting beef tenderness by mimicking the human tactile sense. The detection system includes a FS pressure sensor, a power supply conversion circuit, a signal amplifier and a box in which the sample is mounted. A sample of raw Longissimus dorsi (LD) muscle is placed in the measuring box; then a rod connected to the pressure sensor is pressed into the beef sample to a given depth; the reaction force of the beef sample is measured and used to predict the tenderness. Sensory evaluation and Warner-Bratzler Shear Force (WBSF) evaluation of samples from the same LD muscle are used for comparison. The new detection system agrees with established procedure 95% of the time, and the time to test a sample is less than 5 minutes. 展开更多
关键词 BIONICS tactile sense beef tenderness detection FS pressure sensor
在线阅读 下载PDF
A Liquid–Solid Interface-Based Triboelectric Tactile Sensor with Ultrahigh Sensitivity of 21.48 kPa-1 被引量:2
12
作者 Jingya Liu Zhen Wen +2 位作者 Hao Lei Zhenqiu Gao Xuhui Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第6期28-38,共11页
Traditional triboelectric tactile sensors based on solid–solid interface have illustrated promising application prospects through optimization approach.However,the poor sensitivity and reliability caused by hard cont... Traditional triboelectric tactile sensors based on solid–solid interface have illustrated promising application prospects through optimization approach.However,the poor sensitivity and reliability caused by hard contact-electrification still poses challenges for the practical applications.In this work,a liquid–solid interface ferrofluid-based triboelectric tactile sensor(FTTS)with ultrahigh sensitivity is proposed.Relying on the fluidity and magnetism of ferrofluid,the topography of microstructure can be flexibly adjusted by directly employing ferrofluid as triboelectric material and controlling the position of outward magnet.To date,an ultrahigh sensitivity of 21.48 k Pa;for the triboelectric sensors can be achieved due to the high spike microstructure,low Young’s modulus of ferrofluid and efficient solid–liquid interface contact-electrification.The detection limit of FTTS of 1.25 Pa with a wide detection range to 390 k Pa was also obtained.In addition,the oleophobic property between ferrofluid and poly-tetra-fluoro-ethylene triboelectric layer can greatly reduce the wear and tear,resulting in the great improvement of stability.Finally,a strategy for personalized password lock with high security level has been demonstrated,illustrating a great perspective for practical application in smart home,artificial intelligence,Internet of things,etc. 展开更多
关键词 FERROFLUID tactile sensor Triboelectric nanogenerator Microstructure Ultrahigh sensitivity
在线阅读 下载PDF
Optical fiber based slide tactile sensor for underwater robots 被引量:1
13
作者 谭定忠 王启明 +2 位作者 宋瑞晗 姚昕 顾义华 《Journal of Marine Science and Application》 2008年第2期122-126,共5页
In the underwater environment, many visual sensors don’t work, and many sensors which work well for robots working in space or on land can not be used underwater. Therefore, an optical fiber slide tactile sensor was ... In the underwater environment, many visual sensors don’t work, and many sensors which work well for robots working in space or on land can not be used underwater. Therefore, an optical fiber slide tactile sensor was designed based on the inner modulation mechanism of optical fibers. The principles and structure of the sensor are explained in detail. Its static and dynamic characteristics were analyzed theoretically and then simulated. A dynamic characteristic model was built and the simulation made using the GA based neural network. In order to improve sensor response, the recognition model of the sensor was designed based on the ‘inverse solution’ principle of neural networks, increasing the control precision and the sensitivity of the manipulator. 展开更多
关键词 underwater robot MANIPULATOR tactile sensor optical fiber
在线阅读 下载PDF
Multi-functional photonic spin Hall effect sensor controlled by phase transition 被引量:1
14
作者 程杰 李瑞昭 +3 位作者 程骋 张亚林 刘胜利 董鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期336-342,共7页
Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propo... Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propose a multi-functional PSHE sensor based on VO_(2), a material that can reveal the phase transition behavior. By applying thermal control, the mutual transformation into different phase states of VO_(2) can be realized, which contributes to the flexible switching between multiple RI sensing tasks. When VO_(2) is insulating, the ultrasensitive detection of glucose concentrations in human blood is achieved. When VO_(2) is in a mixed phase, the structure can be designed to distinguish between the normal cells and cancer cells through no-label and real-time monitoring. When VO_(2) is metallic, the proposed PSHE sensor can act as an RI indicator for gas analytes. Compared with other multi-functional sensing devices with the complex structures, our design consists of only one analyte and two VO_(2) layers, which is very simple and elegant. Therefore, the proposed VO_(2)-based PSHE sensor has outstanding advantages such as small size, high sensitivity, no-label, and real-time detection, providing a new approach for investigating tunable multi-functional sensors. 展开更多
关键词 photonic spin Hall effect multi-functional sensors phase transition sensing performance
原文传递
Optical Fiber Type Slide Tactile Sensor Used for Underwater Robot 被引量:1
15
作者 TAN Ding-zhong, ZHANG Li-xun, WANG Li-quan, MENG Zhuo, MENG Qing-xin (Harbin Engineering University, Harbin 150001, CHN) 《Semiconductor Photonics and Technology》 CAS 2000年第3期144-147,共4页
Because of the special underwater environment, many sensors used well in robots working in space or on the land can not be used in the underwater. So an optical fiber type slide tactile sensor is designed by the inner... Because of the special underwater environment, many sensors used well in robots working in space or on the land can not be used in the underwater. So an optical fiber type slide tactile sensor is designed by the inner modulation mechanism of the intensity type optical fiber. The principle and structure of the sensor are introduced in detail. The static and dynamic characteristics are analyzed theoretically and experimentally. The dynamic characteristic model is built and the simulation is made by using genetic algorithm based on neural network. In order to use the sensor perfectly, the recognition model of the sensor is built on the basis of the principle of “inverse solution” using neural networks. The control precision and sensitivity of the manipulator are improved. 展开更多
关键词 Underwater robot Slide tactile sensor Neural network\
在线阅读 下载PDF
A comprehensive review of tactile sensing technologies in space robotics
16
作者 Hadi JAHANSHAHI Zheng H.ZHU 《Chinese Journal of Aeronautics》 2025年第7期340-373,共34页
This review explores the current state and future prospects of tactile sensing technologies in space robotics,addressing the unique challenges posed by harsh space environments such as extreme temperatures,radiation,m... This review explores the current state and future prospects of tactile sensing technologies in space robotics,addressing the unique challenges posed by harsh space environments such as extreme temperatures,radiation,microgravity,and vacuum conditions,which necessitate specialized sensor designs.We provide a detailed analysis of four primary types of tactile sensors:resistive,capacitive,piezoelectric,and optical,evaluating their operating principles,advantages,limitations,and specific applications in space exploration.Recent advancements in materials science,including the development of radiation-hardened components and flexible sensor materials,are discussed alongside innovations in sensor design and integration techniques that enhance performance and durability under space conditions.Through case studies of various space robotic systems,such as Mars rovers,robotic arms like Canadarm,humanoid robots like Robonaut,and specialized robots like Astrobee and LEMUR 3,this review highlights the crucial role of tactile sensing in enabling precise manipulation,environmental interaction,and autonomous operations in space.Moreover,it synthesizes current research and applications to underscore the transformative impact of tactile sensing technologies on space robotics and highlights their pivotal role in expanding human presence and scientific understanding in space,offering strategic insights and recommendations to guide future research and development in this critical field. 展开更多
关键词 tactile sensors Resistive sensors Capacitive sensors PIEZOELECTRICITY Optical sensors Space robotics
原文传递
A tactile glove for object recognition based on palmar pressure and joint bending strain sensing
17
作者 ZHANG Xuefeng ZHANG Shaojie +1 位作者 CHEN Xin ZHANG Jinhua 《Journal of Measurement Science and Instrumentation》 2025年第2期173-185,共13页
With the rapid development of flexible electronics,the tactile systems for object recognition are becoming increasingly delicate.This paper presents the design of a tactile glove for object recognition,integrating 243... With the rapid development of flexible electronics,the tactile systems for object recognition are becoming increasingly delicate.This paper presents the design of a tactile glove for object recognition,integrating 243 palm pressure units and 126 finger joint strain units that are implemented by piezoresistive Velostat film.The palm pressure and joint bending strain data from the glove were collected using a two-dimensional resistance array scanning circuit and further converted into tactile images with a resolution of 32×32.To verify the effect of tactile data types on recognition precision,three datasets of tactile images were respectively built by palm pressure data,joint bending strain data,and a tactile data combing of both palm pressure and joint bending strain.An improved residual convolutional neural network(CNN)model,SP-ResNet,was developed by light-weighting ResNet-18 to classify these tactile images.Experimental results show that the data collection method combining palm pressure and joint bending strain demonstrates a 4.33%improvement in recognition precision compared to the best results obtained by using only palm pressure or joint bending strain.The recognition precision of 95.50%for 16 objects can be achieved by the presented tactile glove with SP-ResNet of less computation cost.The presented tactile system can serve as a sensing platform for intelligent prosthetics and robot grippers. 展开更多
关键词 tactile glove object recognition Velostat joint bending strain sensors palmar pressure sensors convolutional neural network
在线阅读 下载PDF
A Soft Tactile Unit with Three-Dimensional Force and Temperature Mathematical Decoupling Ability for Robots
18
作者 Xiong Yang Hao Ren +11 位作者 Dong Guo Zhengrong Ling Tieshan Zhang Gen Li Yifeng Tang Haoxiang Zhao Jiale Wang Hongyuan Chang TszKi Gao Jia Dong Ningxin Wu Yajing Shen 《Engineering》 2025年第12期96-106,共11页
Human skin exhibits a remarkable capability to perceive contact forces and environmental temperatures,providing complex information that is essential for its subtle control.Despite recent advancements in soft tactile ... Human skin exhibits a remarkable capability to perceive contact forces and environmental temperatures,providing complex information that is essential for its subtle control.Despite recent advancements in soft tactile sensors,accurately decoupling signals—specifically separating forces from directional orientation and temperature—remains a challenge thus resulting in failure to meet the advanced application requirements of robots.This study proposes,F3T,a multilayer soft sensor unit designed to achieve isolated measurements and mathematical decoupling of normal pressure,omnidirectional tangential forces,and temperature.We developed a circular coaxial magnetic film featuring a floating mount multilayer capacitor that facilitated the physical decoupling of normal and tangential forces in all directions.Additionally,we incorporated an ion gel-based temperature-sensing film into the tactile sensor.The proposed sensor was resilient to external pressures and deformations,and could measure temperature and significantly eliminate capacitor errors induced by environmental temperature changes.In conclusion,our novel design allowed for the decoupled measurement of multiple signals,laying the foundation for advancements in high-level robotic motion control,autonomous decision-making,and task planning. 展开更多
关键词 tactile sensor Force decoupling Temperature and force decoupling Robot-human interaction
在线阅读 下载PDF
MEMS-based ZnO Piezoelectric Tactile Sensor for Minimally Invasive Surgery
19
作者 Minrui Wang Jing Wang +1 位作者 Yan Cui Liding Wang 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期436-438,共3页
This paper reports the design and fabrication of a MEMS-based ZnO piezoelectric tactile sensor,which can be integrated on to the endoscopic grasper used in minimally invasive surgery (MIS).The sensor includes a silico... This paper reports the design and fabrication of a MEMS-based ZnO piezoelectric tactile sensor,which can be integrated on to the endoscopic grasper used in minimally invasive surgery (MIS).The sensor includes a silicon substrate, platinum bottom electrode,platinum top electrode,and a ZnO piezoelectric thin film,which is sandwiched between the two-electrode layers.The sensitivity of the micro-force sensor is analyzed in theory and the sensor exhibits high sensitivity about 7pc/uN.The application of this tactile sensor to MIS will allow the surgeon feeling the touch force between the endoscopic grasper and tissue in real-time,and manipulating the tissue safely. 展开更多
关键词 tactile sensor PIEZOELECTRIC edoscopic grasper
在线阅读 下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部